
Graph Neural Networks for Ranking Web Pages

Franco Scarselli
University of Siena

Siena, Italy
franco@ing.unisi.it

Sweah Liang Yong
University of Wollongong

Wollongong, Australia
sly56@uow.edu.au

Marco Gori
University of Siena

Siena, Italy
marco@ing.unisi.it

Markus Hagenbuchner
University of Wollongong

Wollongong, Australia
markus@uow.edu.au

Ah Chung Tsoi
Australian Research Council

Canberra, Australia
ahchung.tsoi@arc.gov.au

Marco Maggini
University of Siena

Siena, Italy
maggini@ing.unisi.it

Abstract

An artificial neural network model, capable of process-
ing general types of graph structured data, has recently
been proposed. This paper applies the new model to the
computation of customised page ranks problem in the World
Wide Web. The class of customised page ranks that can be
implemented in this way is very general and easy because
the neural network model is learned by examples. Some pre-
liminary experimental findings show that the model gener-
alizes well over unseen web pages, and hence, may be suit-
able for the task of page rank computation on a large web
graph.

1. Introduction

The World Wide Web is naturally represented as a graph
where the nodes represent web pages and the arcs repre-
sent hyperlinks (see Fig. 1). The web connectivity can be
exploited for the design of efficient web page ranking al-
gorithms. In fact, web page ranking algorithms [3, 14] are
a fundamental component of search engines. Their goal is
to provide each web page a rank, i.e. a measure that pre-
dicts how important and authoritative the page will be con-
sidered by users. Such rank is exploited by search engines,
together with other features, to sort the web pages (docu-
ments) returned in response to user queries.

Google’s PageRank [3] is a well known example in this
class which exploits the Web connectivity to measure the
“authority” of documents. In PageRank, a page is consid-
ered “authoritative” if it is referred by many other pages
and if the referring pages are, in turn, authoritative. For-

www.ing.unisi.it/~franco

www.arc.gov.au/~actwww.uow.edu.au/~linus

www.ing.unisi.it

www.ing.unisi.it/people

www.ing.unisi.it/~marco

www.uow.edu.au/~markus

Figure 1. A subset of the web represented as
a graph. The arrows denote hyperlinks.

mally, the PageRank xn of a page n is computed by

xn = d
∑

u∈pa[n]

xu

hn

+ (1 − d) , (1)

where hn is the outdegree of n, pa[n] is the set of parents of
n, and d ∈ (0, 1) is a damping factor [3].

While PageRank and most of the other page ranking al-
gorithms are designed to serve general purpose search en-
gines, some recent approaches provide specialized rankings
which are suited for particular requirements [6, 12, 13, 17,
20]. The main underlying idea of these approaches is that
the concept of “page importance” is not absolute but de-
pends on the particular needs of a search engine or a user.
For example, the homepage of a large directory may be au-
thoritative for a general purpose search engine, but it may
not be important for a search engine specialized on a topic
such as “Wine”. The research on this issue is particularly ac-

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

tive, since the related technology may be useful for a num-
ber of applications. For example, it may allow to build user–
centric interfaces which can adapt, according to the user
preferences, the sorting of the documents returned in re-
sponse to queries. Similarly, a search engine may use spe-
cialized ranks to provide or to sell a service customized for
particular communities or companies. In the simplest case,
the administrator of a small search engine (e.g. the search
engine installed in the Intranet of a company or the search
engine used in a portal specialized on a given topic) may
wish to customize the ranking algorithm to the particular en-
vironment. In fact, approaches have been proposed to build
page ranks specialized on a topic [6, 20], a user [13], or a
query [12].

Notice that a ranking algorithm can be represented by
a function τ that takes as input the web graph G and a
page n and returns a score τ(G, n) ∈ IR. Very recently, a
new neural network model called Graph Neural Network
(GNN) [9] has been proposed which is able to directly pro-
cess graphs. The approach extends and unifies some previ-
ous methods [8, 10, 11, 20] of graph processing using neural
networks. A GNN can realize general ranking algorithms:
in [18], it is proved that GNNs can approximate in proba-
bility most of the useful functions τ : G ×N → IRm, where
G is a set of graphs and N the corresponding set of nodes.

