
An Efficient Partition-Based Parallel PageRank Algorithm

Bundit Manaskasemsak and Arnon Rungsawang
Massive Information & Knowledge Engineering

Department of Computer Engineering, Faculty of Engineering
Kasetsart University, Bangkok 10900, Thailand.

{un, arnon}@mikelab.net

Abstract

PageRank becomes the most well-known re-ranking
technique of the search results. By its iterative
computational nature, the computation takes much
computing time and resource. Researchers have then
devoted much attention in studying an efficient way to
compute the PageRank scores of a very large web graph.
However, only a few of them focus on large-scale
PageRank computation using parallel processing
techniques. In this paper, we propose a Partition-based
parallel PageRank algorithm that can efficiently run on a
low-cost parallel environment like the PC cluster. For
comparison, we also study the other two known
techniques, as well as propose an analytical discussion
concerning I/O and synchronization cost, and memory
usage. Experimental results with two web graphs
synthesized from the .TH domain and the Stanford
WebBase project are very promising.

1. Introduction

The unceasing growth of the World Wide Web
nowadays provides much burden to search engine
builders to engineer new ranking techniques to return
better final search results. The PageRank approach to
ranking webpages has been one of the most successful
algorithms ever known since its announcement by the
GoogleTM [3]. PageRank is both a compute-intensive
algorithm and a computing resource hunger. With billions
of existing webpages, despite computing the subset of
PageRank scores would still take days. Moreover, the
webpages continually updated, added, or removed, the
frequent re-computation of the PageRank scores is often
necessary to maintain the relevance of the search results.
Also, in the context of topic sensitive or personalized web
search [6, 8], the large number of PageRank scores needs
to be recomputed to reflect the user preferences.
Inevitably, the efficient PageRank computation is
required.

Much recent research focuses on algebraic techniques.
For example, Arasu et al. [1] exploit web’s bow-tie
structure and use Gauss-Seidel algorithm in computation.
Kamvar et al. [10] assume web graph’s local block
structures of many intra-domain links, and compute those
structures separately before recombining results to yield
the global ranks. They also avoid re-computing the sub-
component of the already fixed PageRank scores [9], and
accelerate the computation by periodically subtracts of
estimates of the non-principal eigenvectors from the
current iteration [11]. Haveliwala and Kamvar [7]
improve the convergence rate by examining the second
eigenvalue. Lee et al. [12] collapse all dangling nodes in
the web graph into one block and non-dangling nodes
into another block, compute the PageRank scores
separately and concatenate them to get the final result.

In addition, there are other extensive studies in terms
of the system architectures. For example, Boldi and Vigna
[2] first compress the large web graph structure and
compute the PageRank scores in main memory. Both
Chen et al. [4] and Haveliwala [5] efficiently compute the
PageRank scores by reducing the I/O sequences of scan
operations of the web graph on the external memory.
Sankaralingam et al. [14] exploit the distributed P2P
architecture to speed-up and enable the incremental
computation, while Rungsawang and Manaskasemsak
[13] also suggest a solution on the PC cluster.

In this paper, we propose an efficient PageRank
algorithm on a low-cost parallel environment like the PC
cluster. We also study the algorithms proposed by Chen
et al. [4] and Haveliwala [5] for comparison, and adapt
both of them to run on the PC cluster. Moreover, we
provide an analytical discussion of the performance in
terms of I/O and synchronization cost, and memory
usage. During experiments, we test the three algorithms
with two web data sets; one is synthesized from our own
crawler within the .TH domain, and another is from the
Stanford WebBase project [16], using a subset of the F32
cluster of the AIST (Japan) under the ApGrid [15]. The
results are clearly promising.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

We organize our paper as follows. Sections 2 and 3
introduce basic background and the proposed PageRank
algorithm. Section 4 mentions the two related algorithms.
Section 5 describes the experiments, discusses the results,
and an analytical study. Section 6 concludes the paper.

