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Abstract

PageRank becomes the most well-known re-ranking 
technique of the search results. By its iterative 
computational nature, the computation takes much 
computing time and resource. Researchers have then 
devoted much attention in studying an efficient way to 
compute the PageRank scores of a very large web graph. 
However, only a few of them focus on large-scale 
PageRank computation using parallel processing 
techniques. In this paper, we propose a Partition-based 
parallel PageRank algorithm that can efficiently run on a 
low-cost parallel environment like the PC cluster. For 
comparison, we also study the other two known 
techniques, as well as propose an analytical discussion 
concerning I/O and synchronization cost, and memory 
usage. Experimental results with two web graphs 
synthesized from the .TH domain and the Stanford 
WebBase project are very promising. 

1.  Introduction 

The unceasing growth of the World Wide Web 
nowadays provides much burden to search engine 
builders to engineer new ranking techniques to return 
better final search results. The PageRank approach to 
ranking webpages has been one of the most successful 
algorithms ever known since its announcement by the 
GoogleTM [3].  PageRank is both a compute-intensive 
algorithm and a computing resource hunger. With billions 
of existing webpages, despite computing the subset of 
PageRank scores would still take days. Moreover, the 
webpages continually updated, added, or removed, the 
frequent re-computation of the PageRank scores is often 
necessary to maintain the relevance of the search results. 
Also, in the context of topic sensitive or personalized web 
search [6, 8], the large number of PageRank scores needs 
to be recomputed to reflect the user preferences. 
Inevitably, the efficient PageRank computation is 
required. 

Much recent research focuses on algebraic techniques. 
For example, Arasu et al. [1] exploit web’s bow-tie 
structure and use Gauss-Seidel algorithm in computation. 
Kamvar et al. [10] assume web graph’s local block 
structures of many intra-domain links, and compute those 
structures separately before recombining results to yield 
the global ranks. They also avoid re-computing the sub-
component of the already fixed PageRank scores [9], and 
accelerate the computation by periodically subtracts of 
estimates of the non-principal eigenvectors from the 
current iteration [11]. Haveliwala and Kamvar [7] 
improve the convergence rate by examining the second 
eigenvalue. Lee et al. [12] collapse all dangling nodes in 
the web graph into one block and non-dangling nodes 
into another block, compute the PageRank scores 
separately and concatenate them to get the final result. 

In addition, there are other extensive studies in terms 
of the system architectures. For example, Boldi and Vigna 
[2] first compress the large web graph structure and 
compute the PageRank scores in main memory. Both 
Chen et al. [4] and Haveliwala [5] efficiently compute the 
PageRank scores by reducing the I/O sequences of scan 
operations of the web graph on the external memory. 
Sankaralingam et al. [14] exploit the distributed P2P 
architecture to speed-up and enable the incremental 
computation, while Rungsawang and Manaskasemsak 
[13] also suggest a solution on the PC cluster. 

In this paper, we propose an efficient PageRank 
algorithm on a low-cost parallel environment like the PC 
cluster. We also study the algorithms proposed by Chen 
et al. [4] and Haveliwala [5] for comparison, and adapt 
both of them to run on the PC cluster. Moreover, we 
provide an analytical discussion of the performance in 
terms of I/O and synchronization cost, and memory 
usage. During experiments, we test the three algorithms 
with two web data sets; one is synthesized from our own 
crawler within the .TH domain, and another is from the 
Stanford WebBase project [16], using a subset of the F32 
cluster of the AIST (Japan) under the ApGrid [15]. The 
results are clearly promising. 
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We organize our paper as follows. Sections 2 and 3 
introduce basic background and the proposed PageRank 
algorithm. Section 4 mentions the two related algorithms. 
Section 5 describes the experiments, discusses the results, 
and an analytical study. Section 6 concludes the paper. 

2.  Basic PageRank background 

The concept of PageRank inspires from human 
behavior of voting. Pages recursively voted or referenced 
by authors via hyperlinks constitute a gigantic web graph 
of the Internet. Thus pages mostly voted by many authors, 
i.e., pointed by many other pages, will have high voting 
scores and are considered to be the most interesting pages 
to be ranked at the beginning list of the search results. 