Moreover, a GNN can be trained by examples, i.e.
τ can be constructed using a small set of patterns
{(n1, t1), . . . , (nq, tq))}, where ni is a page and ti is its de-
sired rank. Training examples can also be provided by con-
straints as ti ≥ tj , which express the fact that “the rank of
page i must be larger than rank of page j”.

In this paper, we adapt the GNN model to make it par-
ticularly suited for the web page ranking problem. The pre-
sented approach allows the automatic customization, based
on training examples, of the rank to the particular needs of
a search engine or Internet user, thus, simplifying the de-
sign of the page ranking algorithm. On the contrary, most of
the previous approaches were based on a semi-manual de-
sign of a specialized rank which is a difficult task. To the
best of our knowledge, there are only three methods which
adapt the rank [4, 7, 20]. However, these approaches exploit
simple models based on parameterized versions of the orig-
inal PageRank equation (1). Thus, due the general approxi-
mation capabilities of GNNs, the proposed solution imple-
ments a more general class of ranking functions. Moreover,
no other methods except for [20] allow the use of training
sets in the form of constraints on page rank values 1. Note
that in this paper we do not address the issue of how train-
ing samples can be acquired. This is a matter of future re-
search as the solution depends heavily on the environment

1 Defining constraints between pages is a more natural task for the user
than the task of providing the exact rank corresponding to each page.

x2 x5x1

x3
l3

x4

x6l4

l6

= (fw , , , ,x1)

ne[1]x l

, ,l5l3l2x5x3x2l1

ne[1]

l1

l5l2

Figure 2. The dependence of state x1 on
neighborhood information.

where the proposed ranking algorithm is used.
The structure of this paper is as follows: Graph Neural

Networks are introduced in Section 2. A specialized GNN
model for web page ranking is introduced in Section 3.
Some experimental results are presented in Section 4, and
conclusions are drawn in Section 5.

2. Graph neural networks

In the following, a graph G is a pair (N , E), where N

is a set of nodes and E a set of edges. The set ne[n] are
the nodes connected to n by arcs. Nodes may have labels,
which are assumed to be real vectors. The labels attached to
n will be represented by llln ∈ IRlN . Labels usually include
features of the object corresponding to the node. For exam-
ple, in the case of the World Wide Web, node labels may
represent properties of the page, e.g. the list of words con-
tained in the document, the URL, size and location of mul-
timedia content, the topic discussed in the page, etc.

The intuitive idea underlining GNNs is that nodes in
a graph represent objects or concepts and edges represent
their relationships. Thus, to each node n a vector xn ∈ IRs,
called state, can be attached which collects a representa-
tion of the object denoted by n. xn is naturally specified us-
ing the information contained in the neighborhood of n (see
Figure 2).

xn =
∑

u∈ne[n]

hw(llln, xu, lllu), n ∈ N . (2)

More precisely, let hw be a feedforward neural network,
called transition network, that expresses the dependence of
a node on its neighborhood and is parameterized by a set of
parameters w. The states xn are defined as the solution of
the following system of equations: For each node n, an out-
put on ∈ IR is defined which depends on the state xn and la-

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

bel llln. The dependence is described by a parameterized out-
put network gw

on = gw(xn, llln), n ∈ N . (3)

Thus, Eqs. (2) and (3) define a method to produce an out-
put (e.g. a rank) on for each node, i.e. a parameterized func-
tion ϕw(G, n) = on which operates on graphs. The cor-
responding machine learning problem consists of adapting
the parameters w such that ϕw approximates the data in the
learning data set L = {(ni, ti)| 1 ≤ i ≤ q}, where each
pair (ni, ti) denotes a node ni and the corresponding de-
sired output ti. In practice, the learning problem is imple-
mented by the minimization of a quadratic error function

Jw =

q∑

i=1

(ti − ϕw(G, ni))
2 . (4)

In fact, to the best of our knowledge, all the existing
ranking algorithms based on web connectivity are a partic-
ular case of GNNs. For example, note that Eqs. (2) and (3)
extends Eq. (1) for the following reasons:

• In Eq. (2), the dependence between xn and the states
of the neighbors of n is defined by a generic nonlin-
ear function, whereas in Eq. (1) the PageRank depends
linearly on neighbors’ PageRanks.