2. Basic PageRank background

The concept of PageRank inspires from human
behavior of voting. Pages recursively voted or referenced
by authors via hyperlinks constitute a gigantic web graph
of the Internet. Thus pages mostly voted by many authors,
i.e., pointed by many other pages, will have high voting
scores and are considered to be the most interesting pages
to be ranked at the beginning list of the search results.

Following the above intuitive concept, we can
formulate the basic algorithm of PageRank as follows.
Let T be the total number of pages in the web graph,
Rank(u) represent the rank score of a page u, Nu be the
number of pages which page u points out (called later
“out-degree”), and Sv represent the set of pages pointing
to page v. If a page v has many other pages u pointing to,
then the rank score of v can recursively be computed by:

vSu u

i
iv N

uRank

T
vRank

)()1(
)(1 (1)

Here , called “damping factor”, is the transitional
probability of the random surfer model [3].

To compute the PageRank scores, the input web graph
must initially be converted into a binary link structure file
L [13] as illustrated textually in Figure 1. Each number
represents the web URL.

3. Partition-based parallel PageRank
algorithm

To accelerate the PageRank computation of a large
web graph, we equally partition the large binary link
structure file L by source URL number (i.e., src_id) into
files, named later by iL

~
; i0 . Each file will be

allotted to compute within a PC processor. Figure 2(a)
exemplifies textually the first three iL

~
. Let T be the

number of pages in the underlying web graph. At each
processor, we need to allocate an array of floating point
Vi in main memory, having T/ entries, to represent the
portion of the source rank vector of its assigned source

URLs; and to create a file Pi (called later the “packet”), to
store pairs of destination URLs and their corresponding
rank scores, to represent the destination rank vector.

Figure 3(a) depicts the parallel PageRank computation
during an iteration using four processors. The iP , iL

~
 and

Vi correspond to the packet file, the partitioned binary
link structure file, and the portion of the source rank
vector, residing at processor i, respectively.

During each iteration, a new packet Pi at each
processor has been created by first scanning the
corresponding partition iL

~
 from disk, and then computing

the new destination rank scores with the current portion
of the source rank vectors Vi in main memory.
Consecutively, the synchronization of all rank scores
occurs, i.e., new computed destination rank scores in Pi

which correspond to the source URLs residing in the
other processors have been read from disk and
transmitted to destination processors. Algorithm 1 as
follows concludes the underlying technique at one
processor in the PC cluster. To compare with the other
two algorithms discussed in the next section, we let all
algorithms iterate for 50 loops during the experiments.
We hereafter name the proposed algorithm, the
“Partition-based parallel PageRank” algorithm.

I/O cost: During an iteration, each processor has to
read the partitioned file iL

~
, compute the new destination

rank scores and write a new created packet Pi back to
disk, and then re-read the packet Pi from disk during
synchronization. The total I/O operation cost will be:

PLPLC
i

iiPartitionOI 22
~

0
,/ (2)

Here, the summation of all portions of iL
~

 is equal to the

size of the binary link structure file L itself, and we let the
summation of all packet files Pi be P.

Memory usage: Each processor has to allocate a fix
size of memory to fit the portion of the source rank vector
Vi. Therefore, the total memory usage will be:

VVC
i

iPartitionMem
0

, (3)

Since we partition the source rank vector into portions,
the summation of all portions Vi will be equal to the size
of the source rank vector V itself.

Synchronization cost: After the new destination rank
scores have been computed during the iteration, the
synchronization process has to be done. Since an entry of
a packet Pi is two times larger than an entry of iV , the

total synchronization cost among processors will be:

VPV
P

C
i

i
i

PartitionSyn 2
2

2
0

, (4)

Figure 1. The binary link structure file L .

