
A Comparative Evaluation of Models and Specification
Languages for Embedded System Design♠

Ioannis Panagopoulos1, George Papakonstantinou1 and Nikitas Alexandridis2

1 Computer Systems Laboratory, School of Electrical and Computer Engineering
National Technical University of Athens, 11633 Athens, Greece

Email: ioannis@cslab.ece.ntua.gr
2 Department of Electrical and Computer Engineering, George Washington University,

Washington DC, 20052 USA

Abstract. The HW/SW Codesign approach in the design of embedded systems
and their increasing complexity has turned the need of simplifying the specifi-
cation of both the desired behaviour and the final implementation a very crucial
task in the design process. Towards this effort programmers and designers have
introduced a plethora of model-specification language pairs that can effectively
reduce the complexity of the captured functionality, raise the level of abstrac-
tion and support several design tasks (such as verification, performance estima-
tion etc). Due to the lack of a set of well-defined features for the comparative
evaluation of those pairs industry is still reluctant in taking advantage of their
full potential. Additionally, design teams are introducing new models and speci-
fication languages which sometimes add nothing new to already existing ones.
Although VSIA’ s [13] model taxonomy has been proven very useful in classi-
fying models for the specification of the system’s implementation our approach
deals with the specification of the initial desired behaviour. By introducing two
evaluation axes for models, introducing a 3 dimensional space for the taxonomy
of specification languages and classifying the latter with respect to the model
they are used to express, we present a complete feature-based approach that can
be used not only for the selection of the most appropriate model-specification
language pair for the design at hand but also for the classification and evalua-
tion of new models and specification languages introduced for embedded sys-
tem design.

1 Introduction

System Level Design is the process through which a behavioral specification is cap-
tured at a high level of abstraction and is progressively transformed (through various
transformation tasks) to a structural implementation of a desired system [1, 2]. Since a
specific behavior can be transformed to a very large number of possible implementa-
tions, a set of constraints is provided by the designer to restrict his/her search in only a
subspace of potential target candidates. The whole process, from expressing the be-
havioral specification and the constraints to the implementation of the desired system
is referred to as a “design cycle”.

♠ This work was partially supported by a grant from the NSA/Lucite’s program “IP Tool”

 244

A design cycle can be carried out using various “design methodologies”. Each one
of them defines a specific model for capturing the desired behavior, several transfor-
mation steps towards the final implementation that can either be performed automati-
cally or with user interaction and a specific model to express the final implementa-
tion. Today several design methodologies exist [3, 4, 5, 6, 7, 8, 9] claiming to auto-
mate or facilitate the fulfillment of various tasks of the design process. Each one of
them follows a different approach, by providing different models-specification lan-
guages for expressing the desired behavior, different methods for estimating the target
system’s features (under various design constraints) and different transformation steps
(manual or automatic) that can lead to a set of potential target implementations. Be-
havioral and structural specifications are defined through models and expressed using
specification languages. Transformations in terms of mapping one model to another
or moving towards a lower level of abstraction are performed automatically or with
user-interaction to present design alternatives. Then, according to the resulting mod-
eled system’s features a selection is performed on the most suitable one to be imple-
mented.

Due to the lack of a set of well defined features for the evaluation of existing mod-
els-specification languages and selection of the most appropriate pair for the design at
hand, some of those methodologies tend to use models which are either completely
new introduced by the methodologies themselves, or existing ones, more suitable for
expressing the final implementation's structure rather than the initial desired behavior.
This in most cases leads to situations where several design methodologies are using
(in several steps of the design process from capturing the behavior of the system to
mapping it to the final implementation) different specification languages for the same
underlying models in a fashion that seems like “reinventing the wheel”. For example
in [7, 9] two C++ clones are proposed (SystemC and BachC) which are both used to
express an object-oriented model without any clear differentiation of the characteris-
tics and advantages of using the one as opposed to the other. In other cases new mod-
els are presented that are adding nothing new to the older ones (in a semantic aspect)
apart from an easier visualization of the final implementation (i.e. the behavioral layer
of Verilog [10] or VHDL [11] is based on the same structural model that the SpecC
[12] language is using without any clear explanation on why one of the three should
be preferred). This paper deals with the role of models and specification languages in
the System Level Design process. More specifically, it complements the VSIA’s
taxonomy on models [13] by introducing two evaluation axes for the classification
and evaluation of models for the behavioral specification and categorizes specifica-
tion languages according to their features and the model they are used to express. The
complete feature-based system presented can either be used for the selection of the
most appropriate model-specification language pair, depending on the design at hand,
or facilitate the classification and evaluation of new pairs introduced in the future.

