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Abstract. With the growing complexity of the  computer-based system, also 
their user interfaces, mostly materialized graphically, become more complex, 
accordingly making the test and analysis process more and more tedious and 
costly. The paper introduces a holistic view of fault modeling that can be car-
ried out as a complementary step to system modeling, enabling a precise scal-
ability of the test process, revealing much rationalization potential. Finite-state 
based notions and tools enable to introduce efficient algorithms to generate and 
select test cases systematically. The elements of the approach will be illu-
minated and validated by realistic examples. 

Categories and Subject Descriptors: D.2.4 [Software Engineering]: 
Software/Program Verification – validation; D.2.5 [Software Engineering]: 
Testing and Debugging – error handling, coverage testing; F.1.1 [Models of 
Computation]: Automata – finite state; F.4.3 [Formal Languages]: Classes 
Defined by Automata – regular expressions 

General Terms: Verification, Design, Human Factors, Fault Management, 
Theory. 

Keywords: Test case generation/selection, test planning/scalability, inter-action 
sequences, graphical user interfaces, regular events. 

1   Introduction 

While developing interactive systems, construction of the user interactions (UI) 
deserves special care, and should be handled separately because it requires different 
skills, and maybe different techniques than construction of common software. The 
present paper will focus on construction of UI, i.e. design, specification and validation 
of system requirements of UI from user view. As nowadays the most UI will be mate-
rialized graphically (GUI), we will concentrate on GUI; UI and GUI will be used syn-
onymously. 

The design part of the UI development needs a good understanding of the user and 
his/her needs, the implementation part requires familiarity with the technical 
equipment, e.g. programming platform, language, etc. [37]. Testing requires both: A 
good understanding of user requirements, and familiarity with the technical 
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equipment [8]. This paper is about UI testing, i.e. testing of the software which 
materializes the UI. To some extent, also analysis aspects will be  covered as testing 
and analysis usually belong together. 

Based on finite-state automata (FSA) and regular expressions, the paper will 
introduce a holistic view: Fault modeling will be carried out as a complementary step 
to system modeling. Thus, both the desired and undesired behavior of the system will 
be specified at the same level of the design granularity. Appropriate formal notions 
will be used to introduce efficient algorithms to systematically generate and select test 
cases. 

While constructing test cases, one generally has to produce meaningful test inputs 
and to determine then the expected system outputs for this inputs. To generate test 
cases for a UI, one has to identify first the test objects and the test objectives. Test 
objects are the instruments for the input, e.g. screens, windows, icons, menus, 
pointers, commands, function/alphanumerical keys, etc. The test objective is to 
generate the expected system behavior (desired event). Robust systems possess also a 
good exception handling mechanism, i.e. they are responsive by behaving good-
natured in case of erroneous inputs of the user, generating constructive warnings, or 
tentative corrections, etc. that navigate the user into the right direction. In order to 
validate such robust system behavior, one needs systematically generated illegal 
inputs which entail injection of undesired events into the system under test (SUT). 

Test inputs of GUI usually represent sequences of  GUI objects activities and/or 
selections that will operate interactively with the objects (Interaction Sequences – IS 
[40], see also [20], Event Sequences). Such an interactive sequence is complete (CIS), 
iff it eventually produces the desired system response. From Knowledge Engineering 
point of view, the testing of GUI represents a typical planning problem that can be 
solved goal-driven [23]: Given a set of operators, an initial state and a goal state, the 
planner is expected to produce a sequence of operators that will change the initial 
state to the goal state. For the GUI testing problem described above, this means we 
have to construct the test sequences in dependency of both the desired, correct events 
and the undesired, faulty events. A major problem is the unique distinction between 
correct and faulty events (Oracle Problem, [22]). Our approach will exploit the 
concept of CIS to elegantly handle the Oracle Problem. 

Another tough problem while testing is the decision when to stop testing (Test 
Termination Problem and Testability [16, 11]). Exercising a set of test cases, the test 
results can be satisfactory, but this is limited to these special test cases. Thus, for the 
quality judgement of the program under test one needs further, rather quantitative 
arguments, usually materialized by well-defined coverage criteria. The most well 
known coverage criteria base either on special, structural issues of the program to be 
tested (implementation orientation/white-box testing), or its behavioral, functional 
description (specification orientation/black-box testing), or both, if both 
implementation and specification are available (hybrid/gray-box testing). 