• In Eq. (2), the dependency of state xn is extended to
the children of n, while PageRank depends only on the
parents. Such an extension was already used in [6, 14].

• GNN uses an output function, PageRank does not.

In order to implement the GNN formally defined by
Eqs. (2) and (3), the following items must be provided:

(1) A method to solve Eqs. (2) and (3). This is addressed in
Section 2.1

(2) A learning algorithm to learn the parameters of hw and
gw from data from the training set. This is addressed
in Section 2.2.

2.1. Computing the states

The solutions xn, on of system (2), (3) can be obtained
by iterating:

xn(t + 1) =
∑

u∈ne[n]

hw(llln, xu(t), lllu)), (5)

on(t + 1) = gw(xn(t + 1), llln), n ∈ N . (6)

In [9, 18], it is proved that, under simple conditions on
the transition network hw, the sequences xn(t) and on(t)
converge exponentially to xn and on, respectively, i.e.
limt→∞ xn(t) = xn and limt→∞ on(t) = on. This

method, which is just the Jacobi Algorithm for solving non-
linear systems, is the same one used by Google to compute
PageRank. The approach is quite efficient in practice, be-
cause even if the web is represented by a very large graph,
the exponential convergence ensures that the solution can
be computed in few tens of iterations [2, 3].

Let us consider two computing units
∑

hw and gw that
calculate the terms on the right hand side of Eqs. (5) and (6),
respectively. Note that the computation described in Eqs.
(5) and (6) can be interpreted as the representation of a neu-
ral network consisting of instances of

∑
hw and gw. Such

a neural network is called an encoding network.
In order to build the encoding network, each node of

the graph can be replaced by a unit computing the func-
tion

∑
hw (see Figure 3). Each unit stores the current state

xn(t) of the corresponding node n, and, when activated, it
calculates the state xn(t + 1) using the labels and the states
stored in its neighborhood. The simultaneous and repeated
activation of the units produces the behavior described by
Eq. (5). In the encoding network, the output of node n is
produced by another unit which implements gw.

The encoding network is a recurrent network, the transi-
tion and the output function can be implemented as a multi-
layered feedforward neural network.

2.2. A learning algorithm

The learning algorithm consists of two phases:

(a) the states xn(t) are iteratively updated, using Eqs. (5)
and (6) until they reach a stable fixed point xn(T) =
xn at time T ;

(b) the gradient ∂Jw(T)
∂w

is computed and the weights w

are updated according to a gradient descent strategy.

Thus, while phase (a) moves the system to a stable point,
phase (b) adapts the weights to change the outputs towards
the desired target. These two phases are repeated until a
given stopping criterion is reached. This algorithm, which
was introduced in [9], is a combination of the backpropaga-
tion through structure algorithm, which is adopted for train-
ing recursive neural networks [19], and the Almeida–Pineda
algorithm [1, 16]. The latter is a particular version of the
backpropagation through time algorithm which can be used
to train recurrent networks with cycles [19].

3. A GNN model for page rank computation

A specialized implementation of hw and gw is required
in order to reach a better performance on the web page rank-
ing problem. In this paper the GNN is defined as:

xn =
∑

u∈pa[n]

hw (llln, xu, lllu) =
∑

u∈pa[n]

An,uxu + bn (7)

on = gw (xn, llln) = x
′

n · πw (xn, llln) . (8)

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

(t)o3

(t)x1

(t)x2

(t)x4

(t)x3

l 3

f w

f w

f w

f w

gw

,l 1 l 4 ,..

,l 4 l 3

,l 2 l 1

,l 3 l 4

(t)o1

l 1

gw
l3

l

l

2

4

l1

(t)o4

gwl 4

(t)o2

gw
l 2

f w

(t+1)x4

,l 4 (t),x1 (t),x1 l
(1,4)

,..

(t+1)x4

....

....

....

(t),x1(t),x1,l 4
l

(1,4)
,..

,..

,..