Following the above intuitive concept, we can 
formulate the basic algorithm of PageRank as follows. 
Let T be the total number of pages in the web graph, 
Rank(u) represent the rank score of a page u, Nu be the 
number of pages which page u points out (called later 
“out-degree”), and Sv represent the set of pages pointing 
to page v. If a page v has many other pages u pointing to, 
then the rank score of v can recursively be computed by: 

vSu u

i
iv N

uRank

T
vRank

)()1(
)(1         (1) 

Here , called “damping factor”, is the transitional 
probability of the random surfer model [3]. 

To compute the PageRank scores, the input web graph 
must initially be converted into a binary link structure file 
L [13] as illustrated textually in Figure 1. Each number 
represents the web URL. 

3. Partition-based parallel PageRank 
algorithm

To accelerate the PageRank computation of a large 
web graph, we equally partition the large binary link 
structure file L by source URL number (i.e., src_id) into 
files, named later by iL

~
; i0 . Each file will be 

allotted to compute within a PC processor. Figure 2(a) 
exemplifies textually the first three iL

~
. Let T be the 

number of pages in the underlying web graph. At each 
processor, we need to allocate an array of floating point 
Vi in main memory, having T/  entries, to represent the 
portion of the source rank vector of its assigned source 

URLs; and to create a file Pi (called later the “packet”), to 
store pairs of destination URLs and their corresponding 
rank scores, to represent the destination rank vector. 

Figure 3(a) depicts the parallel PageRank computation 
during an iteration using four processors. The iP , iL

~
 and 

Vi correspond to the packet file, the partitioned binary 
link structure file, and the portion of the source rank 
vector, residing at processor i, respectively. 

During each iteration, a new packet Pi at each 
processor has been created by first scanning the 
corresponding partition iL

~
 from disk, and then computing 

the new destination rank scores with the current portion 
of the source rank vectors Vi in main memory. 
Consecutively, the synchronization of all rank scores 
occurs, i.e., new computed destination rank scores in Pi

which correspond to the source URLs residing in the 
other processors have been read from disk and 
transmitted to destination processors. Algorithm 1 as 
follows concludes the underlying technique at one 
processor in the PC cluster. To compare with the other 
two algorithms discussed in the next section, we let all 
algorithms iterate for 50 loops during the experiments. 
We hereafter name the proposed algorithm, the 
“Partition-based parallel PageRank” algorithm.  

I/O cost: During an iteration, each processor has to 
read the partitioned file iL

~
, compute the new destination 

rank scores and write a new created packet Pi back to 
disk, and then re-read the packet Pi from disk during 
synchronization. The total I/O operation cost will be: 

PLPLC
i

iiPartitionOI 22
~

0
,/        (2) 

Here, the summation of all portions of iL
~

 is equal to the 

size of the binary link structure file L itself, and we let the 
summation of all packet files Pi be P.

Memory usage: Each processor has to allocate a fix 
size of memory to fit the portion of the source rank vector 
Vi. Therefore, the total memory usage will be: 

VVC
i

iPartitionMem
0

,                    (3) 

Since we partition the source rank vector into  portions, 
the summation of all portions Vi will be equal to the size 
of the source rank vector V itself. 

Synchronization cost: After the new destination rank 
scores have been computed during the iteration, the 
synchronization process has to be done. Since an entry of 
a packet Pi is two times larger than an entry of iV , the 

total synchronization cost among processors will be: 

VPV
P

C
i

i
i

PartitionSyn 2
2

2
0

,       (4) 

Figure 1. The binary link structure file L .

  1          4        9  102  256  324 

  2          5        3  178  203  278  345 

  3          5        5  10  196  313  335 

  4          3        2  285  299 

     src_id  out_degree                  dest_id 
   (4 bytes)   (4bytes)               (4 bytes each) 
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Algorithm 1. Partition-based parallel PageRank 
algorithm.

uVi[u] = 
T
1

for round = 1 ... 50 { 
   create the new packet file Pi

   while ( iL
~

 is not end of file) { 

      scanLink ( iL
~

.src_id, iL
~

.out_degree, iL
~

.dest_id1,

iL
~

.dest_id2, ..., iL
~

.dest_id
iL

~
.out_degree)

      for j = 1 ... iL
~

.out_degree

         writePacket (pair of ( iL
~

.dest_idj,
out_degreeL

idsrcLV

i

i

.
~

]_.
~

[
))

   } 
   while (Pi is not end of file) { 
      scanPacket (pair of (id, score))
      if (id is in assigned number) then 

Vi[id] = Vi[id] +score
      else 
         synchronize (pair of (id, score))
   } 

vVi[v] = 
T

)1( + ( Vi[v]) 

}

4.  Related works 

Since both Block-based [5] and Split-Accumulate 
algorithms [4] are based on the same PageRank 
computational family called the “Power method” like 
ours, we study them in detail for comparison. However, 
these two algorithms utilize different format of the binary 
link structure files. 