The present paper will summarize our research work, illustrating it with examples 
lent from real projects, e.g. electronic vending machines which accept electronic and 
hard money, performing transfers of electronic money to the owner’s bank account, 
etc. The favored methods for modeling will concentrate on finite-state-based 
techniques, i.e. state transition diagrams and regular events. For the systematical, 
scalable generating and selection of test sequences, and accordingly, for the test 
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termination, the notion Edge Coverage of the state transition diagram will be intro-
duced. Thus, our approach is addressed primarily to the specification-oriented testing. 
It enables an incremental refinement of the specification which may be at the 
beginning rough and rudimentary, or even not existing. The approach can be, how-
ever, also deployed in implementation-oriented testing, in a refined format, e.g. using 
the implementation (source code as a concise description of the SUT, i.e. as the 
ultimate specification) and its control flow diagram as a finite-state machine and as a 
state transition diagram, respectively. 

Section 2 introduces a simplified interpretation of finite-state machines and regular 
expressions which will be used both for modeling the system and the faults through 
interaction sequences. Cost aspects will be discussed in Section 3; a basic test 
coverage metric will be introduced to justifiable generate test cases. An optimization 
model will be summarized to solve the test termination problem. Some potentials of 
test cost reduction will be discussed. Section 3 includes further rationalization aspects 
as automatically executing test scripts that have been specified through regular 
expressions. Further examples and discussion on the validation of the approach will 
be given in Section 4. Section 5 discusses the approach, considering related work, and 
concludes the paper summarizing the results. 

Putting the different components of the approach together, a holistic way of 
modeling of software development will be materialized, with the novelty that the 
complementary view of the desired system behavior enables to obtain the precise and 
complete description of undesired situations, leading to a systematic, scalable, and 
complete fault modeling. 

The approach was introduced first in [5]; the present paper deepens and extends 
this previous paper,  including following discussions on: 
- Usability and limitation of simplified FSA for UI modeling, based on [29]. 
- Applicability of the approach for other state-based techniques, e.g. state charts, 

state diagrams of the UML, etc. 
Moreover, the previous experiments have been updated and extended, especially 

the experiment with  the UI of the mobile phone Nokia 6110. A technical report with 
details of all these experiments is available [6]. 

2   Modeling From User’s View: The Desired System Behavior and 
the Undesired One 

While modeling a GUI, the focus is usually addressed rather to the correct behavior of 
the system as desired situations, triggered by legal inputs. Describing the system be-
havior in undesired, exceptional situations which will be triggered by illegal inputs 
and other undesired events are likely to be neglected, due to time and cost pressure of 
the project. The precise description of such undesired situations is, however, of 
decisive importance for a user-oriented fault handling, because the user has not only a 
clear understanding how his or her system functions properly, but also which 
situations are not in compliance with his or her expectations. In other words, we need 
a specification to describe the system behavior both in  legal and illegal situations, in 
accordance with the expectations of the user. Once we have such a complete descrip-
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tion, we can then also precisely  specify our hypotheses to detect undesired situations, 
and determine the due steps to localize and correct the faults that cause these 
situations.  

2.1   Finite-State Modeling of  UI 

Deterministic finite-state automata (FSA), also called finite-state, sequential machines 
have been successfully used for many decades to model sequential systems, e.g. logic 
design of both combinatorial and sequential circuits [27, 10], protocol conformance of 
open systems [7], compiler construction [1], but also for UI specification and testing 
[28, 40]. FSA are broadly accepted for the design and specification of sequential 
systems for good reasons. First, they have excellent recognition capabilities to effec-
tively distinguish between correct and faulty events/situations. Moreover, efficient 
algorithms exist for converting FSA into corresponding regular expressions (RegEx), 
and v.v. [14, 32]. RegEx, on the other hand, are traditional means to generate legal 
and illegal situations and events systematically. 

A FSM can be represented by 
- a set of inputs, a set of outputs, and a set of states, 
- an output function that maps pairs of inputs and states to outputs, 
- a next-state function that maps pairs of inputs and states to next states. 

This is rather an informal, but nevertheless sufficiently precise definition which 
will be used in this paper; for a formal definition, see [32].  For representing GUI, we 
will interpret the elements of FSA as follows: 
- Input set: Identifiable objects that can be perceived and controlled by 

input/output devices, i.e. elements of WIMPs (Windows, Icons, Menus, and 
Pointers). 