Figure 3. A graph and its corresponding encoding network (left), and the transition function imple-
mented as a multi-layered feedforward Neural Network (right).

where ′ is the transpose operator and πw : IRs+lllN → IRs

is the function implemented by a feedforward neural net-
work with s outputs. Moreover, also bn ∈ IRs and the ma-
trix An,u ∈ IRs×s are defined by the outputs of two feedfor-
ward neural networks respectively, whose parameters cor-
respond to the parameters of the GNN. More precisely, let
φw : IR2lN → IRs2

and ρw : IRlN → IRs be the functions im-
plemented by two feedforward networks. Then, we define

An,u =
µ

s|ne[u]|
· Resize (φw(llln, lllu))

bn = ρw(llln) ,

where µ ∈ (0, 1) and Resize(·) is the operator that allocates
the elements of s2-dimensional vector into a s × s matrix.

A formal explanation of the reasons that support the
above GNN model is given in [9, 18]. Here, we provide the
following intuitive explanation. The GNN defined by (7)
and (8) is a sort of linear system as the one used to specify
PageRank (see Eq. (1)) and most of the other ranking algo-
rithms. However, whereas in other approaches the parame-
ters of the linear system are predefined or are the same for
each page, in our case An,u and bn are defined by the neu-
ral networks φw and ρw on the basis of page content and
features. Thus, in our case those parameters are learned by
examples. Moreover, due to the approximation capabilities
of feedforward neural networks the class of page rank ap-
plications that can be realized in this way is wider [18].

Finally, it is worth noting that it is shown in [9, 18] that
if ‖φw(llln, lllu)‖1 ≤ s2 holds, where ‖ · ‖1 denotes the one
norm for vectors and matrices, then the Jacobi Algorithm
described in Section 2.1 always converges to the unique
solution of system (7), (8). The above condition can be
straightforwardly verified if the output neurons of the transi-
tion network uses an appropriately bounded activation func-
tion, e.g. a hyperbolic tangent.

4. Experimental results

The model was tested on the WT10G dataset distributed
by CSIRO, Australia, and was used as a benchmark at the
Text Retrieval Conference (TREC). The WT10G is a snap-
shot of a portion of the World Wide Web. The collection
pays special attention to the connectivity among the web
pages. Hence this set of collection is particularly suitable
for evaluations of Internet search engine applications, e.g.,
page ranking algorithms. There are 1,692,096 documents
contained in the dataset. Thus, the graph G used for our ex-
periments was the WT10G connectivity graph. The label llln
attached to page n consisted of a vector representing the
topics discussed in n. The pages were classified into eleven
topics by a set of naive Bayes classifiers [15]. The top-
ics included classes such as “Windows”, “Linux”, “Wine”,
“Sports”, “Surgery”, etc. We used Bayes classifiers as these
are well established and popular methods in the area of text
classification.

In a real life application, usually only few examples are
available for training, since these examples must be manu-
ally labelled or collected by an interaction with the user. In
order to simulate such an environment, the training dataset
consisted of a small subgraph Ḡ of WT10G. Moreover, only
few pages of Ḡ, which we will call the supervised pages,
were used as examples and were involved in the error func-
tion (4). On the other hand, the test set consisted of the
whole WT10G graph G.

For each page ni, a desired target ti was given, which
was used for learning purpose if it is in the training dataset,
and for evaluating the performance of the model if it is
a page in the test set. Moreover, in some experiments,
Google’s PageRank was used to generate the targets ti. In
those cases, the PageRanks pri are computed using Eq. (1)
on the training set Ḡ, if the page belonged to the super-
vised pages, and on the whole dataset, if the page belonged

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

to the test set.
Three simple experiments were devised in order to eval-

uate the properties of GNNs. The main goal of the exper-
imentation was to verify whether the proposed model can
learn a simple ranking function on a small set of training ex-
amples and whether it can generalize such a function to the
whole WT10G dataset.

For sake of simplicity, all the feedforward neural net-
works involved in the GNN model, i.e. the τw, φw and ρw

of Section 3, were three layer (one hidden layer) feedfor-
ward neural networks with 5 hidden neurons. Experiments
were carried out using the Matlab development environ-
ment on a 2GHz, Intel based PC. The GNN was trained for
2500 epochs which required less then 2 minutes of com-
putation time when the training graph Ḡ contained 4000
nodes. We also observed that training times increased lin-
early with the size of the training set. The test on the whole
WT10G (1, 692, 096 pages) required around 4 minutes.

