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Abstract. The HW/SW Codesign approach in the design of embedded systems 
and their increasing complexity has turned the need of simplifying the specifi-
cation of both the desired behaviour and the final implementation a very crucial 
task in the design process. Towards this effort programmers and designers have 
introduced a plethora of model-specification language pairs that can effectively 
reduce the complexity of the captured functionality, raise the level of abstrac-
tion and support several design tasks (such as verification, performance estima-
tion etc). Due to the lack of a set of well-defined features for the comparative 
evaluation of those pairs industry is still reluctant in taking advantage of their 
full potential. Additionally, design teams are introducing new models and speci-
fication languages which sometimes add nothing new to already existing ones. 
Although VSIA’ s [13] model taxonomy has been proven very useful in classi-
fying models for the specification of the system’s implementation our approach 
deals with the specification of the initial desired behaviour. By introducing two 
evaluation axes for models, introducing a 3 dimensional space for the taxonomy 
of specification languages and classifying the latter with respect to the model 
they are used to express, we present a complete feature-based approach that can 
be used not only for the selection of the most appropriate model-specification 
language pair for the design at hand but also for the classification and evalua-
tion of new models and specification languages introduced for embedded sys-
tem design. 

1 Introduction 

System Level Design is the process through which a behavioral specification is cap-
tured at a high level of abstraction and is progressively transformed (through various 
transformation tasks) to a structural implementation of a desired system [1, 2]. Since a 
specific behavior can be transformed to a very large number of possible implementa-
tions, a set of constraints is provided by the designer to restrict his/her search in only a 
subspace of potential target candidates. The whole process, from expressing the be-
havioral specification and the constraints to the implementation of the desired system 
is referred to as a “design cycle”.  
                                                           
♠ This work was partially supported by a grant from the NSA/Lucite’s program “IP Tool” 
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A design cycle can be carried out using various “design methodologies”. Each one 
of them defines a specific model for capturing the desired behavior, several transfor-
mation steps towards the final implementation that can either be performed automati-
cally or with user interaction and a specific model to express the final implementa-
tion. Today several design methodologies exist [3, 4, 5, 6, 7, 8, 9] claiming to auto-
mate or facilitate the fulfillment of various tasks of the design process. Each one of 
them follows a different approach, by providing different models-specification lan-
guages for expressing the desired behavior, different methods for estimating the target 
system’s features (under various design constraints) and different transformation steps 
(manual or automatic) that can lead to a set of potential target implementations. Be-
havioral and structural specifications are defined through models and expressed using 
specification languages. Transformations in terms of mapping one model to another 
or moving towards a lower level of abstraction are performed automatically or with 
user-interaction to present design alternatives. Then, according to the resulting mod-
eled system’s features a selection is performed on the most suitable one to be imple-
mented. 

Due to the lack of a set of well defined features for the evaluation of existing mod-
els-specification languages and selection of the most appropriate pair for the design at 
hand, some of those methodologies tend to use models which are either completely 
new introduced by the methodologies themselves, or existing ones, more suitable for 
expressing the final implementation's structure rather than the initial desired behavior. 
This in most cases leads to situations where several design methodologies are using 
(in several steps of the design process from capturing the behavior of the system to 
mapping it to the final implementation) different specification languages for the same 
underlying models in a fashion that seems like “reinventing the wheel”. For example 
in [7, 9] two C++ clones are proposed (SystemC and BachC) which are both used to 
express an object-oriented model without any clear differentiation of the characteris-
tics and advantages of using the one as opposed to the other. In other cases new mod-
els are presented that are adding nothing new to the older ones (in a semantic aspect) 
apart from an easier visualization of the final implementation (i.e. the behavioral layer 
of Verilog [10] or VHDL [11] is based on the same structural model that the SpecC 
[12] language is using without any clear explanation on why one of the three should 
be preferred). This paper deals with the role of models and specification languages in 
the System Level Design process. More specifically, it complements the VSIA’s 
taxonomy on models [13] by introducing two evaluation axes for the classification 
and evaluation of models for the behavioral specification and categorizes specifica-
tion languages according to their features and the model they are used to express. The 
complete feature-based system presented can either be used for the selection of the 
most appropriate model-specification language pair, depending on the design at hand, 
or facilitate the classification and evaluation of new pairs introduced in the future.  