- Output set has two distinct subsets 
- Desired events: Outcomes that the user wants to have, i.e. correct, legal 

responses, 
- Undesired events: Outcomes that the user does not want, i.e. a faulty result, 

or an unexpected result that surprises the user. 
Please note our following assumptions (A discussion of these assumptions will be 

given in the Sect. 4.3): 
- We use FSA and its state transition diagram (STD) synonymously. 
- STDs are directed graphs, having an entry node and an exit node, and there is at 

least one path from entry to exit (We will use the notions “node” and “vertex” 
synonymously). 

- Outputs are neglected, in the sense of Moore Automata. 
- We merge the inputs and states, assigning them to the vertices of the STD of the 

FSA. 
- Next-state function will be interpreted accordingly, i.e. inducing the next input 

that will be merged with the due state. 
To sum up, we use the notions “state” and “input” on the one side and “state”, 

“system response” and “output” on the other side synonymously, because the user is 
interested in external behavior of the system, and not its internal states and 
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mechanisms. Thus, we are strongly focusing to the aspects and expectations of the 
user. This simplification has been long ago introduced (“Myhill Graphs”, [26]). 

Any chain of edges from one vertex to another one, materialized by sequences of 
user inputs-states-triggered outputs defines an interaction sequence (IS) traversing the 
FSA from one vertex to another. 

To introduce informally, we assume that a Regular Expression RegEx consists of 
symbols a, b, c, ... of an alphabet, connected by operations 
- Catenation, or concatenation (usually no explicit operation symbol, e.g. ab  

means b  follows a),  
- Selection (+, e.g. a+b means a or b), 
- Iteration (*, “Kleene’s Star Operation”, e.g. a* means a will be repeated 

arbitrarily; a+: at least one occurrence of a). 
Example: T = (ab(a+c)+)*   indicates that a will be followed by b leading to ab 

which be followed either by a or c; either one must occur at least once. The entire 
sequence can occur any number of times. Examples of the generated sequences are: 
aba, abc, abaaba, abaabc, …, but also  (which symbolizes the empty word) for 0 
(zero) occurrence.  

The symbols of the RegEx can be atomic/terminal symbols, or also regular 
expressions. Accordingly, they can be interpreted as single actions, or an aggregation 
of actions. An action can represent a command, a system response, etc. 

2.2   Terminology and an Elementary Example 

Fig. 1 presents a small part of a MS WordPad-like word processing system (see also 
[22]). This GUI will be usually active when text is to be loaded from a file, or to be 
manipulated by cutting and pasting, or copying. The GUI will be used also for saving 
the text in the file (or, in another one). At the top level, the GUI has a pull-down menu 
with the options File and Edit that invoke other components, e.g. File event opens a 
sub-menu with Save As and Open as sub-options. These sub-options have further sub-
options. select can invoke sub-directories or select files. There are still more window 
components which will not be described further. The window can be closed by 
selecting either Open or Cancel. The described components are used to traverse 
through the sequences of the menus and sub-menus, creating many different 
combinations and accordingly, many applications. 

Fig. 2 presents the GUI described in the Fig. 1 as a FSA. Again, the terms event, 
state, and situation will be used here synonymously. Each of the three sub-graphs of 
the Fig. 2 presents inputs which interact with the system, leading eventually to events 
as system responses that are desired situations in compliance with the user’s 
expectation. Based on the sub-graphs, interaction sequences (IS) can be generated. 
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Fig. 1. Example of a GUI 

 
Fig. 2: Fig. 1 presented as a simplified Finite-State Machine 
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The conversion of the Fig. 1 (easy to understand, but informal presentation of the 
GUI) into Fig. 2 (formal presentation, neglecting some aspects, e.g. the hierarchy) is 
the most abstract step in our approach that must be done manually, requiring some 
practical experience and theoretical skill in designing GUIs. As common in modeling 
process, we choose the events that seem to us most relevant, attempting to adopt the 
user’s view of the picture; there is no algorithmic or canonical way to abstract the 
relevant part from the entire environment. The most of the following job, however, 
can be carried out at least partly automatically, according to algorithms we describe in 
this paper. 

It cannot be emphasized strongly enough that what we are doing here is an elegant 
solution of Oracle Problem: Identification of the Complete Interaction Sequences 
(CIS) does present the meaningful, expected system outputs which will be constructed 
here systematically. 

2.3   Interaction Sequences (IS) and Complete IS (CIS) 

Once the FSA has been constructed, more information can be gained by means of its 
state  transition graph. First, we can identify now all legal sequences of user-system 
interactions which may be complete or incomplete, depending on the fact whether 
they do or do not lead to a well-defined system response that the user expects the 
system to carry out (Please note that the incomplete interaction sequences are sub-
sequences of the complete interaction sequences). Second, we can identify the entire 
set of the compatible, i.e. legal interaction pairs (IP) of inputs as the edges of the FSA 
(Table 1, IPs based on the sub-graph in Fig. 2a). This is key issue of the present 
approach, as it enables us to define the edge coverage notion as a test termination 
criterion. 

