
Parallel Adaptive Technique for Computing PageRank

Arnon Rungsawang and Bundit Manaskasemsak
Massive Information & Knowledge Engineering

Department of Computer Engineering, Faculty of Engineering
Kasetsart University, Bangkok 10900, Thailand.

{arnon, un}@mikelab.net

Abstract

Re-ranking the search results using PageRank is a
well-known technique used in modern search engines.
Running an iterative algorithm like PageRank on a
large web graph consumes both much computing
resource and time. This paper therefore proposes a
parallel adaptive technique for computing PageRank
using the PC cluster. Following the study of the
Stanford WebBase group on convergence patterns of
PageRank scores of pages using the conventional
PageRank algorithm, PageRank scores of most pages
converge more quickly than the remainder, we then
devise our parallel adaptive algorithm to reiterate the
computation for pages whose PageRank scores are
still not converged. From experiments using a
synthesized web graph of 28 million pages and around
227 million hyperlinks, we obtain the acceleration rate
up to 6-8 times using 32 PC processors.

1. Introduction

The vital goal of any web search engine is to serve
the most satisfying search answers to end-users. Some
researchers interest in retrieving results with the fastest
response time; some try to find an efficient technique
to present the most possible relevant pages. In
addition, much of work has been focused on exploiting
the relationship between web pages via hyperlinks.
The web link analysis may lead researchers to examine
how a web page links to others with some topics or
concealed authoritativeness. There are two famous
techniques such as HITS [10] and PageRank [12] that
have been proposed since 1998. However, we will
only concentrate ourselves on PageRank here.

PageRank, approached to re-rank the search results,
has been one of the best-known web search algorithms
since the advent of the GoogleTM [12]. PageRank is
both a compute-intensive algorithm and a computing

resource hunger. With the sheer volume of increasing
web pages today, despite computing the subset of their
PageRank scores would still take days and may
consume unlimited computing resources. In addition,
the continual unceasing update, addition or removal of
web pages, directly effect the frequent re-computation
of the PageRank to freshen the relevance of the search
results. Also, in the context of topic-sensitive or
personalized web search [5, 6], the large number of
PageRank scores needs to be recomputed to reflect the
user preferences. Inevitably, faster PageRank
computational technique is still needed to explore.

Many researchers have performed many extensive
studies in accelerating the PageRank computation. To
mention for a few examples, Arasu et al. [1] speed up
the convergence rate of the computation by both using
the Gauss-Seidal method and exploiting structural
properties of the web graphs. Haveliwala [4] and Chen
et al. [2] explore efficient memory and disk-based
computation. Jeh and Widom [6] exploit dynamic
programming technique to compute a large number of
personalized PageRank vectors simultaneously.
Kamvar et al. [8, 9] exploit the implicit block
structures of web graphs, as well as accelerate the
computation by periodical subtraction of estimates of
the non-principal eigenvectors from the current
iteration. Sankaralingam et al. [15] make use of the
distributed P2P architecture to speed up the
computation, while Rungsawang and Manaskasemsak
[14] also suggest a fast parallel computing solution on
the PC cluster.

In this paper, we propose another fast parallel
PageRank implementation, as well as preliminary
computing experiments, using the PC cluster. A large
synthesized input web graph is first divided into
several partitions so that PageRank scores of web
pages in every partition can be computed in parallel
using several processors. Following the findings of
Kamvar et al. [7], the PageRank scores of the majority

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

of the web pages converge more quickly, while those
of the rest take much longer time to converge. We then
devise our algorithm, named “parallel adaptive
PageRank”, to accelerate the overall computation by
reiterating the computation for only those pages whose
PageRank scores are still not converged. From
experiments using a web graph of around 28 million
pages and 227 million hyperlinks synthesized from the
Stanford WebBase project [17], we found that the
proposed approach could accelerate the computation
up to 6-8 times using 32 processors.

We organize this paper in the following ways.
Section 2 briefly introduces the basic PageRank
concept, as well as the idea of the adaptive PageRank
computation. Section 3 provides more detail about the
proposed parallel adaptive PageRank algorithm.
Section 4 describes how we perform the experiments,
and discuss the preliminary results. Finally, section 5
concludes the paper.

2. Basic concept

In this section, we introduce the basic PageRank
concept, and continue to review the adaptive PageRank
idea reported in [7].

2.1. PageRank computing concept

The concept of PageRank algorithm inspires from
human behavior of voting. Large numbers of web
pages, recursively referenced by others via hyperlinks,
constitute a gigantic consensus web graph of the
Internet. Pages mostly voted by many authors (i.e.,
referenced by many other pages) will thus have high
voting scores. In other words, those pages have been
considered to be the most interesting pages. If one is
relevant with user’s query, it consequently should be
ranked at the first part of the search results.