4.1. Block-based algorithm 

To adapt the Block-based technique to run on the PC 
cluster, we here propose to equally partition the link 
structure file L by destination URL number (dest_id) into 

 files, named later by iL̂ ; i0 . Figure 2(b) 

illustrates textually the example of the first three iL̂ . Note 

that each record has an additional 4-byte integer for filed 
“num” to represent the number of destination URLs that 
the source URL in that partition points to. 

During the computation, each processor has to allocate 
an array of floating point iV  in main memory, having T/

entries, to keep the portion of the destination rank scores; 
and to create a source rank vector file V to store the 
scores of all source URLs. Figure 3(b) depicts the Block-
based PageRank computation using four processors. 

I/O cost: During an iteration, each processor compute 
the new destination rank scores iV  by scanning the 

partitioned file iL̂  and the source rank vector V from disk, 

and write all portion of iV  back to disk after synchroniza-

tion. Thus, the total I/O operation cost will be: 

VL

VVLC
i

i

i

iBlockOI

21

ˆ

00

,/
         (5) 

Here we write the size of L̂  in terms of )1(  times 
the size of L, where  and  represent the additional 
space needed for the field “num” and the redundant 

src_id residing in the other portions of iL̂ . Normally, 

and  are 0.1 [5]. 

Memory usage: Each processor only allocates an 
array iV  for the new computed destination rank scores. 

Thus, the total memory usage will be: 

VVVC
i

iBlockMem

0

,                  (6) 

Synchronization cost: During the synchronization 
process, the new computed destination rank scores iV  at 

each processor have to be sent to the others. Therefore, 
the synchronization cost among processors will be: 

VVC
i

iBlockSyn 11
0

,           (7) 

4.2. Split-Accumulate algorithm 

To reduce I/O cost from scanning a large size of the 
source rank vector V from disk in the Block-based 
algorithm, Chen et al. [4] first create the reversed binary 
link structure file. To adapt the Spit-Accumulate 
technique, we here then equally partition that reversed 
binary link structure file by source URL number into 
files, named later by iL ; i0 . Figure 2(c) illustrates 

textually the example of the first three iL . However, the 

creation of the reversed binary link structure file for a 
large web graph would take days of CPU time. 

During the computation, each processor has to allocate 
an array of floating point Vi in main memory, having T/
entries, to hold the portion of source rank scores, and an 
array of another 4-byte integer iO  to hold the number of 

out-degree of every source URL corresponding to Vi ; and 
to create a packet file Pi to represent the new computed 
destination rank scores. Figure 3(c) depicts the Split-
Accumulate PageRank computation using four 
processors.

I/O cost: During an iteration, each processor has to 
scan the partitioned file iL , compute the new destination 

rank scores and write a new packet Pi back to disk, and 
then re-read that packet file during the synchronization
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process. Thus the total I/O operation cost will be: 

PLPLC
i

iiSplitOI 212
0

,/    (8) 

Here, we also write the size of L  in term of the binary 
link structure file L for comparison. The  here 
represents the additional space needed for the redundant 
dest_id residing in the other partitions iL , as mentioned.

Memory usage: For the Split-Accumulate algorithm, 
the total memory usage will be: 

VOVOVC
i

iiSplitMem 2
0

,        (9) 

Synchronization cost: During the synchronization 
process, the portion of the new computed rank scores in 
packet file Pi has to be sent to the other processors. Thus, 
the total synchronization cost among processors will be: 

VPV
P

C
i

i
i

SplitSyn 2
2

2
0

,       (10) 

Figure 3. Parallel PageRank computation using 4 processors. 
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Figure 2. The partitioned binary link structure files iL
~

, iL̂ , and iL .