 
Fig. 2a: Sub-Graph open file of the Fig. 2 

Table 1. IPs of the Sub-Graph open file of the Fig. 2 

Sub-Graph IPs 
Open File AA, AB, BD, BE, BF, EH, 

FA, ED, EE, DD, DE, DH 
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Table 2. . RegEx of the Sub-Graph open file of the Fig. 2 

Sub-Graph RegEx 
Open File A+B(FA+B)*(E+D*+D+E*)+H 

 
The generation of the CISs and IPs can be based either on the FSA, or more 

elegantly, on the corresponding RegEx [14, 32], whatever is more convenient for the 
test engineer (Table 2, RegEx for the sub-graph in Fig. 2a). Finite-state-based 
techniques have already been successfully used for many years for conformance 
testing of protocols by many authors [7].  The systematic expansion of  the RegEx, as 
we introduced in  [3] is, however, relatively new to scalable generate test cases. 

Please note that the Fig. 2a, Table 1 and Table 2 are equivalent; the different 
representations are supposed to help better understanding. 

2.4   Complementing the CIS for a Complete Fault Modeling 

The causes of faults in UI are mostly: 
- The expected behavior of the system has been wrongly specified (Specification 

Errors). 
- The implementation is not in compliance with the specification (Implementation 

Errors). 
In our approach, we will exclude the User Errors, suggesting that the user is 

always right, i.e. we suggest that there are no user errors. We require that the system 
must detect all inputs that cannot lead to a desired event, inform the user, and navigate 
him, or her properly in order to reach a desired situation. 

One consequence of this requirement is that we need a view that is complementary 
to the modeling of the system. This can be done by systematical and stepwise 
manipulation of  the FSA that models the system. For this purpose, we introduce the 
notion Faulty/In-compatible Interaction Pairs (FIP) which consist of inputs that are 
not legal in sense of the specification. Fig. 3 generates for the sub-graph open file of 
the Fig. 2 the FIP by threefold manipulations: 
- Add edges in opposite direction wherever only one way edges exists (dotted 

connections). 
- Add loops to vertices wherever none exists in the specification (dashed-dotted 

connections). 
- Add edges between vertices wherever none exists (dashed connections). 

Now we can construct all potential interaction faults systematically building all 
illegal combinations of symbols that are not in compliance with the specification 
(FIPs in Table 3).  Once we have generated a FIP, we can extend it through an IS that 
starts with entry and ends with the first symbol of this FIP; we have than a 
faulty/illegal complete interaction sequence (FCIS), bringing the system into a faulty 
situation (Table 4). Please note that the attribute “complete” within the phrase FCIS 
may not imply that the exit node of the FSA must be necessarily reached; once the 
system has been conducted into a faulty state, it cannot accept further illegal inputs, in 
other words, an undesired situation cannot be even more undesired, or a fault cannot 
be faultier. Prior to further input, the system must recover, i.e. the illegal event must 
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be undone and the system must be conducted into a legal state through a backward or 
forward recovery mechanism. Please note also that also FIPs which  include the entry 
symbol A, i.e. AD, ..., AF are also CFIPs as they represent executable, faulty inter-
action sequences of the length two. 

 
Fig. 3: CFSA (Completed FSA 

Table 3. The set of FIPs (Faulty Interaction Pairs) 

Sub-Graph FIPs 
File Open AD, AE, AF, AH, BA, BB, 

BH, DA, DB, EA, EB, FB, 
FF, HA, HB, HD, HE, HH 

 

Table 4. The set of FCISs (Faulty Complete Interaction Sequences) which transduce the system 
into a faulty state 

Sub-Graph FCISs 

File Open AD,  AE,  AF, AH, ABA, ABB, ABH, 
ABDA, ABDB, ABEA, ABEB, ABFB, 
ABFF, AB(E+D)HA, AB(E+D)HB, 
AB(E+D)HD, AB(E+D)HE 
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3   Scaling and Optimizing the Test Process 

3.1Defining and Scripting the Test Procedure 

Using the notions we introduced, the test process can be summarized now as follow 
[41]: 
1. Construct the complete set of test cases which includes all types of interaction 

sequences, i.e. all CISs and FCISs to produce the desired system responses and 
error messages, respectively (Predictability of the tests, defining oracles). 