 1 4 9 102 256 324

 2 5 3 178 203 278 345

 3 5 5 10 196 313 335

 4 3 2 285 299

 src_id out_degree dest_id
 (4 bytes) (4bytes) (4 bytes each)

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Algorithm 1. Partition-based parallel PageRank
algorithm.

uVi[u] =
T
1

for round = 1 ... 50 {
 create the new packet file Pi

 while (iL
~

 is not end of file) {

 scanLink (iL
~

.src_id, iL
~

.out_degree, iL
~

.dest_id1,

iL
~

.dest_id2, ..., iL
~

.dest_id
iL

~
.out_degree)

 for j = 1 ... iL
~

.out_degree

 writePacket (pair of (iL
~

.dest_idj,
out_degreeL

idsrcLV

i

i

.
~

]_.
~

[
))

 }
 while (Pi is not end of file) {
 scanPacket (pair of (id, score))
 if (id is in assigned number) then

Vi[id] = Vi[id] +score
 else
 synchronize (pair of (id, score))
 }

vVi[v] =
T

)1(+ (Vi[v])

}

4. Related works

Since both Block-based [5] and Split-Accumulate
algorithms [4] are based on the same PageRank
computational family called the “Power method” like
ours, we study them in detail for comparison. However,
these two algorithms utilize different format of the binary
link structure files.

4.1. Block-based algorithm

To adapt the Block-based technique to run on the PC
cluster, we here propose to equally partition the link
structure file L by destination URL number (dest_id) into

 files, named later by iL̂ ; i0 . Figure 2(b)

illustrates textually the example of the first three iL̂ . Note

that each record has an additional 4-byte integer for filed
“num” to represent the number of destination URLs that
the source URL in that partition points to.

During the computation, each processor has to allocate
an array of floating point iV in main memory, having T/

entries, to keep the portion of the destination rank scores;
and to create a source rank vector file V to store the
scores of all source URLs. Figure 3(b) depicts the Block-
based PageRank computation using four processors.

I/O cost: During an iteration, each processor compute
the new destination rank scores iV by scanning the

partitioned file iL̂ and the source rank vector V from disk,

and write all portion of iV back to disk after synchroniza-

tion. Thus, the total I/O operation cost will be:

VL

VVLC
i

i

i

iBlockOI

21

ˆ

00

,/
 (5)

Here we write the size of L̂ in terms of)1(times
the size of L, where and represent the additional
space needed for the field “num” and the redundant

src_id residing in the other portions of iL̂ . Normally,

and are 0.1 [5].

Memory usage: Each processor only allocates an
array iV for the new computed destination rank scores.

Thus, the total memory usage will be:

VVVC
i

iBlockMem

0

, (6)

Synchronization cost: During the synchronization
process, the new computed destination rank scores iV at

each processor have to be sent to the others. Therefore,
the synchronization cost among processors will be:

VVC
i

iBlockSyn 11
0

, (7)

4.2. Split-Accumulate algorithm

To reduce I/O cost from scanning a large size of the
source rank vector V from disk in the Block-based
algorithm, Chen et al. [4] first create the reversed binary
link structure file. To adapt the Spit-Accumulate
technique, we here then equally partition that reversed
binary link structure file by source URL number into
files, named later by iL ; i0 . Figure 2(c) illustrates

textually the example of the first three iL . However, the

creation of the reversed binary link structure file for a
large web graph would take days of CPU time.

During the computation, each processor has to allocate
an array of floating point Vi in main memory, having T/
entries, to hold the portion of source rank scores, and an
array of another 4-byte integer iO to hold the number of

out-degree of every source URL corresponding to Vi ; and
to create a packet file Pi to represent the new computed
destination rank scores. Figure 3(c) depicts the Split-
Accumulate PageRank computation using four
processors.

I/O cost: During an iteration, each processor has to
scan the partitioned file iL , compute the new destination

rank scores and write a new packet Pi back to disk, and
then re-read that packet file during the synchronization

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

process. Thus the total I/O operation cost will be:

PLPLC
i

iiSplitOI 212
0

,/ (8)

Here, we also write the size of L in term of the binary
link structure file L for comparison. The here
represents the additional space needed for the redundant
dest_id residing in the other partitions iL , as mentioned.

