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Abstract

Re-ranking the search results using PageRank is a 
well-known technique used in modern search engines. 
Running an iterative algorithm like PageRank on a 
large web graph consumes both much computing 
resource and time. This paper therefore proposes a 
parallel adaptive technique for computing PageRank 
using the PC cluster. Following the study of the 
Stanford WebBase group on convergence patterns of 
PageRank scores of pages using the conventional 
PageRank algorithm, PageRank scores of most pages 
converge more quickly than the remainder, we then 
devise our parallel adaptive algorithm to reiterate the 
computation for pages whose PageRank scores are 
still not converged. From experiments using a 
synthesized web graph of 28 million pages and around 
227 million hyperlinks, we obtain the acceleration rate 
up to 6-8 times using 32 PC processors.     

1. Introduction 

The vital goal of any web search engine is to serve 
the most satisfying search answers to end-users. Some 
researchers interest in retrieving results with the fastest 
response time; some try to find an efficient technique 
to present the most possible relevant pages. In 
addition, much of work has been focused on exploiting 
the relationship between web pages via hyperlinks. 
The web link analysis may lead researchers to examine 
how a web page links to others with some topics or 
concealed authoritativeness. There are two famous 
techniques such as HITS [10] and PageRank [12] that 
have been proposed since 1998. However, we will 
only concentrate ourselves on PageRank here. 

PageRank, approached to re-rank the search results, 
has been one of the best-known web search algorithms 
since the advent of the GoogleTM [12]. PageRank is 
both a compute-intensive algorithm and a computing 

resource hunger. With the sheer volume of increasing 
web pages today, despite computing the subset of their 
PageRank scores would still take days and may 
consume unlimited computing resources. In addition, 
the continual unceasing update, addition or removal of 
web pages, directly effect the frequent re-computation 
of the PageRank to freshen the relevance of the search 
results. Also, in the context of topic-sensitive or 
personalized web search [5, 6], the large number of 
PageRank scores needs to be recomputed to reflect the 
user preferences. Inevitably, faster PageRank 
computational technique is still needed to explore. 

Many researchers have performed many extensive 
studies in accelerating the PageRank computation. To 
mention for a few examples, Arasu et al. [1] speed up 
the convergence rate of the computation by both using 
the Gauss-Seidal method and exploiting structural 
properties of the web graphs. Haveliwala [4] and Chen 
et al. [2] explore efficient memory and disk-based 
computation. Jeh and Widom [6] exploit dynamic 
programming technique to compute a large number of 
personalized PageRank vectors simultaneously. 
Kamvar et al. [8, 9] exploit the implicit block 
structures of web graphs, as well as accelerate the 
computation by periodical subtraction of estimates of 
the non-principal eigenvectors from the current 
iteration. Sankaralingam et al. [15] make use of the 
distributed P2P architecture to speed up the 
computation, while Rungsawang and Manaskasemsak 
[14] also suggest a fast parallel computing solution on 
the PC cluster. 

In this paper, we propose another fast parallel 
PageRank implementation, as well as preliminary 
computing experiments, using the PC cluster. A large 
synthesized input web graph is first divided into 
several partitions so that PageRank scores of web 
pages in every partition can be computed in parallel 
using several processors. Following the findings of 
Kamvar et al. [7], the PageRank scores of the majority 
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of the web pages converge more quickly, while those 
of the rest take much longer time to converge. We then 
devise our algorithm, named “parallel adaptive 
PageRank”, to accelerate the overall computation by 
reiterating the computation for only those pages whose 
PageRank scores are still not converged. From 
experiments using a web graph of around 28 million 
pages and 227 million hyperlinks synthesized from the 
Stanford WebBase project [17], we found that the 
proposed approach could accelerate the computation 
up to 6-8 times using 32 processors. 

We organize this paper in the following ways. 
Section 2 briefly introduces the basic PageRank 
concept, as well as the idea of the adaptive PageRank 
computation. Section 3 provides more detail about the 
proposed parallel adaptive PageRank algorithm. 
Section 4 describes how we perform the experiments, 
and discuss the preliminary results. Finally, section 5 
concludes the paper. 

2. Basic concept 

In this section, we introduce the basic PageRank 
concept, and continue to review the adaptive PageRank 
idea reported in [7]. 

2.1. PageRank computing concept 

The concept of PageRank algorithm inspires from 
human behavior of voting. Large numbers of web 
pages, recursively referenced by others via hyperlinks, 
constitute a gigantic consensus web graph of the 
Internet. Pages mostly voted by many authors (i.e., 
referenced by many other pages) will thus have high 
voting scores. In other words, those pages have been 
considered to be the most interesting pages. If one is 
relevant with user’s query, it consequently should be 
ranked at the first part of the search results. 