2. Input CISs and FCISs to transduce the system into a legal or illegal state, 
respectively (Controllability). 

3. Observe the system output that enables a unique decision whether the output 
leads to  a desired system response or an undesired, faulty event occurs which 
invokes an error message/warning, provided that an exception handling mecha-
nism [15] has been materialized (Observability). 

We already mentioned in the Sections 1 and 2 that a finite-state automaton FSA 
can be converted to a corresponding regular expression RegEx. Although the test case 
generation through FSA can be carried out efficiently, RegExs have some essential 
advantages over FSA concerning scalability. Once we construct the corresponding 
RegEx of an FSA, we can use well-known algorithms to generate test case sets the 
cost of which can be determined exactly in terms of the length and number of test 
cases, as proposed by F. Belli, J. Dreyer and K.-E. Grosspietsch [3, 4]. 

In many cases, the corresponding RegEx for an FSA can be constructed intuitively; 
efficient algorithms, e.g. developed by W.M. Gluschkow [14] or A. Salomaa [32], can 
be, however, executed automatically, as implemented by H. Troebner [38]. Having 
once converted the FSA into a RegEx, we can also use the Event Algebra [32], using 
well-known algorithms to reduce the complexity of the RegEx, keeping its generating 
capacity equivalent. The event algebra helps also to check similarities and equiva-
lencies of RegExs.    

Another advantage of operating with the regular expressions instead of its FSM is 
that the expression can be used as a test script, i.e. as test program that can be semi-
automatically expanded by many commercially available test tools, e.g. Visual State 
of  IAR, or WinRunner of Mercury (Some test planning and coding effort is 
necessary). The scaling work can then be carried out by the tool;  the test engineer has 
to specify solely the maximum length of the interaction sequences which are to be 
generated and exercised automatically according to the scripted test plan. Apart from 
test tools, also state-based design and specification tools, as to STATEMATE are 
potential candidates to deploy our approach for a flexible and effective fault handling. 

3.2   Test Coverage and Cost Aspects 

As already mentioned repeatedly, one of the most difficult decision problems during 
testing is the determination of the time point when to stop testing [21]. Since the early 
seventies of the last century, a variety of criteria to generate and to select test cases 
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has been developed. Some of these criteria are formal, i.e. having a mathematical 
stringency, e.g. based on Predicate Logic ([13]). The informal and semi-formal 
criteria introduce different test coverage metrics, e.g. to cover the structure of the 
SUT, or to cover its specification ([24, 25, 30], see also Section 1, Introduction). 

In our approach, we suggest to cover all combinations of edges which connect the 
nodes, i.e. to cover all of the IPs and FIPs. 

With the definition of IPs (interaction pairs) and FIPs (faulty/illegal interaction 
pairs) that are minimal, i.e. of length two, sub-sequences  of  CISs (Complete 
Interaction Sequences) and FCISs (Faulty Complete Interaction Sequences), we have 
all elements we need for the optimization of  the test process that must have 
monitoring capability: 
- Cover all IPs  of the CFSA (Complete Finite State Automata) by means of CISs. 
- Cover all FIPs of the CFSA by means of FCISs. 

Subject to 
- Keep the number and total length of the CISs minimal. 
- Keep the number and total length of the FCISs minimal. 

In other words, we are seeking for a minimal set of CISs and FCISs to cover all 
prototypes of legal and illegal user-system interactions, revealing all appearances of 
system behavior, i.e. triggering all desired and undesired events. If we succeed this, 
we have a complete and minimal set  of test cases to exercise the SUT. As we 
constructed the FSA according to the user expectations, the user himself, or herself 
acted as an Oracle at the most superior level. Thus, as test inputs we have CISs and 
FCISs; test outputs are desired and undesired events, as they will be determined dur-
ing the construction of the FSA, resolving the Oracle Problem.  Therefore, our 
approach delivers not only meaningful test cases, but it can also effectively select an 
optimal set of test cases to reach a well-defined coverage. Following we informally 
summarize some of the results we recently achieved. 

The set of CISs and FCISs as solution of these problems will be called Minimal 
Spanning of Complete Interaction Sequences (MSCIS) which can be constructed in 
two steps: 
- Legal Walks: Construct CISs that traverse the FSA from entry to exit and 

contains all IPs, forming sequences of edges as walks through the FSA. An entire 
walk contains all IPs at least once. An entire walk is a minimal walk if its length 
cannot be reduced; an ideal walk contains all IPs exactly once.  