Memory usage: For the Split-Accumulate algorithm,
the total memory usage will be:

VOVOVC
i

iiSplitMem 2
0

, (9)

Synchronization cost: During the synchronization
process, the portion of the new computed rank scores in
packet file Pi has to be sent to the other processors. Thus,
the total synchronization cost among processors will be:

VPV
P

C
i

i
i

SplitSyn 2
2

2
0

, (10)

Figure 3. Parallel PageRank computation using 4 processors.

0L
~

=

=

=

=

1L
~

2L
~

3L
~

0V

1V

2V

3V

0P

1P

2P

3P

(a) Partition-based

0L̂=0V V

= 1L̂1V V

= 2L̂2V V

= 3L̂3V V

(b) Block-based

0L=

=

=

=

2L

0V

1V

2V

3V

0O

1O

2O

3O3L

0P

1P

2P

3P

1L

(c) Split-Accumulate

Figure 2. The partitioned binary link structure files iL
~

, iL̂ , and iL .

 1 4 9 102 256 324

 2 5 3 178 203 278 345

 3 5 5 10 196 313 335

File 0
~
L (1 src_id 100)

101 4 1 65 102 109

102 3 13 109 256

103 1 5

File 1
~
L (101 src_id 200)

201 1 256

202 3 2 5 278

203 3 193 235 256

File 2
~
L (201 src_id 300)

(a) Partition-based

 src_id out_degree dest_id

File 0L̂ (1 dest_id 100)

 1 4 1 9

 2 5 1 3

 3 5 2 5 10

File 1L̂ (101 dest_id 200)

 1 4 1 102

 2 5 1 178

 3 5 1 196

File 2L̂ (201 dest_id 300)

 1 4 1 256

 2 5 2 203 278

 4 3 2 285 299

(b) Block-based

src_id out_degree num dest_id

 1 2 101 163

 3 3 133 156 178

 5 2 103 136

File 1L (101 src_id 200)

 1 2 11 12

 2 3 4 8 13

 3 1 2

File 0L (1 src_id 100)

 2 2 202 223

 4 3 204 245 288

 5 3 202 223 224

File 2L (201 src_id 300)

(c) Split-Accumulate

 dest_id in_degree src_id

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

5. Experimental results and discussion

5.1. Experimental setup

Machine setup: We ran our experiments on sixteen
PC machines, a subset of the F32 cluster running at the
AIST (Japan) under the ApGrid contract [15]. Each
machine is equipped with double 3.0 GHz Intel Xeon
CPUs, 4GB of main memory, and a SCSI hard disk. All
machines run the Linux RedHat 8.0, and are networked
via the Gigabit Ethernet. All three algorithms were
implemented in C language using the standard MPICH
message passing version 1.2.5.

Data setup: We tested with two sets of web graphs.
The first one (TH-DB), crawled in January 2003 within
the .TH domain, contains around 10.9 million pages, 97
million hyperlinks. The second one (SF-DB), synthesized
from the Stanford WebBase repository [16], consists of
28 million pages, 227 million hyperlinks. During
experiments, all of these data have been converted into

corresponding binary link structure files iL
~

, iL̂ , and iL .

5.2. Experimental results

We divide the study of performance evaluation into
four parts: (i) the pre-processing time needed to build the
binary link structure files, (ii) the I/O cost and memory
usage spent during the computation, (iii) the size of
packets transferred among processors during synchron-
ization, and (iv) the average running time needed per
iteration.

Pre-processing time: Figure 4 concludes the total
time needed to prepare the binary link structure files.

The binary link structure files of the Partition-based
and Block-based algorithms can directly be built from the
input web graph database, and their construction spends

almost the same time when the number of processors used
during the computation is small. On the other hand, the
time needed to build the binary link structure files for the
Split-Accumulate algorithm is much longer, since the data
in the input web graph needs to be first reversed.