The rest of the paper is organized as follows. First we present the model taxonomy
proposed by VSIA [13]. Then we extend that taxonomy with two additional axes to
capture additional but important features of models for capturing the desired behavior.
The resulting classification of models is presented in Sect. 4. In Sect. 5 we present the
three axes used for the classification of specification languages and their relation to
models. Finally using the introduced comparative evaluation we present a case study
which illustrates the usefulness of the existence of such a feature-based evaluation.

 245

2 The VSIA’s Model Taxonomy

Today several models exist [14, 15], each one with its own expressive power and
useful characteristics in specifying systems. We have surveyed 18 of them Finite
State machines (FSM) [16] ,Hierarchical Concurrent Finite State Machines
(HCFSM) [17, 18], Finite State Machines with DataPath (FSMD) [19] , Codesign
Finite State Machines (CFSM) [20], Heterogeneous finite state machines [18], Petri-
Nets ,Timed Petri-Nets, Time Petri-Nets, Timed place transition net, [21, 22], Data
Flow Graphs, Control-Data Flow Graphs [23], Synchronous Data-Flow Family [24],
Cyclo-static data-Flow models (CSDF) [25], FlowCharts [26], Structure oriented
models [10, 11, 12], Heterogeneous process oriented models, CSP [27],Object Ori-
ented models (UML) [28] which we believe can summarize the descriptive power
offered by any model existing today.

In the effort of classifying and evaluating those models we have adopted the axis
based taxonomy proposed by VSIA [13], extending it by two additional axis to cap-
ture two additional characteristics of models, that of expressive power and conceptual
form of their building blocks. VSIA [13] has introduced a taxonomy based on the
level of the abstraction each model allows for the expressed behavior. This abstraction
level has been presented by the use of five axes whose resolution is based on the level
of detail in capturing the following system’s characteristics:
 Temporal Resolution: Defines the accuracy level used by the model for capturing
time.
 Data Resolution: The level of abstraction used for the data used in the computations
defined by the model.
 Functional Resolution: Defines the type of the description used for specifying the
system’s behavior (Digital logic Boolean operations, algorithmically and mathemati-
cally)
 Structural Resolution: The level of detail used in capturing the structure of the
system.
 Software Programming Resolution: Defines the level of abstraction used in order
to program the model’s behavior.

Additionally, VSIA taxonomy makes a clear distinction between the external and
internal details of a model by evaluating their abstraction levels in both cases. Exter-
nal details are related to the level of detail exploited by the model to present the way it
communicates with the environment while internal details are related to the level of
detail used to describe the internal computations performed by the model. Fig. 1
shows those axes and their corresponding resolution metrics.

3 Extending the Taxonomy

We have used that taxonomy to classify every one of the 18 models and it was proven
that those 5 axes are not enough to classify existing models today. For example in Fig.
2 FSMs and Petri-Nets have exactly the same position in the 5 dimensional space
proposed by VSIA while they can be considerably different in terms of expressive-
ness when used to capture a resource constraint type of behavior.

 246

Fig. 1. The VSIA resolution axes

Fig. 2. FSM and Petri-Nets classified using VSIA taxonomy

Therefore we consider it imperative to extend the taxonomy proposed by VSIA to
evaluate the “expressive characteristics” of a model that span through all levels of
abstraction in order to provide to the designer a clear justification on the use of one as
opposed to the use of another. In addition, VSIA’s taxonomy on models does not
provide a classification on models based on the nature of the computation entities they
use (states, processes, objects, etc). Such classification is very important to enable the
selection of the one that is closer to the conceptual understanding of the desired be-
havior. For those reasons we have introduced the “expressive” and “type” axes to
support such evaluation-classification.
a) The type axis (Fig. 3) is the one to determine the ability of the model to capture
different conceptual classes of the modeled behavior based on the nature of the com-
putation entities they use. The classes available are: State oriented models (for sys-
tems conceived as being in a number of possible states), Petri-Nets (where parts of the
system are competing on the use of limited resources), Data Flow graphs (where sys-
tems can be conceived as performing calculations on input data), Activity Oriented
(when the system can be expressed as a set of subsequent activities), Structure Ori-
ented (when the system can be conceived as a number of interacting components),
Process Oriented (when it is more convenient to capture concurrent communicating

Gate
Prop.