The rest of the paper is organized as follows. First we present the model taxonomy 
proposed by VSIA [13]. Then we extend that taxonomy with two additional axes to 
capture additional but important features of models for capturing the desired behavior. 
The resulting classification of models is presented in Sect. 4. In Sect. 5 we present the 
three axes used for the classification of specification languages and their relation to 
models. Finally using the introduced comparative evaluation we present a case study 
which illustrates the usefulness of the existence of such a feature-based evaluation. 
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2 The VSIA’s Model Taxonomy 

Today several models exist [14, 15], each one with its own expressive power and 
useful characteristics in specifying systems. We have surveyed 18 of them Finite 
State machines (FSM) [16] ,Hierarchical Concurrent Finite State Machines 
(HCFSM) [17, 18], Finite State Machines with DataPath (FSMD) [19] , Codesign 
Finite State Machines (CFSM) [20], Heterogeneous finite state machines [18], Petri-
Nets ,Timed Petri-Nets, Time Petri-Nets, Timed place transition net, [21, 22], Data 
Flow Graphs, Control-Data Flow Graphs [23], Synchronous Data-Flow Family [24], 
Cyclo-static data-Flow models (CSDF) [25], FlowCharts [26], Structure oriented 
models [10, 11, 12], Heterogeneous process oriented models, CSP [27],Object Ori-
ented models (UML) [28] which we believe can summarize the descriptive power 
offered by any model existing today. 

In the effort of classifying and evaluating those models we have adopted the axis 
based taxonomy proposed by VSIA [13], extending it by two additional axis to cap-
ture two additional characteristics of models, that of expressive power and conceptual 
form of their building blocks. VSIA [13] has introduced a taxonomy based on the 
level of the abstraction each model allows for the expressed behavior. This abstraction 
level has been presented by the use of five axes whose resolution is based on the level 
of detail in capturing the following system’s characteristics: 
 Temporal Resolution: Defines the accuracy level used by the model for capturing 
time. 
 Data Resolution: The level of abstraction used for the data used in the computations 
defined by the model. 
 Functional Resolution: Defines the type of the description used for specifying the 
system’s behavior (Digital logic Boolean operations, algorithmically and mathemati-
cally) 
 Structural Resolution: The level of detail used in capturing the structure of the 
system. 
 Software Programming Resolution: Defines the level of abstraction used in order 
to program the model’s behavior. 

Additionally, VSIA taxonomy makes a clear distinction between the external and 
internal details of a model by evaluating their abstraction levels in both cases. Exter-
nal details are related to the level of detail exploited by the model to present the way it 
communicates with the environment while internal details are related to the level of 
detail used to describe the internal computations performed by the model. Fig. 1 
shows those axes and their corresponding resolution metrics. 

3 Extending the Taxonomy 

We have used that taxonomy to classify every one of the 18 models and it was proven 
that those 5 axes are not enough to classify existing models today. For example in Fig. 
2 FSMs and Petri-Nets have exactly the same position in the 5 dimensional space 
proposed by VSIA while they can be considerably different in terms of expressive-
ness when used to capture a resource constraint type of behavior. 
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Fig. 1. The VSIA resolution axes 

Fig. 2. FSM and Petri-Nets classified using VSIA taxonomy 

Therefore we consider it imperative to extend the taxonomy proposed by VSIA to 
evaluate the “expressive characteristics” of a model that span through all levels of 
abstraction in order to provide to the designer a clear justification on the use of one as 
opposed to the use of another. In addition, VSIA’s taxonomy on models does not 
provide a classification on models based on the nature of the computation entities they 
use (states, processes, objects, etc). Such classification is very important to enable the 
selection of the one that is closer to the conceptual understanding of the desired be-
havior. For those reasons we have introduced the “expressive” and “type” axes to 
support such evaluation-classification. 
a) The type axis (Fig. 3) is the one to determine the ability of the model to capture 
different conceptual classes of the modeled behavior based on the nature of the com-
putation entities they use. The classes available are: State oriented models (for sys-
tems conceived as being in a number of possible states), Petri-Nets (where parts of the 
system are competing on the use of limited resources), Data Flow graphs (where sys-
tems can be conceived as performing calculations on input data), Activity Oriented 
(when the system can be expressed as a set of subsequent activities), Structure Ori-
ented (when the system can be conceived as a number of interacting components), 
Process Oriented (when it is more convenient to capture concurrent communicating 
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processes for the desired behavior) and finally Object Oriented models (where sys-
tems are conceived as a set of objects and interfaces interacting to each other). 