4.1. Increasing the focus on a selected topic

This first experiment simulates the case where the rank
is specialized for a user (or a specialized search engine) in-
terested in a selected topic. This is demonstrated by train-
ing a GNN such that pages addressing the selected topic
“Sport” receive twice Google’s PageRank while all other
pages are to remain at Google’s PageRank. Formally, we
have ti = 2pri, if page ni discussed the topic “Sport” and
ti = pri, otherwise.

The experiment used just 20 random supervised pages
equally subdivided in pages which address this topic and
pages outside the topic of interest. In addition, 3980 ran-
dom pages were used to form the training set graph Ḡ

2.
For evaluating the performance of the model, we consid-
ered the pages with an error percentage smaller than 5%
on the testing data 3. The experiment was repeated several
times and consistently exceeded 99% accuracy. The result
shown in figure 4 presents the absolute page position when
sorted by page rank value in descending order. More pre-
cisely, pages are sorted both according to PageRank and the
rank computed by our model. Each page ni is assigned a
pair (ai, bi), where ai is the position of the page in the sort-
ing established by PageRank and bi is the position accord-
ing to GNN. Finally, the page is represented by a symbol at
the coordinate (ai, bi). Thus, a page above (below) the diag-
onal is ranked higher (lower) by GNN than by PageRank. It
can be observed that pages addressing “Sport” consistently

2 Those pages belonged to the training set but were not supervised.
3 We consider a node is on target when the computed rank differs from

the target rank by ±5%. For example, a computed rank of 10 is con-
sidered on target if the target rank is larger than 9.6 and smaller than
10.4.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

N
ew

 r
an

ki
ng

 p
os

iti
on

Old ranking position

Other pages
Pages addressing "Sports"

Figure 4. The results achieved when doubling
the page rank of pages on “Sport”.

rank higher. This is the expected consequence when dou-
bling the page rank value of selected pages.

4.2. An Exclusive OR-like problem

The second experiment considered two topics: “Sports”
and “Surgery”. The rank function to be learned is (ti =
2pri) for pages classified as either “Sports” or “Surgery”,
and (ti = pri) for pages which addressed both topics, and
for pages which did not address either topic. This experi-
ment simulates the situation when a user is interested in a
set of topics, but does not like general documents that de-
scribe many topics.

Experiments were conducted using a training set con-
sisting of 10 pages which are about “Sports”, 10 pages on
“Surgery”, 10 about “Sport” and “Surgery”, and 10 pages
which addressed neither “Sport” nor “Surgery”. Other 20
supervised pages were randomly selected from the children
and parents of the above pages 4. The network performed
often at 98% accuracy, and produced a result as illustrated
in Figure 5. It can be seen that the pages addressing either
of the topics increased significanly in their ranking, while
pages addressing both topics remain close to the original
(Google’s) page rank.

When conducting the experiments we observed a poor
performance in a few cases. This may be attributed to a
local minimum issue. In general, neural network learning
rules are based on gradient descend methods which can get
caught in a local minimum on the error surface. In prac-
tice, one way in which this can be overcome is by retrain-

4 The parent pages and children pages may not necessarily be of the se-
lected topics, but they are useful since they ensure that the training set
contains connected pages.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

N
ew

 r
an

ki
ng

 p
os

iti
on

Old ranking position

All other pages
Pages addressing ’Sports’ but not ’Surgery’
Pages addressing ’Surgery’ but not ’Sports’

Pages addressing ’Sports’ AND ’Surgery’

Figure 5. The results achieved on the XOR
problem.

ing the neural network with different initial conditions, and
then to chose the best performing one.

4.3. Rank constraints

We have used explicit targets so far, i.e. for each page ni

a desired rank ti was given. Even if these experiments were
useful to study the properties of the proposed model, a user
may not be able to define an exact target for a given page.
On the other hand, a more convenient approach consists of
allowing the users to give examples as constraints between
the ranks of pages. For instance, a set of examples can be
collected by asking the user to sort a set of pages according
to the user’s own preferences.