Clock
Acc

Cycle
Appr.

Instr.
Cycle

Token
Cycle

Sys.
Event

Partial
Order

Digital
Logic

Algorithm Mathematic

Temporal Axis Functional Axis
Bit Format Value Property Token Structure Block

Black
box

Data axis Structural axis Object
Code

Micro
Code

Assem
bly HLL

DSP
Blocks Major Modes

Software Programming axis

FSM Petri - Net

Model should provide information

Model optionally provides information

Model does not provide any information

External External Internal Internal

 247

processes for the desired behavior) and finally Object Oriented models (where sys-
tems are conceived as a set of objects and interfaces interacting to each other).

Fig. 3. The resolution of the “type axis”

This axis is highly related to the decision the designer has made on how the system
should be conceived depending on the nature of the modeled behavior and its charac-
teristics.
b) The expressive axis: Although the type axis enables the designer choose one model
from the other, it still lacks the ability to distinguish between for example FSMs and
Codesign FSMs (both state oriented) in terms of their expressive power. For that rea-
son we have introduced the expressive axis. The expressive axis is used to evaluate
the model’s expressive power for the behavior and design task at hand depending on
the complexity introduced by the model when a specific characteristic is needed (con-
currency, implicit communication, data or control oriented etc) and the method that
will be used for the fulfillment of a specific design task (verification through simula-
tion or mathematical analysis, performance estimation etc) Consider for example the
FSM and Hierarchical Concurrent FSM model used to express the behavior of a two
elevator controller in a building consisting of three floors. Using a Finite State ma-
chine model which does not support concurrency we would need 9 states to represent
all possible floor combinations for the location of the two elevators (each state repre-
sents a specific location for both elevators). Using Concurrent Finite State Machines
we just need to use 6 states in total, 3 for the FSM capturing the location of the first
elevator and another three capturing the location of the second. In other words, the
“concurrency” characteristic of the expressiveness of the model is stronger on
HCFSM since it reduces the number of states from 9 to 6 and as a result reduces com-
plexity.

4 Resulting Evaluation Based on the “Expressive” Axis

We have located all possible expressive characteristics (such as concurrency, implicit
communication, behavior completion, etc) that may be important for a specific design
task and evaluated each model according to them. The evaluation has been captured
using ranking values whose meaning and use is illustrated in Table 1. Generally, the
greater the value, the better the model’s ability to capture each “expressive” character-
istic. On the first column of Table 1 we present each characteristic along with a brief
explanation of what it defines while the other columns provide a brief description of
the meaning of a specific score. Blank entries represent the absence of the corre-
sponding ranking value for the specific characteristic. Choosing several behaviors and
expressing them using every possible model we come up with the evaluation pre-
sented in Table 2.

State oriented

Petri-Nets

Activity oriented

Data Flow Graph

Structure Oriented

Process Oriented

Object based

 248

Table 1. Explanation of the ranking in Table 2

When a specific task has to be performed for a specific behavior the designer ap-
plies weights ranging from 0 to 1 to every characteristic (to indicate its importance of
the task in question) and calculates the total weighted sum for every model to estab-
lish a ranking using the calculated scores. This ranking is the one to be captured by
the “expressive axis”.

5 Specification Languages

The role of Specification Languages is complementary to the role of models. Specifi-
cation languages serve as an alternative way for expressing the behavior of the system
using a selected model. While the behavior is usually conceived by the designer hav-
ing a specific model in mind, the specification language allows the behavior to be
captured in a formal way by providing strict syntactic rules and semantics which can
be used to perform valuable performance estimation and verification tasks for the

Ranking Value 3 2 1 0

Data-Oriented (The model’s
power in capturing data entities)

Data manipula-
tion allowed by

the model

Data entities are
mainly used for

control decisions

High cost in
complexity No

Control-Oriented (The model’s
power in capturing control flow
related signals)

-
Control is

captured using
control signal

Control is based on
data value

comparisons
No

Concurrency (The model’s
power in expressing concurrent
execution)

Concurrent
paths and
resource

conflicts can be
expressed

Different paths
can be expressed
that are executed

concurrently

Concurrency can
be expressed

implicitly (complex-
ity increase)

No

Implicit Communication (data
sharing on concurrent models) - - Yes No

Explicit Communication
(control signals among
concurrent models)