Fig. 3. The resolution of the “type axis” 

This axis is highly related to the decision the designer has made on how the system 
should be conceived depending on the nature of the modeled behavior and its charac-
teristics. 
b) The expressive axis: Although the type axis enables the designer choose one model 
from the other, it still lacks the ability to distinguish between for example FSMs and 
Codesign FSMs (both state oriented) in terms of their expressive power. For that rea-
son we have introduced the expressive axis. The expressive axis is used to evaluate 
the model’s expressive power for the behavior and design task at hand depending on 
the complexity introduced by the model when a specific characteristic is needed (con-
currency, implicit communication, data or control oriented etc) and the method that 
will be used for the fulfillment of a specific design task (verification through simula-
tion or mathematical analysis, performance estimation etc) Consider for example the 
FSM and Hierarchical Concurrent FSM model used to express the behavior of a two 
elevator controller in a building consisting of three floors. Using a Finite State ma-
chine model which does not support concurrency we would need 9 states to represent 
all possible floor combinations for the location of the two elevators (each state repre-
sents a specific location for both elevators). Using Concurrent Finite State Machines 
we just need to use 6 states in total, 3 for the FSM capturing the location of the first 
elevator and another three capturing the location of the second. In other words, the 
“concurrency” characteristic of the expressiveness of the model is stronger on 
HCFSM since it reduces the number of states from 9 to 6 and as a result reduces com-
plexity.  

4 Resulting Evaluation Based on the “Expressive” Axis 

We have located all possible expressive characteristics (such as concurrency, implicit 
communication, behavior completion, etc) that may be important for a specific design 
task and evaluated each model according to them. The evaluation has been captured 
using ranking values whose meaning and use is illustrated in Table 1. Generally, the 
greater the value, the better the model’s ability to capture each “expressive” character-
istic. On the first column of Table 1 we present each characteristic along with a brief 
explanation of what it defines while the other columns provide a brief description of 
the meaning of a specific score. Blank entries represent the absence of the corre-
sponding ranking value for the specific characteristic. Choosing several behaviors and 
expressing them using every possible model we come up with the evaluation pre-
sented in Table 2. 
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Table 1. Explanation of the ranking in Table 2 

When a specific task has to be performed for a specific behavior the designer ap-
plies weights ranging from 0 to 1 to every characteristic (to indicate its importance of 
the task in question) and calculates the total weighted sum for every model to estab-
lish a ranking using the calculated scores. This ranking is the one to be captured by 
the “expressive axis”. 

5 Specification Languages 

The role of Specification Languages is complementary to the role of models. Specifi-
cation languages serve as an alternative way for expressing the behavior of the system 
using a selected model. While the behavior is usually conceived by the designer hav-
ing a specific model in mind, the specification language allows the behavior to be 
captured in a formal way by providing strict syntactic rules and semantics which can 
be used to perform valuable performance estimation and verification tasks for the  

Ranking Value 3 2 1 0 

Data-Oriented (The model’s 
power in capturing data entities) 

Data manipula-
tion allowed by 

the model 

Data entities are 
mainly used for 

control decisions 

High cost in  
complexity No 

Control-Oriented (The model’s 
power in capturing control flow 
related signals) 

- 
Control is  

captured using 
control signal 

Control is based on 
data value  

comparisons 
No 

Concurrency (The model’s 
power in expressing concurrent 
execution) 

Concurrent 
paths and 
resource  

conflicts can be 
expressed 

Different paths 
can be expressed 
that are executed 

concurrently 

Concurrency can 
be expressed 

implicitly (complex-
ity increase) 

No 

Implicit Communication (data 
sharing on concurrent models) - - Yes No 

Explicit Communication 
(control signals among  
concurrent models) 

- - Yes No 

Synchronous (Flow of execu-
tion can be time dependent) - - Yes No 

Discrete-Event (Flow of execu-
tion defined through events) - - Yes No 

Behavioral Hierarchy  
(Hierarchical models in the 
same design) 

- - Yes No 

Behavioral Completion  
(There is a way to specify the 
completion of the execution of 
the model) 

- Yes High cost in  
complexity No 

Heterogeneity (Hierarchy 
supports different models) - - Yes No 

Support by Languages 
(Whether there exist languages 
that express  

- More than two 
languages 

At least one  
language 

One 
language 

Formal Verification (Formal 
methods for correctness) - - Yes No 

Exception Handling (Handling 
of undeterministic events)  - Yes High cost in  

complexity No 
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FSM 1 2 1 0 0 1 1 0 1 0 2 1 1 
HCFSM 1 2 2 0 1 1 1 0 1 0 2 1 1 
FSMD 2 2 1 0 0 1 1 0 1 0 1 1 1 
CFSM 2 2 2 1 1 1 1 0 1 0 1 1 1 
HFSM 2 2 2 1 1 1 1 1 1 1 1 0 1 