I/O cost and memory usage: We ran all three
algorithms using 1, 2, 4, 8 and 16 processors. Figure 5
concludes the total I/O operation cost per iteration. With
more processors, the I/O cost of the Block-based
algorithm increases very fast, while the I/O cost of the
Split-Accumulate algorithm increases slightly faster than
that of the Partition-based algorithm. We can see that
these results follow the analysis previously mentioned in
Equation (2), (5), and (8).

Figure 6 reports the total memory usage during
computation. The memory needed for the Split-
Accumulate algorithm is around two times larger than
those of the other two algorithms. These results also
follow the analysis previously mentioned in Equation (3),
(6), and (9).

Figure 4. Time needed to prepare the binary link
structure files.

0

4000

8000

12000

16000

1
p
a
rt
it
io
n

2
p
a
rt
it
io
n
s

4
p
a
rt
it
io
n
s

8
p
a
rt
it
io
n
s

1
6
p
a
rt
it
io
n
s

1
p
a
rt
it
io
n

2
p
a
rt
it
io
n
s

4
p
a
rt
it
io
n
s

8
p
a
rt
it
io
n
s

1
6
p
a
rt
it
io
n
s

Partition Block Split

T
im

e
(s

ec
on

ds
)

TH-DB SF-DB

Figure 5. I/O cost per iteration.

0

2

4

6

1
p
ro
c
e
s
s
o
r

2
p
ro
c
e
ss
o
rs

4
p
ro
c
e
ss
o
rs

8
p
ro
c
e
ss
o
rs

1
6
p
ro
c
e
ss
o
rs

1
p
ro
c
e
s
s
o
r

2
p
ro
c
e
ss
o
rs

4
p
ro
c
e
ss
o
rs

8
p
ro
c
e
ss
o
rs

1
6
p
ro
c
e
ss
o
rs

Partition Block Split

D
at

a
A
cc

es
s

(G
B
)

TH-DB SF-DB

Figure 6. Memory usage during the computation.

0

100

200

300

1
p
ro
c
e
s
s
o
r

2
p
ro
c
e
s
s
o
rs

4
p
ro
c
e
s
s
o
rs

8
p
ro
c
e
s
s
o
rs

1
6
p
ro
c
e
s
s
o
rs

1
p
ro
c
e
s
s
o
r

2
p
ro
c
e
s
s
o
rs

4
p
ro
c
e
s
s
o
rs

8
p
ro
c
e
s
s
o
rs

1
6
p
ro
c
e
s
s
o
rs

Partition Block Split

M
em

or
y

U
sa

ge
 (
M

B
)

TH-DB SF-DB

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Synchronization packets: Figure 7 concludes the
amount of transferred data between processors during the
synchronization.

The results show that the number of processors used
for computation has much more effect on the amount of
data transferred between processors for the Block-based
algorithm than that of the other two algorithms. These
results also follow the analysis mentioned in Equation (4),
(7) and (10).

Average running time: Figure 8 concludes the
average running time per iteration. This running time
includes the time needed for both rank score computation
and synchronization. When the number of processors
used for computation is increased, the total running time
is decreased. However, when the amount of processors
increases to a certain number, the total running time stops
decreasing but begins to increase. This degraded effect
comes from that fact that all the three algorithms will
spend most of their time to synchronize the rank scores
between processors.

5.3. Analytical discussion

From the experimental results, we can clearly see that
the Partition-based and the Split-Accumulate algorithms
have better promising future in parallel computation than
the Block-based one, when considering I/O and
synchronization cost, and the overall running time. In
addition, our Partition-based algorithm spends less
computational cost than the Split-Accumulate algorithm,
since it is unnecessary to perform a reversed web graph to
build the binary link structure file during the pre-
processing step.