- - Yes No

Synchronous (Flow of execu-
tion can be time dependent) - - Yes No

Discrete-Event (Flow of execu-
tion defined through events) - - Yes No

Behavioral Hierarchy
(Hierarchical models in the
same design)

- - Yes No

Behavioral Completion
(There is a way to specify the
completion of the execution of
the model)

- Yes High cost in
complexity No

Heterogeneity (Hierarchy
supports different models) - - Yes No

Support by Languages
(Whether there exist languages
that express

- More than two
languages

At least one
language

One
language

Formal Verification (Formal
methods for correctness) - - Yes No

Exception Handling (Handling
of undeterministic events) - Yes High cost in

complexity No

 249

Model
D

at
a-

or
ie

nt
ed

C
on

tr
ol

-
or

ie
nt

ed

C
on

cu
rr

en
cy

Im

pl
ic

it
C

om
-

m
un

ic

E
xp

lic
it

C
om

m

Sy
nc

hr
on

ou
s

A
sy

nc
hr

on
ou

s
(D

is
cr

et
e-

E
ve

nt
)

B
eh

av
io

ra
l H

i-
er

ar
ch

y

B
eh

av
io

ra
l

C
om

pl
et

io
n

H
et

er
og

en
ei

ty

Su
pp

or
t b

y
L

an
gu

ag
es

Fo

rm
al

V

er
ifi

ca
tio

n

E
xc

ep
tio

n
H

an
dl

in
g

FSM 1 2 1 0 0 1 1 0 1 0 2 1 1
HCFSM 1 2 2 0 1 1 1 0 1 0 2 1 1
FSMD 2 2 1 0 0 1 1 0 1 0 1 1 1
CFSM 2 2 2 1 1 1 1 0 1 0 1 1 1
HFSM 2 2 2 1 1 1 1 1 1 1 1 0 1

PN 1 2 3 0 1 1 1 0 1 0 1 1 1
Timed PN 1 2 3 0 1 1 1 0 1 0 1 1 1
Time PN 1 2 3 0 1 1 1 0 1 0 1 1 1

Timed-place
PN 1 2 3 0 1 1 1 0 1 0 1 1 1

DFG 3 0 0 0 0 0 1 0 1 0 2 1 0
CDFG 3 1 0 0 1 0 1 0 1 0 2 1 0

Flowcharts 3 1 0 0 0 0 1 1 1 1 2 1 0
SDF 3 0 2 1 0 0 1 0 0 0 2 0 0

CSDF 3 0 2 1 0 0 1 0 0 0 2 0 0
Structure 3 2 2 1 1 1 1 1 0 1 2 0 2

OBM 3 1 1 1 0 0 1 1 0 1 2 0 2
CSP 1 2 2 1 1 0 1 1 1 1 1 1 0

Heter/ous CSP 2 2 2 1 1 0 1 0 1 1 1 1 0

Table 2. Evaluating the expressiveness of the model

design process. Specification languages are always bound to a specific model for
which they provide all the syntactic constructs needed to express the properties and
the interaction of its building blocks. Although it is possible to use the same specifica-
tion language to capture more than one model this is usually possible in lower levels
of the specification hierarchy. In other words each language is more effective in cap-
turing a model used at the top-most level of the hierarchy, while it is still capable in
capturing other models at lower levels. Considering for example VHDL, while a
plethora of models can be captured by the language (process oriented, data flow), the
language follows the properties of a structural model at its top most level. This tight
relationship leads us to the conclusion that the expressiveness of a specification lan-
guage can be measured by locating its underlying model and performing the classifi-
cation introduced in the previous section.

As previously mentioned, specification languages serve as valuable tools for vari-
ous tasks of the design process. It is crucial to locate their most important characteris-
tics, which can assist in performance estimation analysis or verification during the
Hardware/Software Codesign phase. We have located the three most important ones
which are listed below:
• Executability is related to whether a behavior expressed using a specification

language can be compiled and executed for the computer. The ability to do so,
gives the designer the possibility to create a simulator for the modeled behavior
which he/she can exercise to measure its performance or verify its correctness.

• Synthesizability is related to the existence of synthesis tools accepting as input
the specification language and producing the actual implementation. Such power

 250

is useful in Hw/Sw Codesign since parts that need to be executed in hardware
have to be expressed in some synthesizable language. A special “Methodology”
value is used to represent the fact that for a specification language there exists a
specific methodology that automatically leads to a synthesizable representation
of the desired system.