PN 1 2 3 0 1 1 1 0 1 0 1 1 1 
Timed PN 1 2 3 0 1 1 1 0 1 0 1 1 1 
Time PN 1 2 3 0 1 1 1 0 1 0 1 1 1 

Timed-place 
PN 1 2 3 0 1 1 1 0 1 0 1 1 1 

DFG 3 0 0 0 0 0 1 0 1 0 2 1 0 
CDFG 3 1 0 0 1 0 1 0 1 0 2 1 0 

Flowcharts 3 1 0 0 0 0 1 1 1 1 2 1 0 
SDF 3 0 2 1 0 0 1 0 0 0 2 0 0 

CSDF 3 0 2 1 0 0 1 0 0 0 2 0 0 
Structure 3 2 2 1 1 1 1 1 0 1 2 0 2 

OBM 3 1 1 1 0 0 1 1 0 1 2 0 2 
CSP 1 2 2 1 1 0 1 1 1 1 1 1 0 

Heter/ous CSP 2 2 2 1 1 0 1 0 1 1 1 1 0 

Table 2. Evaluating the expressiveness of the model 

design process. Specification languages are always bound to a specific model for 
which they provide all the syntactic constructs needed to express the properties and 
the interaction of its building blocks. Although it is possible to use the same specifica-
tion language to capture more than one model this is usually possible in lower levels 
of the specification hierarchy. In other words each language is more effective in cap-
turing a model used at the top-most level of the hierarchy, while it is still capable in 
capturing other models at lower levels. Considering for example VHDL, while a 
plethora of models can be captured by the language (process oriented, data flow), the 
language follows the properties of a structural model at its top most level. This tight 
relationship leads us to the conclusion that the expressiveness of a specification lan-
guage can be measured by locating its underlying model and performing the classifi-
cation introduced in the previous section. 

As previously mentioned, specification languages serve as valuable tools for vari-
ous tasks of the design process. It is crucial to locate their most important characteris-
tics, which can assist in performance estimation analysis or verification during the 
Hardware/Software Codesign phase. We have located the three most important ones 
which are listed below: 
• Executability is related to whether a behavior expressed using a specification 

language can be compiled and executed for the computer. The ability to do so, 
gives the designer the possibility to create a simulator for the modeled behavior 
which he/she can exercise to measure its performance or verify its correctness. 

• Synthesizability is related to the existence of synthesis tools accepting as input 
the specification language and producing the actual implementation. Such power 
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is useful in Hw/Sw Codesign since parts that need to be executed in hardware 
have to be expressed in some synthesizable language. A special “Methodology” 
value is used to represent the fact that for a specification language there exists a 
specific methodology that automatically leads to a synthesizable representation 
of the desired system. 

• Semantics define the meaning of the syntactic constructs of the language. De-
pending on their nature they can be used to translate the statements of the lan-
guage to properties and relations in a mathematical domain for verification 
(Formal denotational Semantics), express interconnections of components of the 
model (informal denotation semantics), use the already defined meaning of the 
programming domain (programming language semantics) or be translated to 
mathematical expression used to calculate performance characteristics of the be-
havior (performance related semantics). 

In Table 3 each specification language is classified according to those three character-
istics. 
 

   
Language Semantics Executable Synthesizable 

Esterel [29] Formal denotational No No 

SpecCharts [30] Formal denotational Yes No 

StateCharts[31] Formal denotational Yes No 

RSML Formal denotational Yes No 

Petri Net[21] Formal denotational Yes No 

C Programming Language Yes Methodology 

Verilog[10] Informal denotational Yes Yes 

VHDL[11] Informal denotational Yes Yes 

Verilog[10] Informal denotational Yes Yes 

HardwareC[32] Informal denotational Yes Yes 

SystemC[33] Informal denotational Yes Methodology 

SuperLog[34] Informal denotational Yes Methodology 

SpecC[12] Informal denotational Yes Methodology 

JAVA[35] Programming Language Yes Methodology 

C++[9] Programming Language Yes Methodology 

UML[28] Programming Language No Methodology 

OpenJ[36] Programming Language Yes No 

SDL[25] Programming Language Yes No 

CSP[27] Formal denotational No No 

ROSETTA[37] Performance Related No No 

Table 3 Classifying specification languages 

For the specification languages surveyed, their relation to models (the hierarchical 
top-most model they are most effective in expressing) is displayed in Fig. 4. 
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Fig. 4. Relation between models and specification languages 