- Illegal Walks are the FCISs, they do not necessarily start at the entry and end at 
the exit. 

As demonstrated in the examples (Fig. 3 and Table 3, Table 4), legal and illegal 
walks can be easily constructed for a given FSA. It is evident, that an entire walk 
exists only for legal walks. It is not, however, always possible to construct a minimal 
walk. 

A similar problem is the Chinese Postman Problem [1] which has been studied 
thoroughly by A.V. Aho, T. Dahbura, Ü. Uyar et al., introducing the notion of 
“Multiple Unique Input Output Sequences” [1, 31]. Our MSCIS problem is expected 
to have less complexity, as the edges of the FSA are not weighted, i.e. the adjacent 
vertices are equidistant; therefore, we assume that the edges have all the length one. 
Further, we are not interested in tours, but walks through the graph, beginning in a 
start node (entry) and finishing in an end node (exit). Following, we include some 
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more results that are relevant to calculate the test costs and enable a scalability of the 
test process. 

If the CFSA has n vertices, there are maximal n² edges (IPs and FIPs) that connect 
each of the n vertices with all of the other vertices. Assuming that FSA has d edges as 
legal IPs to present the desired CISs, exactly u=n²-d edges are illegal FIP. Thus, we 
can have at most u FCISs of minimal length, i.e. 2 (the entry input will be  followed 
immediately  by an illegal input);  accordingly,  the maximal length of an FCIS can be 
n (we have a CIS except the last input, i.e. the illegal input occurs just before and in-
stead of the exit). 

The minimal length of the CISs can be n-1 (inducing an ideal walk as a  linear 
sequence); the maximum length of the CISs increases with n².  The sum of the maxi-
mum lengths of CISs and FCISs increases also with the order n². We are working, 
however, on algorithms that are less costly, approximating to minimal walks. 

4   Validation of the Approach 

4.1   A Selected Experiment: UI of Nokia 6110 

The approach we described here has been used in different environments, i.e. we 
could extend and deepen our theoretical view interactively along practical insight 
during several applications. Following, we summarize our experiences with the 
approach; instead of a full documentation which would run out space available in a 
brief report and the patience of the reader, we rather display some spots, instantane-
ously enlightening some relevant aspects, focusing on the fault detection capabilities 
of the introduced method. We chose examples from a broad variety of applications to 
emphasize the versatility of the approach. 

Mobile telephones will be widely used by a broad variety of types of end users. For 
the marketing success, the UIs of these devices become a decisive factor beside, 
perhaps before their size, weight and format. We chose the handling of Short Message 
Services which is very popular (Fig. 4 and 5). Table 5 extracts some faults we could 
detect applying our approach. The STD of the underlying CFSA  is given in Fig. 6. 

A comparison  between the Nokia 6110 and the older model 5110 shows that both 
models have the same flaws, even if the 6110 has slightly different external features 
for handling. 
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Fig. 4: Prototype of Nokia Mobile Phone 6110 

 

 
Fig. 5: Short Message Service Handling of the Nokia 6610 
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Fig. 6: CFSA of the SMS Handling (Legend: Numbers on lines (FIPs) refer to faults in Table 5; 
lines without numbers: IPs) 

Table 5. Excerpt from Fault Analysis of the Nokia 6110 

1. While writing and editing a short message (SM), menu 
can be resumed before the message has been saved.  

2. Fault #1 is valid also for SMS that have been sent. 

3. After sending an SM, the entire message must be deleted 
before an upper level menu can be reached. 

4. The access to the list of the received messages cannot be 
followed by a saving step of a selected message.  

5. Even the displayed message cannot be saved. 
6. Without invoking the main menu, the received messages 

cannot be deleted selectively, or in groups. 
7. Fault #5 is valid also for SMs that have been sent. 
8. Received messages cannot be forwarded.  
9. After deleting a message, the exit to the upper level menu 

follows only via the list of the SMs that have been sent. 
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4.2   Results of the Experiments and Discussion 

For our validation experiments, we chose systems from a broad variety of applications 
to emphasize the versatility of the approach, among others: 
- WordPad, already described in Section 2, 
- the  mobile phone Nokia 6110, as described above, 
- a commercial vending machine that supplies soft drinks, 
- a commercial CD Player. 

Table 6 summarizes our experiments, covering only the results of the top level of 
our models, including CISs and FCISs. 