• Semantics define the meaning of the syntactic constructs of the language. De-
pending on their nature they can be used to translate the statements of the lan-
guage to properties and relations in a mathematical domain for verification
(Formal denotational Semantics), express interconnections of components of the
model (informal denotation semantics), use the already defined meaning of the
programming domain (programming language semantics) or be translated to
mathematical expression used to calculate performance characteristics of the be-
havior (performance related semantics).

In Table 3 each specification language is classified according to those three character-
istics.

Language Semantics Executable Synthesizable

Esterel [29] Formal denotational No No

SpecCharts [30] Formal denotational Yes No

StateCharts[31] Formal denotational Yes No

RSML Formal denotational Yes No

Petri Net[21] Formal denotational Yes No

C Programming Language Yes Methodology

Verilog[10] Informal denotational Yes Yes

VHDL[11] Informal denotational Yes Yes

Verilog[10] Informal denotational Yes Yes

HardwareC[32] Informal denotational Yes Yes

SystemC[33] Informal denotational Yes Methodology

SuperLog[34] Informal denotational Yes Methodology

SpecC[12] Informal denotational Yes Methodology

JAVA[35] Programming Language Yes Methodology

C++[9] Programming Language Yes Methodology

UML[28] Programming Language No Methodology

OpenJ[36] Programming Language Yes No

SDL[25] Programming Language Yes No

CSP[27] Formal denotational No No

ROSETTA[37] Performance Related No No

Table 3 Classifying specification languages

For the specification languages surveyed, their relation to models (the hierarchical
top-most model they are most effective in expressing) is displayed in Fig. 4.

 251

Fig. 4. Relation between models and specification languages

Clearly the classification in Table 3 is insufficient for the selection of a single
specification language for a specific design. A lot of them fall in the same category
according to the selected features. The most important features though for the selec-
tion of a specification language are: the underlying model used (illustrated in Fig. 4),
the design task that needs to be performed and the way it will be fulfilled (Table 3),
the familiarity of the design team with a specific language and the existence of tools
by the people who provide it. The last two issues are highly influenced by industry
trends and introduced standards and can not be captured by a strict feature based cate-
gorization. A representative example is VHDL. Although Verilog provides similar
constructs and falls in the same category, the acceptance of VHDL as a standard has
tremendously biased its use against Verilog as a system specification language.

6 Illustrative Example

To illustrate the usefulness of the feature based selection of the most appropriate
model-specification language pair we provide an example of the specification of an
elevator controller.

Two elevators operate in a 3-story building (including the ground floor). People
press a button at each floor to indicate that they want to use the elevator. Inside the
elevator there are also three buttons to choose the desired floor. Those signals may
occur only when the elevator is at one of the three floors and define a change in the
state of the elevators. States of the system are conceived to correspond to the floor the
elevator currently is. The second elevator shares the same input events with the first.
The principle governing the movement of both elevators defines that the closest ele-
vator satisfies a request from a floor. If both elevators are at the same floor then the
first elevator handles the request. Since there are not any strict real time constraints
one of the most important design tasks is that of verification. From the specification
the designer concludes that in order to capture the behavior of such a system a model
is needed with the following features: control oriented (1), concurrency (1), explicit

State
Oriented

Petri Net

Activity
Oriented

Data Flow

Structure
Oriented

Process
Oriented

Object
Oriented

UML
JAVA
C++
SDL
OpenJ

CSP

MODELS

LANGUAGES

SystemC
SpecC
Sys. Verilog
HardwareC
VHDL
Verilog
HandleC
SuperLog

Petri-Net

C, Pascal etc
TestBuilder

StateCharts
SpecCharts
RSML
ESTEREL

 252

communication (1), asynchronous (1), verification (1) and some other features such as
support by languages (0.5), exception handling (0.2) and behavioral completion (0.6)
which are needed but their availability is not that important. The number in the paren-
theses represents the weights to be applied to the corresponding features to present the
ranking of models in the expressive axis (Fig. 5).