For an ideal case, suppose that an input web graph can
be partitioned into files, and each partitioned web graph
has a property called “Equally Dense and Strongly
Connected Cluster” (EDSCC). Let = {C0, C1, …, C -1}
be a set of partitioned clusters; C0 = (V0, E0), C1 = (V1, E1),
…, C -1 = (V -1, E -1). Each cluster Ci has mi vertices (i.e.,
mi URLs or pages) and ni edges (i.e., ni hyperlinks).
Therefore, an ideal EDSCC web graph must have the
following properties:

For every cluster, 110 nnn .

For all ji , any hyperlink vu , if iVu then

jVv ; i0 and j0 .

The first property leads to the perfect load balancing
when each processor is responsible for computing with
the same amount of links, while the second one provides
the zero synchronization cost since all nodes in a cluster
has no out-link to the other nodes outside. We now
analytically discuss the three algorithms in the following
way.

I/O cost: For an EDSCC, the total packet size P will

be equal to the size of the destination rank vector V .

Thus the Equation (2) can be rewritten as:

VLVLC PartitionOI 22,/ (11)

By the same way, the Equation (8) can also be rewritten
as:

VLVLC SplitOI 22,/ (12)

On the other hand, the worst case occurs when all nodes
in the input web graph is fully connected, thus each
processor has to transmit every new computed score to
other processors during the synchronization process. Thus
the I/O cost of the Equation (2) and (8) can be rewritten
as:

VLVLC PartitionOI 22,/ (13)

VL

VLC SplitOI

21

21,/
 (14)

Figure 7. Amount of data transferred between
processors during the synchronization.

0

0.5

1

1.5

2

1
p
ro
c
e
s
s
o
r

2
p
ro
c
e
s
s
o
rs

4
p
ro
c
e
s
s
o
rs

8
p
ro
c
e
s
s
o
rs

1
6
p
ro
c
e
s
s
o
rs

1
p
a
rt
it
io
n

2
p
a
rt
it
io
n
s

4
p
a
rt
it
io
n
s

8
p
a
rt
it
io
n
s

1
6
p
a
rt
it
io
n
s

Partition Block Split

T
ra

ns
fe

rr
ed

 S
iz

e
(G

B
)

TH-DB SF-DB

Figure 8. Average running time per iteration.

0

5

10

15

20

1
p
ro
c
e
s
s
o
r

2
p
ro
c
e
s
s
o
rs

4
p
ro
c
e
s
s
o
rs

8
p
ro
c
e
s
s
o
rs

1
6
p
ro
c
e
s
s
o
rs

1
p
ro
c
e
s
s
o
r

2
p
ro
c
e
s
s
o
rs

4
p
ro
c
e
s
s
o
rs

8
p
ro
c
e
s
s
o
rs

1
6
p
ro
c
e
s
s
o
rs

Partition Block Split

T
im

e
(s

ec
on

ds
)

TH-DB SF-DB

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Synchronization cost: By the same reason, for an
EDSCC, the Equation (4) and (10) can be rewritten as:

0, VVC PartitionSyn (15)

0, VVC SplitSyn (16)

And for the case of the fully connected input web graph,
the Equation (4) and (10) can be rewritten as:

VVVC PartitionSyn)1(, (17)

VVVC SplitSyn)1(, (18)

Note that for the worst case, the I/O cost (i.e.,
Equation (13) and (14)) and the synchronization cost (i.e.,
Equation (17) and (18)) of the Partition-based and the
Split-Accumulate algorithms are approximately the same
as those of the Block-based algorithm written in Equation
(5) and (7).

Running time: For an ideal case like an input web
graph that can be partitioned into EDSCCs, the I/O cost is
constant while the synchronization cost is zero.
Therefore, the running time of the Partition-based and the
Split-Accumulate algorithms will linearly decrease when
the number of processors increases. However for the
worst case, their I/O and synchronization cost will be
varied by the number of processors. If we continually
increase the number of processors, the running time will
also continually increase, or the overall speedup
performance will be rapidly drop.

