Core Decomposition in Graphs: Concepts, Algorithms and Applications

Fragkiskos D. Malliaros¹, Apostolos N. Papadopoulos², Michalis Vazirgiannis³
¹Computer Science Laboratory, École Polytechnique, France
²Department of Informatics, Aristotle University of Thessaloniki, Greece
³{fmalliaros, mvazirg}@lix.polytechnique.fr, papadopo@csd.auth.gr

ABSTRACT
Graph mining is an important research area with a plethora of practical applications. Core decomposition in networks, is a fundamental operation strongly related to more complex mining tasks such as community detection, dense subgraph discovery, identification of influential nodes, network visualization, text mining, just to mention a few. In this tutorial, we present in detail the concept and properties of core decomposition in graphs, the associated algorithms for its efficient computation and some of its most important applications.

1. INTRODUCTION
Core decomposition is a well-studied topic in graph mining. Informally, the k-core decomposition is a threshold-based hierarchical decomposition of a graph into nested subgraphs. The basic idea is that a threshold k is set on the degree of each node; nodes that do not satisfy the threshold, are excluded from the process. There exists a rich literature studying algorithmic aspects of core decomposition by taking different viewpoints, such as distributed, streaming, disk-resident data, to name a few. In addition, core decomposition has been successfully used in many diverse application domains, including social networks analysis and text analytics tasks.

Next, we formally define the concept of k-core decomposition in graphs. Let $G = (V, E)$ be an undirected graph. Let H be a subgraph of G, i.e., $H \subseteq G$. Subgraph H is defined to be a k-core of G, denoted by G_k, if it is a maximal connected subgraph of G in which all nodes have degree at least k. The degeneracy $\delta^*(G)$ of a graph G is defined as the maximum k for which graph G contains a non-empty k-core subgraph. A node i has core number $c_i = k$, if it belongs to a k-core but not to any $(k+1)$-core. The k-shell is the subgraph defined by the nodes that belong to the k-core but not to the $(k+1)$-core.

Based on the above definitions, it is evident that if all the nodes of the graph have degree at least one, i.e., $d_i \geq 1, \forall i \in V$, then the 1-core subgraph corresponds to the whole graph, i.e., $G_1 \equiv G$. Furthermore, assuming that G_i, $i = 0, 1, 2, \ldots, \delta^*(G)$ is the i-core of G, then the k-core subgraphs are nested, i.e., $G_0 \supseteq G_1 \supseteq G_2 \supseteq \ldots \supseteq G_{\delta^*(G)}$. Typically, subgraph $G_{\delta^*(G)}$ is called maximal k-core subgraph of G.

Figure 1 depicts an example of a graph and the corresponding k-core decomposition. As we observe, the degeneracy of this graph is $\delta^*(G) = 3$; thus, the decomposition creates three nested k-core subgraphs, with the 3-core being the maximal one. The nested structure of the k-core subgraphs is indicated by the dashed lines. Furthermore, the color on the nodes indicates the core number c of each node. Lastly, we should note here that the k-core subgraphs are not necessarily connected.

2. GOALS AND OUTLINE
The goal of this tutorial is to present in detail the algorithmic paradigm of core decomposition in graphs. In particular, we will focus on the following points:

(i) Fundamental concepts of core decomposition. We present the notion of k-core decomposition for unweighted and undirected graphs and then extensions for weighted, directed, probabilistic and signed ones. We also present generalizations of the decomposition to node properties beyond the degree.

(ii) Algorithms for core decomposition. Computing the k-core decomposition of a graph can be done through a simple process that is based on the following property: to extract the k-core subgraph, all nodes with degree less than k and their adjacent edges should be recursively deleted. In the tutorial, we present efficient algorithms for the k-core decomposition. We also examine several extensions that have been proposed by the databases community for large scale k-core decomposition under various computation frameworks, including streaming, distributed and disk-based algorithms. We also examine how to estimate the k-core number of each node using only local information.

(iii) Applications. We demonstrate applications of the k-core decomposition in various domains, including dense subgraph

©2016. Copyright is with the authors. Published in Proc. 19th International Conference on Extending Database Technology (EDBT), March 15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenProceedings.org. Distribution of this paper is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.
2. Fundamental Concepts of Core Decomposition
 – Highlights of core decomposition
 – Social network analysis
 – Algorithms and applications
 – Extensions of the core decomposition

3. Algorithms
 – Baseline algorithm
 – An $O(|E|)$ algorithm for k-core decomposition
 – Streaming k-core decomposition
 – Distributed k-core decomposition
 – Disk-based k-core decomposition
 – Local estimation of k-core numbers

4. Applications in Complex Networks
 – Dense subgraph discovery
 – Community detection and evaluation
 – Identification of influential nodes
 – Dynamics of networks
 – Modeling the Internet topology
 – Network visualization
 – Text mining

5. Open Problems and Future Research
 – Algorithms and applications

3. ACKNOWLEDGEMENTS
Fragkiskos D. Malliaros is a recipient of the Google Europe Fellowship in Graph Mining, and this research is supported in part by this Google Fellowship.

4. REFERENCES