FS
M

H
C

FS
M

FS
M

D

C
FS

M

H
FS

M

PN

Ti
m

ed
 P

N

Ti
m

e
PN

Ti
m

ed
-p

la
ce

 P
N

D
FG

C
D

FG

Fl
ow

ch
ar

ts

SD
F

C
SD

F

St
ru

ct
ur

e

O
B

M

C
SP

H
et

er
og

en
eo

us
 C

SP

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16 Two Elevator Example

Fig. 5. Ranking of models with respect to the expressive axis and applied weights

The conceptual understanding of the specification implies that a state oriented or
Petri net model is more preferred. As a result the “type” feature narrows our search to
models of that category. By looking the expressive axis we conclude that the most
appropriate model seems to be the Petri-Net (PN) followed by the HCFSM while a
bad choice would be an FSM model. Fig. 6 illustrates the specification of the control-
ler’s behavior using those three models.

Fig. 6. The specification of the elevator controller.

(b) HCFSM
Each FSM represents the location of
an elevator. Communication among
the two is realized through the use of
signals that fire transitions.

(c) Petri-Net
States represent floors and tokens
represent the location of the elevators.

(a) FSM
Each state represents a pair (x,y)
with x the floor of the first elevator
and y the floor of the second.
Transition can be of any state to
another. Some transitions on Figure
are omitted.

 253

Clearly the complexity of the specification has decreased significantly in the Petri-
Net specification. Thus it is obviously the most effective choice for capturing the
desired behavior. Although Petri-Nets would be appropriate, the need of using a
specification language for simulation purposes may possibly lead to the selection of
HCFSM for the specification. From the relation of models to specification languages
in Figure 4 it is clear that a plethora of languages may be used for a state oriented
model. In specific, one of the following languages are the most appropriate be used to
capture a HCFSM: StateCharts, SpecCharts, RSML and ESTEREL. ESTEREL is not
chosen since it is not executable so the designer may choose one of the other three for
the specification depending on the availability of tools and support or his/her previous
experience.

7 Conclusion

In this paper we have established a set of well-defined features for evaluating and
classifying models and specification languages for the required behavior and design
task in the System Level Design process. We have extended VSIA’s taxonomy on
models [13] by introducing two additional axes related to important features of mod-
els for capturing the desired behavior and evaluated existing models of computation
according to them. We have also introduced a 3 dimensional space for the classifica-
tion of specification languages and revealed the interrelationship of the latter with the
models they express. The whole feature-based system can be proven a valuable tool
for selecting the most appropriate model-specification language pair (the one that
reduces the complexity of the expressed behavior and can support the needed design
tasks) for a desired behavior. Moreover it can be used for the evaluation and classifi-
cation of new models and specification languages introduced for System Level De-
sign.

References

1. D.D. Gajski, F. Vahid, S. Narayan, J. Gong, Specification and Design of Embedded Sys-
tems, Prentice Hall, (1994)

2. H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, L. Todd, Surviving the SoC Revolu-
tion, Kluwer Academic Publishers, (1999)

3. “Overview of the PTOLEMY project”, Technical Memorandum UCB/ERL M01/11, March
6, (2001)

4. “A Framework for Hardware-Software Co-Design of Embedded Systems”, available at:
www-cad.eecs.berkeley.edu/~polis

5. R.A. Bergamaschi, S. Bhattacharaya, R. Wagner, C. Fellenz, M. Muhlada, F. White, W.R.
Lee, J.M. Daveau, “Automating the Design of SOCs Using Cores”, IEEE Design and Test
of Computers, 18(5):32-45, (2001)

6. J.A. Rowson, A.S. Vincentelli, “Interface-Based Design”, Proceedings ACM DAC Confer-
ence, (1997) 178-183

 254

7. T. Kambe, A. Yamada, K. Nishida, K. Okada, M. Ohnishi, A. Kay, P. Boca, V. Zammit, T.
Nomura, “A C-based Synthesis System, Bach, and its Application”, Proceedings Asian
South Pacific Design Automation Conference, (2001) 151-155

8. A.D. Pimentel, L.O. Hertzberger, P. Lieverse, P. van der Wolf, E.F. Deprette, “Exploring
Embedded-Systems Architectures with Artemis”, IEEE Computer Magazine, 34(11):57-63
(2001)

9. D. Verkest, J. Kunkel, F. Shirrmeister, “System Level Design Using C++”, Proceedings
DATE Conference, Paris, France, (2000) 74

10. S. Brown, Z. Vranesic, Fundamentals of Digital Logic With VERILOG Design, Mc Graw
Hill, (2003)

11. J.R. Armstrong, F.G. Gray, VHDL Design: Representation and Synthesis, 2nd Edition,
Prentice Hall, (2000)

12. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, “The SpecC Methodology”, UC Ir-
vine, Technical Report ICS-TR-99-56, (1999)