Theoretically, PageRank can be computed as the 
principal eigenvector of a Markov chain described by 
transition probability matrix using a simple power 
method. The PageRank score of a web page is the 
summation of transitional probability from others to 
this page. Consider a transition probability matrix P of 
size n by n describing any element with 

1 if there is a transition from page  to page 

0 otherwise
iN

ij

i j
P

where Ni is the number of pages which page i points to 
(called later “out-degree”). P is said to be valid if it is a 
row-stochastic matrix or has no rows consisting of all 
zeros. This involves the web graph to be pruned any 
pages with out-degree 0. An approach dealing with 

dangling pages (i.e., pages with zero out-degree) is to 
change the transition probability matrix P to the new 
matrix P . Let n be the total number of pages in the 
web graph, v  be a uniform teleportation vector: 

1
1

nnv

The row-stochastic matrix P  can be defined as: 
TvdPP

where d is an n-dimensional column vector indicating 
those dangling pages: 

otherwise0

0if1 i
i

N
d

In term of Tvd , used to modify the transition 
probability matrix, means that if the transition visits a 
dangling page, it will randomly jump to another page 
with the probability n

1 .

The power method can be guaranteed to convert to 
a principal eigenvector of the transition probability 
matrix if the matrix follows the Markov’s properties 
(i.e., Ergodic theorem) [13]. The two conditions of 
Markov chain have been defined that the matrix P  is
aperiodic and irreducible. The former leads the 
transition to visit any page and then may be possible 
for randomly jumping back to that page with period 1. 
The latter involves the web graph that must be strongly 
connected. Let e  be an n-dimensional column vector 
containing all elements of 1: 

1]1[ ne

The general way to produce a strong connectivity is to 
add the transition probability matrix with a small 
teleportation distribution given by v  to all pages. 

TvePP )1(

The surfer affects to visit any page and then will 
randomly jump to a random page with the probability 

)1( , where  is a teleportation coefficient that has 

been set to 0.85 by many studies. 

Consequently, the modified transition probability 
matrix P  both is a row-stochastic matrix and satisfies 

above Markov’s properties. Let )(kx  be n-dimensional 
column vector of probability distribution over all pages 
at time k. Then the simple power iterative computation 
may be formulated as: 

)()1( kTk xPx

The probability distribution at time 0 given by )0(x  is 
an independently initial distribution. In general, the 
process should be started with the uniform distribution 
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(i.e., vx )0( ), and then reiteratively computed until 

convergence. The power iteration system ( xPx T )
will finally convert to the principal eigenvector with 
eigenvalue equal to 1. 

In practice, the iterative computation for a unique 
stationary probability distribution of a directed graph 
of web pages (or vertices) related with their hyperlinks 
(or edges) can be considered as a matrix-vector 
multiplication form. The probability distribution at 
time k+1 is calculated by using the transition 
probability matrix (P) multiplies by the previous one at 
time k and then pluses the teleportation vector. 
Therefore, to compute a rank score of a web page, we 
simply re-formulate the PageRank computation in the 
following way. Let R(u) represent the rank score of a 
page u, n be the total number of web pages, Nu be the 
out-degree of page u, and Sv represent the set of pages 
pointing to page v. If a page v has many other pages u
pointing to, then the new rank score of v can iteratively 
be computed by: 

nN

uR
vR

vSu u
v

)1()(
)(               (1) 

Here  is the teleportation coefficient of the random 
surfer model as mentioned. The computation reiterates 
until all rank scores converge. We say that the 
PageRank of any page v converges when the 
comparison of its new computed rank score and the old 
one satisfies the following condition: 

)(

)()(

vR

vRvR
                     (2) 

The , called the “relative tolerance”, is the 
predetermined value used as condition to stop the 
iteration. Practically, this relative tolerance is set to 
0.001 or 0.0001. 

2.2. Adaptive PageRank idea 

The need to accelerate the PageRank computation 
for a large web graph challenges many researchers in 
web link analysis and search engine development. 
From extensive observations on a web dataset 
extracted from the Stanford WebBase project (i.e., 
around 80 million pages and closed to a million links), 
Kanvar et al. [7] found that PageRank scores have 
converged on a non-uniform distribution. Many pages 
with their true small scores converge very fast while 
few higher score ones take a longer time to converge. 
Moreover, they found that the PageRank scores for 

over two-thirds of pages converge after 20 iterations 
when setting the relative tolerance to 0.001. 

Accordingly, to eliminate the redundancy of 
computational need, Kamvar et al. [7] proposed to 
omit the re-computation of the PageRank scores of 
pages that have already converged, and then 
immediately employ those PageRank scores in the next 
iterations. This can thus reduce the total running time 
of the original PageRank algorithm. From this finding, 
the previous Equation (1) can also be adapted to: 

otherwise
)1()(

converges)(if)(

)(

vSu u

v

nN

uR

vRvR

vR  (3) 

In our parallel implementation proposed in this 
study, we will refer to Equation (3) as parallel adaptive 
PageRank computational method, while we will refer 
to Equation (1) as the original one. 