  1            4       9 102 256 324 

  2            5       3 178 203 278 345 

  3            5       5 10 196 313 335 

File 0
~
L  (1  src_id  100) 

101          4       1 65 102 109 

102          3       13 109 256 

103          1       5 

File 1
~
L  (101  src_id  200) 

201          1       256 

202          3       2 5 278 

203          3       193 235 256 

File 2
~
L  (201  src_id  300) 

(a) Partition-based 

     src_id  out_degree             dest_id 

File 0L̂  (1  dest_id  100) 

 1          4          1       9

  2            5           1       3 

  3            5           2       5  10 

File 1L̂  (101  dest_id  200) 

 1          4          1    102

  2            5           1      178

  3            5           1      196

File 2L̂  (201  dest_id  300) 

 1          4          1       256

  2            5           2       203  278 

  4            3           2       285  299 

(b) Block-based 

src_id  out_degree    num                dest_id 

 1           2       101 163

  3           3       133 156 178 

  5           2       103 136 

File 1L  (101  src_id  200) 

 1           2       11  12 

  2           3       4   8  13 

  3           1       2 

File 0L  (1  src_id  100) 

 2           2       202 223

  4           3       204 245 288 

  5           3       202 223 224 

File 2L  (201  src_id  300) 

(c) Split-Accumulate 

        dest_id  in_degree          src_id 
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5.  Experimental results and discussion 

5.1. Experimental setup 

Machine setup: We ran our experiments on sixteen 
PC machines, a subset of the F32 cluster running at the 
AIST (Japan) under the ApGrid contract [15]. Each 
machine is equipped with double 3.0 GHz Intel Xeon 
CPUs, 4GB of main memory, and a SCSI hard disk. All 
machines run the Linux RedHat 8.0, and are networked 
via the Gigabit Ethernet. All three algorithms were 
implemented in C language using the standard MPICH 
message passing version 1.2.5. 

Data setup: We tested with two sets of web graphs. 
The first one (TH-DB), crawled in January 2003 within 
the .TH domain, contains around 10.9 million pages, 97 
million hyperlinks. The second one (SF-DB), synthesized 
from the Stanford WebBase repository [16], consists of 
28 million pages, 227 million hyperlinks. During 
experiments, all of these data have been converted into 

corresponding binary link structure files iL
~

, iL̂ , and iL .

5.2. Experimental results 

We divide the study of performance evaluation into 
four parts: (i) the pre-processing time needed to build the 
binary link structure files, (ii) the I/O cost and memory 
usage spent during the computation, (iii) the size of 
packets transferred among processors during synchron-
ization, and (iv) the average running time needed per 
iteration. 

Pre-processing time: Figure 4 concludes the total 
time needed to prepare the binary link structure files. 

The binary link structure files of the Partition-based 
and Block-based algorithms can directly be built from the 
input web graph database, and their construction spends 

almost the same time when the number of processors used 
during the computation is small. On the other hand, the 
time needed to build the binary link structure files for the 
Split-Accumulate algorithm is much longer, since the data 
in the input web graph needs to be first reversed. 

I/O cost and memory usage: We ran all three 
algorithms using 1, 2, 4, 8 and 16 processors. Figure 5 
concludes the total I/O operation cost per iteration. With 
more processors, the I/O cost of the Block-based 
algorithm increases very fast, while the I/O cost of the 
Split-Accumulate algorithm increases slightly faster than 
that of the Partition-based algorithm. We can see that 
these results follow the analysis previously mentioned in 
Equation (2), (5), and (8). 

Figure 6 reports the total memory usage during 
computation. The memory needed for the Split-
Accumulate algorithm is around two times larger than 
those of the other two algorithms. These results also 
follow the analysis previously mentioned in Equation (3), 
(6), and (9). 

Figure 4. Time needed to prepare the binary link 
structure files. 
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Figure 5. I/O cost per iteration. 
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Synchronization packets: Figure 7 concludes the 
amount of transferred data between processors during the 
synchronization. 

The results show that the number of processors used 
for computation has much more effect on the amount of 
data transferred between processors for the Block-based 
algorithm than that of the other two algorithms. These 
results also follow the analysis mentioned in Equation (4), 
(7) and (10). 

Average running time: Figure 8 concludes the 
average running time per iteration. This running time 
includes the time needed for both rank score computation 
and synchronization. When the number of processors 
used for computation is increased, the total running time 
is decreased. However, when the amount of processors 
increases to a certain number, the total running time stops 
decreasing but begins to increase. This degraded effect 
comes from that fact that all the three algorithms will 
spend most of their time to synchronize the rank scores 
between processors. 