Please note that the systems we tested and analyzed are products that have been 
introduced long ago into the market and are being used for many years, thus having 
been steadily improved.  In spite of their maturity, there is apparently still some more 
improvement potential. We could not, however,  determine a direct correlation 
between the number of faults detected and number of FIPs that can be constructed. 

Table 6. Numbers of nodes and FIPs vs. number of faults detected 

SUT  # 
Nodes 

# FIPs # 
Faults 

WordPad  26 26 6 
Mobile Phone 33 127 9 
Vending Machine 18 39 5 
CD Player 12 44 8 

 
While some of the results of the fault analysis are in compliance with our 

expectations, some other results are surprising. Instead of listing long columns of 
statistical data, we summarize following  directly the results of the  analysis of these 
data. 

- Incomplete Exception Handling: The initial concept for handling the 
undesired events, i.e. exceptions was in most cases strongly incomplete. The 
number of the exceptions could be increased in average about 70%. This 
result was expected: Our approach was originally founded to help the 
routinization of the exception handling. 

- Conceptual flaws: Not as often as the forgotten undesired events, we found 
that also some major elements of the modeled system were missing, because 
the developer simply forgot them. In other words, the FSA was not lack of 
the edges, but vertices (Remember: vertices present inputs and states that 
merge). Thus, the initial concept of the developer(s) was seriously defect, 
having forgotten, or corrupted some vital components. The number of the 
vertices could be increased in average about 20%. This result was not 
expected: The approach helped to accelerate the conceptual maturation proc-
ess considerably, supporting the creative mental activities. 

- Another unexpected result was the willingness of the end users to participate 
at the design process. Even the users without any knowledge in Automata 
Theory and  Formal Languages could understand the approach intuitively 
and very fast, especially the Transition Diagrams (They called them “Bubble 
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Diagrams (!)” which they could operate skillfully with). The participation of 
the users helped to complete the exception handling (they contributed to find 
about half of the forgotten exceptions), but also to detect the conceptual 
flaws (about 30% of them). 

We recommend to use the approach incrementally, i.e. start very early, even with a 
rudimentary model of the system which should then be completed, adding the illegal 
connections to determine the faulty interaction pairs (FIP, see Section 2.3). The 
discussion of these  FIPs is very often the most fruitful part of the modeling, leading 
to detect conceptual defects, and systematically completing the diagram not only by 
edges, but also by vertices. During this process, the test cases will be also 
systematically and scalable produced. 

4.3   Usability and Limitation of the Approach 

For modeling the UI via FSA, we merge the states and inputs/out-puts (Sect. 2.3). 
This assumption simplifies the complementing the STD considerably. Following 
example depicts this simplification (see Fig. 7a and 7b). 

 
Fig. 7a: A Moore FSA 

In Fig. 7a, the input a merges with the state 1; b with 2. State 0 becomes the entry. 
The result is given in Fig. 7b. 

 
Fig. 7b: Simplified FSA 

This simplification is appropriate if the inputs and outputs of the system are not 
substantially different, e.g. if an output can really act also as an input, or can be 
viewed as a part of the next input. This is true for GUI, as the expected system output 
usually emerges upon a sequence of inputs which invoke interim outputs as interim 
system  reactions. The sequence of user-system interactions will be completed when 
the user expectation has been eventually fulfilled. The desired system response can 
act, in the course of a potentially endless user/system interaction process, as an input 
for the next interaction sequence. 

Our simplification can cause some problems while modeling UI of reactive 
systems the inputs of which are substantially different than the outputs, e.g. a soft 
drink vending machine [39]. Here the sequence of inputs, e.g. inserting the coin, 
pressing a button, etc. can be modeled easily. The bottle with the drink that will be ex-
pected at the end is, however, substantially different as a “genuine” output that might 
not be viewed as an interim input – except the vending machine can accept this bottle 
immediately as an input to return the deposit on it. In such cases one needs some extra 
effort for modeling and finding errors [6]. 
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The reason why the merging states with inputs/outputs is very important for the 
approach will be understood while complementing the  STDs. During the simplified 
STD of the above example with two states a,b and no inputs (Fig. 7b) needs only 
three additional connections, the one with three states and an input/output alphabet of 
two symbols a,b (Fig. 7a)  needs 16 additional edges (arcs connecting the vertices)! 
Fig. 8a and 8b demonstrate this; for the sake of simplicity, some arcs are bi-direc-
tional, or will be associated with both inputs a,b. Generally, a Moore FSA with n 
states and an input alphabet of the cardinality m has totally m.n² edges (Please note 
that this FSA is non-deterministic). The simplified one has only n² edges. 