In this experiments, we assume that the examples are
constraints on1

>ou1
, . . . , onc

>ouc
, where on is the GNN

output for node n, and oni
>oui

states that the rank of page
ni must be higher than the rank of page ui.

Note that in general there may be an infinite number of
ranking functions that satisfy a set of constraints, so we
add the further rule: the produced rank should be close to
Google’s PageRank. The idea supporting this approach is
that we should satisfy user’s constraints, but we should also
avoid producing a rank that is completely different from
PageRank. In practice, the following error function will im-
plement this goal:

Jw =
∑

n�∈S

(on − prn)2 + α

c∑

i=1

L(oni
− oui

) ,

where S = {n1, . . . , nc, u1, . . . , uc} is the set of con-
strained pages, L is a penalty function such that L(y) = y2

if y < 0 and L(y) = 0, otherwise, and α is a parameter

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

N
ew

 r
an

ki
ng

 p
os

iti
on

Old ranking position

All other pages
Pages about "Sports"

Pages about "Surgery"

Figure 6. The results achieved on the rank
constraint problem.

balancing the importance of the constraints w.r.t. the impor-
tance of keeping the pages close to PageRank.

The experiment used 10 constraints which involved 10
pages on “Surgery” and 10 pages on “Sport”. Each con-
straint was in the form of oni

≥ oui
, where ni was a page

on “Sport” and ui a page about “Surgery”. Thus, the con-
straints forced the GNN to produce higher ranks for pages
about “Sport” than pages about “Surgery”. The pages of the
constraints were randomly selected. A further 3980 random
selected pages completed the training graph Ḡ.

Figure 6 shows that most of the pages about “Sport”
are above the diagonal, whereas most of the pages about
“Surgery” are below the diagonal. Moreover, pages which
do not address either “Sport” or “Surgery” are mainly found
close to the diagonal. Thus, the experiments achieved the
expected result. The experimentation also proves that the
proposed model is able to generalize the lesson learned on
a small set of examples to a large dataset. In fact, even if the
training set contained only 20 constraints and dealt with few
pages, the GNN has learned that documents about “Sport”
are more important than documents about “Surgery”. Fig-
ure 6 clearly demonstrates that the GNN had applied this
learned rule also to pages which do not belong to the train-
ing set.

It is also interesting to note that there are many pages
with positions close to the horizontal axis for the topic
“Surgery”. This is perfectly normal as most of these pages
have a very small number of incoming links. Thus, their
ranks are mainly determined by the constant bn of Eq. (7).
Moreover, since bn depends only on the page content, the
ranks of all these pages are about the same. In practice,
the GNN assigned to these pages the smallest ranks of the
whole dataset so that they occupy the lowest positions of
the rank produced by GNN.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

5. Conclusions

It was shown that the GNN model can be adapted to the
task of computing customized web page rank values. GNNs
can learn a ranking function by examples and they are capa-
ble of generalizing over unseen data. The proposed model
extends the previous approaches both for its learning capa-
bility and for the ability to produce very general ranking
functions. On the other hand, GNNs maintain useful prop-
erties of the previous approaches such as the fast conver-
gence of the iterative mechanism used to compute the rank.
Thus, even if learning may be a slower computational pro-
cess than the solution of linear equation like in PageRank’s
case, the computation of the rank after the training phase
is a fast process that can be carried also on very large Web
graphs.

Moreover, the experiments have shown promising results
confirming an outstanding generalization capability of the
proposed model.

Future directions of research include the experimenta-
tion of GNNs on a considerable larger dataset which is cur-
rently being prepared by [5]. Moreover, it will be useful to
analyze the capabilities of GNNs on handling more com-
plex learning tasks such as: contradicting constraints – some
constraints cannot be fulfilled without violating other con-
straints; or weighted constraint – a weight is associated to
each constraint measuring its importance or cost.

Finally, an important matter of future research is the
study of the approaches that can be exploited to collect from
users examples used in the training set.