5.3. Analytical discussion 

From the experimental results, we can clearly see that 
the Partition-based and the Split-Accumulate algorithms 
have better promising future in parallel computation than 
the Block-based one, when considering I/O and 
synchronization cost, and the overall running time. In 
addition, our Partition-based algorithm spends less 
computational cost than the Split-Accumulate algorithm, 
since it is unnecessary to perform a reversed web graph to 
build the binary link structure file during the pre-
processing step. 

For an ideal case, suppose that an input web graph can 
be partitioned into files, and each partitioned web graph 
has a property called “Equally Dense and Strongly 
Connected Cluster” (EDSCC). Let  = {C0, C1, …, C -1}
be a set of partitioned clusters; C0 = (V0, E0), C1 = (V1, E1),
…,  C -1 = (V -1, E -1). Each cluster Ci has mi vertices (i.e., 
mi URLs or pages) and ni edges (i.e., ni hyperlinks). 
Therefore, an ideal EDSCC web graph must have the 
following properties: 

For every cluster, 110 nnn .

For all ji , any hyperlink vu , if iVu  then 

jVv ; i0  and j0 .

The first property leads to the perfect load balancing 
when each processor is responsible for computing with 
the same amount of links, while the second one provides 
the zero synchronization cost since all nodes in a cluster 
has no out-link to the other nodes outside. We now 
analytically discuss the three algorithms in the following 
way. 

I/O cost: For an EDSCC, the total packet size P  will 

be equal to the size of the destination rank vector V .

Thus the Equation (2) can be rewritten as: 

VLVLC PartitionOI 22,/          (11) 

By the same way, the Equation (8) can also be rewritten 
as:

VLVLC SplitOI 22,/            (12) 

On the other hand, the worst case occurs when all nodes 
in the input web graph is fully connected, thus each 
processor has to transmit every new computed score to 
other processors during the synchronization process. Thus 
the I/O cost of the Equation (2) and (8) can be rewritten 
as:

VLVLC PartitionOI 22,/        (13) 

VL

VLC SplitOI

21

21,/
             (14) 

Figure 7. Amount of data transferred between 
processors during the synchronization. 
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Figure 8. Average running time per iteration. 
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Synchronization cost: By the same reason, for an 
EDSCC, the Equation (4) and (10) can be rewritten as: 

0, VVC PartitionSyn                   (15) 

0, VVC SplitSyn                     (16) 

And for the case of the fully connected input web graph, 
the Equation (4) and (10) can be rewritten as: 

VVVC PartitionSyn )1(,          (17) 

VVVC SplitSyn )1(,             (18) 

Note that for the worst case, the I/O cost (i.e., 
Equation (13) and (14)) and the synchronization cost (i.e., 
Equation (17) and (18)) of the Partition-based and the 
Split-Accumulate algorithms are approximately the same 
as those of the Block-based algorithm written in Equation 
(5) and (7). 

Running time: For an ideal case like an input web 
graph that can be partitioned into EDSCCs, the I/O cost is 
constant while the synchronization cost is zero. 
Therefore, the running time of the Partition-based and the 
Split-Accumulate algorithms will linearly decrease when 
the number of processors increases. However for the 
worst case, their I/O and synchronization cost will be 
varied by the number of processors. If we continually 
increase the number of processors, the running time will 
also continually increase, or the overall speedup 
performance will be rapidly drop. 

6.  Conclusion 

Recently many studies have been focused on 
improving the final search results of the modern search 
engines in correspond with the unceasing growth of the 
World Wide Web. Web link analysis, like PageRank, 
becomes a very successful technique behind the 
GoogleTM. However, computing PageRank scores for a 
very large web graph is not trivial.  

In this paper, we have proposed a Partition-based 
PageRank algorithm that is suitable to run on the parallel 
environment like the PC cluster. For comparison reason, 
we also propose to study the other two known PageRank 
algorithms and adapt them to run on the PC cluster. We 
implement the three algorithms and exploit sixteen PC 
machines to compute the PageRank scores of the two test 
data sets. We also propose a complete analytical 
discussion in term of I/O and synchronization cost, as 
well as memory usage. 

From the experimental results, we can conclude that 
our Partition-based algorithm spends less cost than the 
other two algorithms. However, from the analytical point 
of view, if the input web graph can be partitioned into 
several equally dense and strongly connected clusters 
(EDSCCs), our algorithm will run on any number of 
processors with the optimal cost. Therefore, in our future 

work, we look forward to studying the possibility to 
divide any input web graph into several clusters, which 
each cluster has the nearly EDSCC properties; and 
reexamining results with experiments. 
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