13. System Level Design Development Working Group, “VSI Alliance: Model Taxonomy”,
Version 2.1, July (2001)

14. C. Kern, M.R. Greenstreet, “Formal Verification in Hardware Design: a Survey”, ACM
Transactions on Design Automation of Electronic Systems, 4(2):123-193 (1999)

15. L.A. Cortes, P. Eles, Z. Peng, “A Survey on Hardware/Software Codesign Representation
Models”, SAVE Project Report, Department of Computer and Information Science, Lin-
koping University, Sweden, (1999)

16. F. Vahid, T. Givargis, Embedded System Design: a Unified Hw/Sw Introduction, John
Wiley, (2000)

17. B. Lee, E.A. Lee, “Hierarchical Concurrent Finite State Machines in Ptolemy”, Proceed-
ings International Conference on Application of Concurrency to System Design, Fuku-
shima, Japan, (1998) 34-40

18. B. Lee, E.E. Lee, “Interaction of Finite State Machines and Concurrency Models”, Pro-
ceedings of the IEEE, (1998) 1715-1719

19. G. DeMichelli, M. Sami, Hw/Sw Codesign, Kluwer AcademicPublishers, (1999)
20. H.C.C. Hsiech, Formal Methods for Embedded System Design, PhD dissertation, Univer-

sity of California at Berkeley, (2000)
21. L.A. Cortes, P. Eles, Z. Peng, “A Petri-Net based Model for Heterogeneous Embedded

Systems”, Proceedings NORCHIP Conference, (1999) 248-255
22. M. Sgroi, L. Lavagno, “Synthesis of Embedded Software Using Free-Choice Petri Nets”,

Proceedings ACM DAC Conference, (1999), 805-810
23. G. DeMicheli, Synthesis and Optimization of Digital Circuits, Mc Graw Hill, (1996)
24. F. Slomka, M. Dorfel, R. Munzenberger, “Generating Mixed Hardware/Software Systems

from SDL Specifications”, Proceedings IEEE Codesign Conference (CODES), (2001) 116-
121

25. T.M. Parks, J.L. Pino, E.A. Lee, “A Comparison of Synchronous and Cyclo-Static Data-
flow”, Proceedings Asilomar Conference on Signals and Systems. Vol.1, Pacific Grove, CA
(1995) 204-210

26. D.D. Gadjski, L. Ramachandran, “Introduction to High Level Synthesis”, IEEE Design and
Test of Computers, (1994) 44-54

27. S. Schneider, Concurrent and Real-time Systems: The CSP Approach, John Wiley, (2000)
28. G. Martin, L. Lavagno, J.L. Guerin, “Embedded UML: a Merger of Real-time UML and

Co-design”, Proceedings IEEE Codesign Conference (CODES), (2001) 23-28
29. G. Berry and L. Cosserat, “The ESTEREL synchronous programming language and its

mathematical semantics”, Ecole Nationale Superieure de Mines Paris, (1984)
30. F. Vahid, S. Narayan, “SpecCharts: a Language for System Level Synthesis, Proceedings

CHDL Conference, (1991) 145-154

 255

31. Heimdahl M.P.E, Keenan D.J., “Generating Code from Hierarchical State-based Require-
ments”, Proceedings 3rd IEEE International Symposium on Requirements Engineering,
(1997), 210–219

32. D.C. Ku, G. DeMichelli, “Hardware-C A Language for hardware Design”, Technical Re-
port CSL-TR-88-362, Computer Systems Lab, Stanford University, (1988)

33. A. Fin, F. Fummi, M. Signoretto, “SystemC: a Homogenous Environment to Test Embed-
ded Systems”, Proceedings IEEE Codesign Conference (CODES), Copenhagen, Denmark,
(2001) 17-22

34. P. Flanke, S. Davidmann, “Superlog, a Unified Design Language for System-on-Chip”,
2000, ASPDAC

35. R. Helaihel, K. Olukotun,, “Java as a Specification Language for Hardware-Software Sys-
tems”, Proceedings ICCAD Conference, (1997)

36. J. Zhu, D. Gajski, , “OpenJ: An Extensible System Level Design Language”, Proceedings
Design Automation and Test Conference in Europe, (1999)

37. P. Alexander, C. Kong, “ROSETTA: Semantic Support for Model-Centered Systems-Level
Design”, IEEE Computer Magazine, November (2001)