3. Parallel adaptive PageRank algorithm 

The most intuitive goal is how PageRank scores of 
a large web graph can compute as fast as possible 
because of frequent computing need in many reasons: 
the up to date collection of web search engine, or the 
need of several number of stationary probability 
distribution using in Topic-sensitive search [5], etc. In 
this section we persuade into computing PageRank 
scores in a parallel way. There are two approaches in 
numerical solution. The former tries to solve the 
probability distribution by using power iteration that is 
the standard way, while the latter focuses on the 
PageRank linear system. 

In this study, we propose a parallel computing on 
power law solution and investigate the advantage of 
adaptive PageRank idea. Therefore, we will first 
mention our data structure, and continue to the 
proposed parallel adaptive PageRank implementation. 
However, there is an alternative way explored in [3] 
which concentrates on linear system solution by using 
Jacobi iterations and several Krylov subspace methods, 
but we do not go into that detail here. 

3.1. The binary link structure file 

For the crawled web graph collection used in our 
proposed algorithm, we first sorted URLs into 
alphabetical order and assigned their corresponding 
increasing numbers for page mapping since we will 
refer to this number in computing process. Secondly, 
the relationship among each web page (i.e., via its 
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hyperlinks) in this crawled collection has to be 
transformed into a binary link structure file L, out-
degree file O and in-degree file I, as illustrated 
textually in Figure 1. Each number (storing in 4-byte 
integer) here represents a web page URL. For example 
of meaning, the page number 3 has been pointed by 
page number 311 and 312, and it has 3 links pointing 
out to other pages and 2 links from other pages (here, 
they are page number 311 and 312) pointing to it. 

Figure 1: The binary link structure file L , out-degree 
file O , and in-degree file I , respectively.

3.2. Parallel implementation 

To accelerate the PageRank computation for a large 
web graph using  processors, we first equally divide 
the corresponding binary link structure file L, as well 
as the corresponding in-degree file I, by destination 
URL numbers (i.e., dest_id) into  partitions, named 
later by Li and Ii; i0 , and distribute those 
partitions, including with the entire out-degree file O,
to those  processors in the PC cluster. Before 
computing PageRank scores, any processor i should 
allocate three arrays of floating point in main memory 
(if it is possible). The first one is the Ri storing source 
rank vector (i.e., the old rank scores) of n entries, 
where n is the total number of unique pages existing in 
the input web graph collection. The second one is the 
Oi storing the out-degree information that correspond 
to the whole n web pages, and the last one is the iR

storing the destination rank vector (i.e., the new 
computed rank scores) of n  entries. The parallel 

adaptive PageRank algorithm running at a processor i
can be written in Algorithm 1 below. 

Algorithm 1. The parallel adaptive PageRank algorithm.

1: niu uR 1][ // initialize all ranks with n
1

2: initialize( CRS , NRS )

3: while ( NRS ) {  // check empty set of non-converged ranks

4:      while ( iL  is not end of file) { // read link structure file  

5:           scanIndegree ( in_degIi . ) // scan corresponding in-degree 

6:           scanLink ( iddestLi _. , 1_. idsrcLi , 2_. idsrcLi , …, in_degIi i
idsrcL ._. )

7:           if ( CRi SiddestL _. ) // whether page is in the set of converged ranks 

8: ]_.[]_.[ iddestLRiddestLR iiii

9:           else { // in case that page is in the set of non-converged ranks 
10: score = 0 
11:                for ( in_degIj i .1 )

12: ]_.[

]_.[

jii

jii

idsrcLO

idsrcLR
scorescore

13:
nii scoreiddestLR )1()(]_.[

14:           }
15:      } 
16:      [ CRS , NRS ] = detectConverge ( iR , iR , )

17:      synScores ( ][vRiSv NR
) // update non-converged ranks at other processors 

18: ii RR

19: }

file O

out_deg
(4 bytes)

1

5

3

1

file I

in_deg
(4 bytes)

1

1

2

4

file L

dest_id
(4 bytes)

src_id
(4 bytes each)

1

2 106

3 311  312 

4 35  96  487  5052 

1028
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The Algorithm 1 proceeds as follows. We first 
initial the rank scores of all web pages to n

1 , then 

empty the set of converged rank CRS  and register all 

pages to the set of non-converged ranks NRS . The 

block of while loop between lines 3-19 reiterates until 
there is nothing left in the set of non-converged ranks. 
The inner block of while loop between lines 4-15 reads 
the binary link structure file Li and computes the new 
rank score R  following the Equation (3). 