Acknowledgement

The 2nd and 4th author wish to acknowledge financial
support from the Australian Research Council in the form
of a Discovery Project grant. In addition, the 1st, 2nd and
6th author were supported by an Australian Research Coun-
cil Linkage International Grant.

References

[1] L. Almeida. A learning rule for asynchronous perceptrons
with feedback in a combinatorial environment. In M. Caudill
and C. Butler, editors, IEEE International Conference on
Neural Networks, volume 2, pages 609–618, San Diego,
1987.

[2] M. Bianchini, M. Gori, and F. Scarselli. Inside pagerank.
ACM Trasanctions on Internet Technology, 2005.

[3] S. Brin and L. Page. The anatomy of a large–scale hyper-
textual Web search engine. In Proceedings of the 7th World
Wide Web Conference, Apr. 1998.

[4] H. Chang, D. Cohn, and M. A.K. Learning to create cus-
tomized authority lists. In Proceedings of the 17th Inter-

national Conference on Machine Learning, pages 127–134.
Morgan Kaufmann, 2000.

[5] W. Chiang, M. Hagenbuchner, and A. Tsoi. The wt10g
dataset and the evolution of the web. In 14th Interna-
tional World Wide Web conference, Alternate track papers
and posters, Chiba city, Japan, May 2005 (to appear).

[6] M. Diligenti, M. Gori, and M. Maggini. A unified probabilis-
tic framework for web page scoring systems. IEEE Transac-
tions on Knowledge and Data Engineering, 16(1):4–16, Jan-
uary 2004.

[7] M. Diligenti, M. Gori, and M. Maggini. Learning web page
scores by error back-propagation. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence, 2005.

[8] P. Frasconi, M. Gori, and A. Sperduti. A general framework
for adaptive processing of data structures. IEEE Transac-
tions on Neural Networks, 9(5):768–786, September 1998.

[9] M. Gori, M. Hagenbuchner, F. Scarselli, and A. C. Tsoi.
Graphical based learning environment for pattern recogni-
tion. In Proceeding of Syntatic and Structural Pattern Recog-
nition, August 2004. (Invited Paper).

[10] M. Gori, M. Maggini, E. Martinelli, and F. Scarselli. Learn-
ing user profiles in NAUTILUS. In International Conference
on Adaptive Hypermedia and Adaptive Web–based Systems,
Trento (Italy), August 2000.

[11] M. Hagenbuchner, A. Sperduti, and A. Tsoi. A self-
organizing map for adaptive processing of structured data.
IEEE Transactions on Neural Networks, 2003.

[12] T. H. Haveliwala. Topic sensitive pagerank. In
Proceedings of the 11th World Wide Web Confer-
ence (WWW11), 2002. Available on the Internet at
http://dbpubs.stanford.edu:8090/pub/2002-6.

[13] G. Jeh and J. Widom. Scaling personalized web search. In
Proceedings of the 12th World Wide Web Conference, 20–
24May 2003.

[14] J. Kleinberg. Authoritative sources in a hyperlinked environ-
ment. Journal of the ACM, 46(5):604–632, 1999.

[15] P. Langley, P. Iba, and P. Thompson. An analysis of bayesian
classifiers. In The Tenth National Conference on Artificial
Intelligence, 1992.

[16] F. Pineda. Generalization of back–propagation to recurrent
neural networks. Physical Review Letters, 59:2229–2232,
1987.

[17] M. Richardson and P. Domingos. The intellingent surfer:
probabilistic combination of link and content information in
pagerank. In Advances in Neural Information Processing
Systems, 14, Cambridge, MA, 2002. MIT Press.

[18] F. Scarselli, A. C. Tsoi, M. Gori, and M. Hagenbuchner. A
new neural network model for graph processing. Technical
Report DII 01/05, Dept. of Information Engineering, Univer-
sity of Siena, 2005.

[19] A. Sperduti and A. Starita. Supervised neural networks for
the classification of structures. IEEE Transactions on Neural
Networks, 8:429–459, 1997.

[20] A. C. Tsoi, G. Morini, F. Scarselli, Hagenbuchner, and
M. Maggini. Adaptive ranking of web pages. In Proceed-
ings of the 12th WWW Conference, Budapest, Hungary, May
2003.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