It is evident that a complete test procedure will not be always affordable; it makes 
also no sense to exercise all FIPs. Therefore, one need efficient heuristics for a non-
perfect, but meaningful test selection strategy. 

 
Fig. 8a: FCIS of Fig. 7a 

 
Fig. 8b: FCIS of Fig. 7b 

The best way is to work with regular expressions. Based on well-known algorithms 
[14, 32] for conversion of regular expressions to FSA,  [4] describes an efficient 
algorithm how to produce a simplified FSA for a given Moore-FSA. The resulting 
simplified FSA (states and inputs/outputs are merged) has more states than the 
original one, but is much more economic for a complete analysis as the examples 
above demonstrate clearly.  

Another problem with the approach arises if the input cannot be determined 
completely, because some illegal interactions cannot be  excluded, e.g. the likeliness 
that the user presses a button, or more severely, switches off the vending machine by  
mistake while it performs a task which was supposed to be atomic. This is, however, a 
problem of the analysis, and not the modeling tool. Commercial reactive systems in 
the practice are well-protected against such conditions by means of electronic-
mechanical lock-in mechanisms. 
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5   Related Work and Conclusion 

FSA-based methods and RegEx have been used since almost four decades for 
specification and testing of software and system behavior, e.g. for Conformance 
Testing [7, 9]. Recently, R.K. Sheady, D.P. Siewiorek [35] and L. White introduced 
an FSA-based method for GUI testing, including a convincing empirical study to 
validate his approach [40]. Our work is intended to extend L. White’s approach by 
taking not only desired behavior of the software into account, but also undesired 
situations. This could be seen as the most important contribution of our  present work, 
i.e. testing GUIs not only through exercising them  by means of test cases which show 
that GUI is working properly under regular circumstances, but exercising also all 
potentially illegal events to verify that the GUI behaves satisfactory also in excep-
tional situations. Thus, we have now a holistic view concerning the complete behavior 
of the system we want to test. Moreover, having an exact terminology and appropriate 
formal methods, we can now precisely scale the test process, justifying the 
cumulating costs that must be in compliance with the test budget. 

Another state-oriented approach, based on the traditional method SCR (Software 
Cost Reduction) is described by C. Heitmeyer et al. in [12]. This approach uses model 
checking to generate test cases, using well-known coverage metrics for test case 
selection. For expressing conditioned events in temporal-logic formulae, the authors 
propose to use modal-logic abbreviations which requires some skill with this kind of 
formalism. A different approach for GUI testing has been recently published by A. 
Memon et al. [22, 23], as already mentioned in Section 1. The authors deploy meth-
ods of Knowledge Engineering, to generate test cases, test oracles, etc.  to handle also 
the Test Termination  Problem. Both approaches, i.e. of A. Memon et al., and C. 
Heitmeyer et al., use some heuristic methods to cope with the state explosion 
problem. We also introduced in the present paper methods for test case selection; 
moreover we handled test coverage aspects for termination of GUI testing, based on 
theoretical knowledge that is well-known in Conformance Testing and validated in 
the practice of protocol validation for decades. The advantage of our approach stems 
from its simplicity that causes a broad acceptance in the practice. We showed that the 
approach of Dahbura, Aho et al. to handle the Chinese Postman Problem [1, 36] in its 
original version might not be appropriate  to handle GUI testing problems, because 
the complexity of our optimization problem is considerable lower, as summarized in 
Section 3.2. Thus, the results of our work enables efficient algorithms to generate and 
select test cases in sense of a meaningful criterion, i.e. edge coverage. 

Converting the FSA into a RegEx enables us to work out the GUI testing problem 
more comfortable, applying algebraic methods instead of graphical operations. A 
similar approach was introduced 1979 by R. R. David and P. Thevenod-Fosse for 
generating test patterns for sequential circuits using regular expressions [10]. Regular 
expressions have been also proposed for software design and specification [34] which 
we strongly favor in our approach. 

The introduced holistic approach, unifying the modeling of both the desired and 
undesired features of the system to be developed enables the adoption of the concept 
“Design for Testability” in software design; this concept was initially introduced in 
the seventies [41] for hardware. We hope that further research will enable the 
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adoption of  our approach in more recent modeling tools as to State Charts [2, 17, 18], 
UML [19], etc. There are, however, some severe theoretical barriers, necessitating 
further research to make the due extension of the algorithms we developed in the 
FSA/RegEx environment, mostly caused by the explosion of additional vertices while 
completing the STD, and states when taking concurrency into account [33]. 
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