6. Conclusion

Recently many studies have been focused on
improving the final search results of the modern search
engines in correspond with the unceasing growth of the
World Wide Web. Web link analysis, like PageRank,
becomes a very successful technique behind the
GoogleTM. However, computing PageRank scores for a
very large web graph is not trivial.

In this paper, we have proposed a Partition-based
PageRank algorithm that is suitable to run on the parallel
environment like the PC cluster. For comparison reason,
we also propose to study the other two known PageRank
algorithms and adapt them to run on the PC cluster. We
implement the three algorithms and exploit sixteen PC
machines to compute the PageRank scores of the two test
data sets. We also propose a complete analytical
discussion in term of I/O and synchronization cost, as
well as memory usage.

From the experimental results, we can conclude that
our Partition-based algorithm spends less cost than the
other two algorithms. However, from the analytical point
of view, if the input web graph can be partitioned into
several equally dense and strongly connected clusters
(EDSCCs), our algorithm will run on any number of
processors with the optimal cost. Therefore, in our future

work, we look forward to studying the possibility to
divide any input web graph into several clusters, which
each cluster has the nearly EDSCC properties; and
reexamining results with experiments.

7. References
[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin,
“PageRank Computation and the Structure of the Web:
Experiments and Algorithms”, In Proceedings of the 11th World
Wide Web Conference, poster track, 2002.
[2] P. Boldi and S. Vigna, “WebGraph Framework I:
Compression Techniques”, In Proceedings of the 13th World
Wide Web Conference, 2004.
[3] S. Brin and L. Page, “The Anatomy of a Large-scale
Hypertextual Web Search Engine”, In Proceedings of the 7th

World Wide Web Conference, 1998.
[4] Y. Chen, Q. Gan, and T. Suel, “I/O-Efficient Techniques
for Computing PageRank”, In Proceedings of the 11th

International Conference on Information and Knowledge
Management, 2002.
[5] T.H. Haveliwala, “Efficient Computation of PageRank”,
Technical Report, Computer Science Department, Stanford
University, 1999.
[6] T.H. Haveliwala, “Topic-Sensitive PageRank”, In
Proceedings of the 11th International World Wide Web
Conference, 2002.
[7] T.H. Haveliwala and S.D. Kamvar, “The Second
Eigenvalue of the Google Matrix”, Technical Report, Computer
Science Department, Stanford University, 2003.
[8] G. Jey and J. Wisdom, “Scaling Personalized Web
Search”, In Proceeding of the 12th International World Wide
Web Conference, 2003.
[9] S.D. Kamvar, T.H. Haveliwala, and G.H. Golub,
“Adaptive Methods for the Computation of PageRank”,
Technical Report, Computer Science Department, Stanford
University, 2003.
[10] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and G.H.
Golub, “Exploiting the Block Structure of the Web for
Computing PageRank”, Technical Report CSSM-03-02,
Computer Science Department, Stanford University, 2003.
[11] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and G.H.
Golub, “Extrapolation Methods for Accelerating PageRank
Computations”, In Proceedings of the 12th International World
Wide Web Conference, 2003.
[12] C. Lee, G.H. Golub, and S.A. Zenios, “A Fast Two-Stage
Algorithm for Computation PageRank and Its Extensions”,
Technical Report SCCM-03-15, Computer Science Department,
Stanford University, 2003.
[13] A. Rungsawang and B. Manaskasemsak, “PageRank
Computation using PC Cluster”, In Proceedings of the 10th

European PVM/MPI User’s Group Meeting, 2003.
[14] K. Sankaralingam, S. Sethumadhavan, and J.C. Browne,
“Distributed PageRank for P2P Systems”, In Proceedings of the
12th IEEE International Symposium on High Performance
Distributed Computing, 2003.
[15] The ApGrid, http://www.apgrid.org/, 2004.
[16] The Stanford WebBase Project,
http://www-diglib.stanford.edu/~testbed/doc2/WebBase/, 2004.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