Clearly the classification in Table 3 is insufficient for the selection of a single 
specification language for a specific design. A lot of them fall in the same category 
according to the selected features. The most important features though for the selec-
tion of a specification language are: the underlying model used (illustrated in Fig. 4), 
the design task that needs to be performed and the way it will be fulfilled (Table 3), 
the familiarity of the design team with a specific language and the existence of tools 
by the people who provide it. The last two issues are highly influenced by industry 
trends and introduced standards and can not be captured by a strict feature based cate-
gorization. A representative example is VHDL. Although Verilog provides similar 
constructs and falls in the same category, the acceptance of VHDL as a standard has 
tremendously biased its use against Verilog as a system specification language. 

6 Illustrative Example 

To illustrate the usefulness of the feature based selection of the most appropriate 
model-specification language pair we provide an example of the specification of an 
elevator controller.  

Two elevators operate in a 3-story building (including the ground floor). People 
press a button at each floor to indicate that they want to use the elevator. Inside the 
elevator there are also three buttons to choose the desired floor. Those signals may 
occur only when the elevator is at one of the three floors and define a change in the 
state of the elevators. States of the system are conceived to correspond to the floor the 
elevator currently is. The second elevator shares the same input events with the first. 
The principle governing the movement of both elevators defines that the closest ele-
vator satisfies a request from a floor. If both elevators are at the same floor then the 
first elevator handles the request. Since there are not any strict real time constraints 
one of the most important design tasks is that of verification. From the specification 
the designer concludes that in order to capture the behavior of such a system a model 
is needed with the following features: control oriented (1), concurrency (1), explicit 
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communication (1), asynchronous (1), verification (1) and some other features such as 
support by languages (0.5), exception handling (0.2) and behavioral completion (0.6) 
which are needed but their availability is not that important. The number in the paren-
theses represents the weights to be applied to the corresponding features to present the 
ranking of models in the expressive axis (Fig. 5). 
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Fig. 5. Ranking of models with respect to the expressive axis and applied weights 

The conceptual understanding of the specification implies that a state oriented or 
Petri net model is more preferred. As a result the “type” feature narrows our search to 
models of that category. By looking the expressive axis we conclude that the most 
appropriate model seems to be the Petri-Net (PN) followed by the HCFSM while a 
bad choice would be an FSM model. Fig. 6 illustrates the specification of the control-
ler’s behavior using those three models.  

Fig. 6. The specification of the elevator controller. 

 

(b) HCFSM 
Each FSM represents the location of 
an elevator. Communication among 
the two is realized through the use of 
signals that fire transitions. 

(c) Petri-Net 
States represent floors and tokens 
represent the location of the elevators.

(a) FSM 
Each state represents a pair (x,y) 
with x the floor of the first elevator 
and y the floor of the second. 
Transition can be of any state to 
another. Some transitions on Figure 
are omitted. 
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Clearly the complexity of the specification has decreased significantly in the Petri-
Net specification. Thus it is obviously the most effective choice for capturing the 
desired behavior. Although Petri-Nets would be appropriate, the need of using a 
specification language for simulation purposes may possibly lead to the selection of 
HCFSM for the specification. From the relation of models to specification languages 
in Figure 4 it is clear that a plethora of languages may be used for a state oriented 
model. In specific, one of the following languages are the most appropriate be used to 
capture a HCFSM: StateCharts, SpecCharts, RSML and ESTEREL. ESTEREL is not 
chosen since it is not executable so the designer may choose one of the other three for 
the specification depending on the availability of tools and support or his/her previous 
experience. 

7 Conclusion 

In this paper we have established a set of well-defined features for evaluating and 
classifying models and specification languages for the required behavior and design 
task in the System Level Design process. We have extended VSIA’s taxonomy on 
models [13] by introducing two additional axes related to important features of mod-
els for capturing the desired behavior and evaluated existing models of computation 
according to them. We have also introduced a 3 dimensional space for the classifica-
tion of specification languages and revealed the interrelationship of the latter with the 
models they express. The whole feature-based system can be proven a valuable tool 
for selecting the most appropriate model-specification language pair (the one that 
reduces the complexity of the expressed behavior and can support the needed design 
tasks) for a desired behavior. Moreover it can be used for the evaluation and classifi-
cation of new models and specification languages introduced for System Level De-
sign. 
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