The detectConverge( ) function at line 16 identifies 
the pages whose ranks have already converged under 
the relative tolerant condition written in the Equation 
(2), and then updates both converged set CRS  and 

non-converged sets NRS .

The synScores(…) function at line 17 performs the 
duty called “pairwise rank synchronization” that 
updates new computed and non-converged rank scores 
locating at other processors using a simple message 
passing approach. During each communication step, 
any processor may send or receive a package to/from 
its assigned pair, and then the next step it will send or 
receive to/from another pair, and so on till the 
synchronization process is complete (see more detail in 
[11]). This synchronization algorithm guarantees to 
finish (i.e., all processors could receive non-converged 
rank scores of each other) in the optimal 2log2

communication steps. 

Finally, the code at line 18 prepares the new 
computed rank scores to be ready for the next iteration. 
The Algorithm 1 can be easily converted to a parallel 
non-adaptive PageRank one by simply removing line 
7-9 and 14, respectively. 

4. Experiments and preliminary results 

We implemented both Algorithm 1 (noted later by 
“APR”), as well as another parallel non-adaptive one 
for comparison (noted later by “PR”), in C language. 
We also used the standard MPICH message passing 
library version 1.2.6 in synchronization process. The 
preliminary test collection was synthesized from the 
subset of the web graph obtained from the Stanford 
WebBase project [17]. This collection consists of 
around 28 million pages, and 227 million hyperlinks. 
All experiments had been performed on the F32 cluster 
at the AIST (Japan) under the ApGrid contract [16]. 
Each machine in the cluster is equipped with double 
3.0 GHz Intel Xeon CPUs, 4GB of main memory, and 
a SCSI hard disk, connected to each other via a Gigabit 
Ethernet and runs the Linux RedHat 8.0. 

Both the APR and PR algorithms had been tested 
with the synthesized web data using 1, 2, 4, 8, 16, and 
32 machines. During the experiments, we only used 
one processor in each machine for running an assigned 
task, and investigated the wall-clock time needed to 
converge all rank scores with the pre-defined relative 
tolerant values of 0.001 and 0.0001. We also repeated 
the experiments several times and then averaged the 
obtaining results. Figure 2 concludes the results. 

Figure 2: Wall-clock time need to converge the rank 
scores to relative tolerance values of 0.001 and 0.0001.

Figure 3: Acceleration ratio graphs concluded from the 
experiments.

From the results graphically shown in the Figure 2, 
we can see that the running time of the parallel 
adaptive PageRank algorithm (APR) can be 
significantly reduced by eliminating the redundant 
computation needed for the already converged pages. 
The running time gradually decreases when we employ 
more processors in the PC cluster. To clearly see how 
much acceleration we can obtain, we additionally 

0

1000

2000

3000

4000

5000

6000

T
im

e 
(s

ec
o

n
d

s)

1 2 4 8 16 32

Processor(s)

PR (0.0001) PR (0.001)
APR (0.0001) APR (0.001)

0

2

4

6

8

10

1 2 4 8 16 32

Processor(s)

A
cc

el
er

at
io

n
 R

at
io

0.001
0.0001

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06) 
1066-6192/06 $20.00 © 2006 IEEE 



define the acceleration ratio as the ratio between the 
average wall-clock time needed for PR and APR 
algorithms using n processor(s), and re-plot the graphs 
in Figure 3.

The two acceleration ratio graphs in Figure 3 
clearly show the nearly linear speed up rates. The 
slopes of the curves tend to increase as the excessive 
computation that is needed to converge the PageRank 
scores to lesser relative tolerance value decreases. 

5. Conclusion 

This paper proposes an implementation of a parallel 
adaptive PageRank algorithm on the PC cluster. The 
main idea of the algorithm is based on the study of 
Kamvar et al. [7] on their findings that the majority of 
pages in the test dataset have their PageRank scores 
converged more quickly than the remaining. Following 
this idea, we then devise the parallel algorithm to 
reiterate the PageRank computation only on those 
pages whose rank scores do still not converge.

We test the algorithm on the F32 cluster, a powerful 
set of PC machines on the ApGrid network [16]. From 
the experiments performed on a web graph synthesized 
from the Stanford WebBase project [17], we found that 
the average wall-clock time required to converge the 
PageRank scores to relative tolerance value of 0.001 
and 0.0001 drastically reduces. The algorithm can 
provide nearly linear acceleration rate when the 
number of computing processors has been increased. 
We can obtain up to 6-8 times acceleration rates when 
using up to 32 processors. 

Since the results in this paper are only concluded 
from the preliminary experiments, more extensive 
study on a set of larger and realistic web graphs is 
expected. Moreover, we believe that there are still 
more rooms to better optimize the algorithm to utilize 
the computing power of the both processors on each 
F32 machine, and employ the maximum performance 
of the Gigabit Ethernet network that connects all those 
machines. 
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