Theoretically, PageRank can be computed as the
principal eigenvector of a Markov chain described by
transition probability matrix using a simple power
method. The PageRank score of a web page is the
summation of transitional probability from others to
this page. Consider a transition probability matrix P of
size n by n describing any element with

1 if there is a transition from page to page

0 otherwise
iN

ij

i j
P

where Ni is the number of pages which page i points to
(called later “out-degree”). P is said to be valid if it is a
row-stochastic matrix or has no rows consisting of all
zeros. This involves the web graph to be pruned any
pages with out-degree 0. An approach dealing with

dangling pages (i.e., pages with zero out-degree) is to
change the transition probability matrix P to the new
matrix P . Let n be the total number of pages in the
web graph, v be a uniform teleportation vector:

1
1

nnv

The row-stochastic matrix P can be defined as:
TvdPP

where d is an n-dimensional column vector indicating
those dangling pages:

otherwise0

0if1 i
i

N
d

In term of Tvd , used to modify the transition
probability matrix, means that if the transition visits a
dangling page, it will randomly jump to another page
with the probability n

1 .

The power method can be guaranteed to convert to
a principal eigenvector of the transition probability
matrix if the matrix follows the Markov’s properties
(i.e., Ergodic theorem) [13]. The two conditions of
Markov chain have been defined that the matrix P is
aperiodic and irreducible. The former leads the
transition to visit any page and then may be possible
for randomly jumping back to that page with period 1.
The latter involves the web graph that must be strongly
connected. Let e be an n-dimensional column vector
containing all elements of 1:

1]1[ne

The general way to produce a strong connectivity is to
add the transition probability matrix with a small
teleportation distribution given by v to all pages.

TvePP)1(

The surfer affects to visit any page and then will
randomly jump to a random page with the probability

)1(, where is a teleportation coefficient that has

been set to 0.85 by many studies.

Consequently, the modified transition probability
matrix P both is a row-stochastic matrix and satisfies

above Markov’s properties. Let)(kx be n-dimensional
column vector of probability distribution over all pages
at time k. Then the simple power iterative computation
may be formulated as:

)()1(kTk xPx

The probability distribution at time 0 given by)0(x is
an independently initial distribution. In general, the
process should be started with the uniform distribution

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

(i.e., vx)0(), and then reiteratively computed until

convergence. The power iteration system (xPx T)
will finally convert to the principal eigenvector with
eigenvalue equal to 1.

In practice, the iterative computation for a unique
stationary probability distribution of a directed graph
of web pages (or vertices) related with their hyperlinks
(or edges) can be considered as a matrix-vector
multiplication form. The probability distribution at
time k+1 is calculated by using the transition
probability matrix (P) multiplies by the previous one at
time k and then pluses the teleportation vector.
Therefore, to compute a rank score of a web page, we
simply re-formulate the PageRank computation in the
following way. Let R(u) represent the rank score of a
page u, n be the total number of web pages, Nu be the
out-degree of page u, and Sv represent the set of pages
pointing to page v. If a page v has many other pages u
pointing to, then the new rank score of v can iteratively
be computed by:

nN

uR
vR

vSu u
v

)1()(
)((1)

Here is the teleportation coefficient of the random
surfer model as mentioned. The computation reiterates
until all rank scores converge. We say that the
PageRank of any page v converges when the
comparison of its new computed rank score and the old
one satisfies the following condition:

)(

)()(

vR

vRvR
 (2)

The , called the “relative tolerance”, is the
predetermined value used as condition to stop the
iteration. Practically, this relative tolerance is set to
0.001 or 0.0001.

2.2. Adaptive PageRank idea

The need to accelerate the PageRank computation
for a large web graph challenges many researchers in
web link analysis and search engine development.
From extensive observations on a web dataset
extracted from the Stanford WebBase project (i.e.,
around 80 million pages and closed to a million links),
Kanvar et al. [7] found that PageRank scores have
converged on a non-uniform distribution. Many pages
with their true small scores converge very fast while
few higher score ones take a longer time to converge.
Moreover, they found that the PageRank scores for

over two-thirds of pages converge after 20 iterations
when setting the relative tolerance to 0.001.

Accordingly, to eliminate the redundancy of
computational need, Kamvar et al. [7] proposed to
omit the re-computation of the PageRank scores of
pages that have already converged, and then
immediately employ those PageRank scores in the next
iterations. This can thus reduce the total running time
of the original PageRank algorithm. From this finding,
the previous Equation (1) can also be adapted to:

otherwise
)1()(

converges)(if)(

)(

vSu u

v

nN

uR

vRvR

vR (3)

In our parallel implementation proposed in this
study, we will refer to Equation (3) as parallel adaptive
PageRank computational method, while we will refer
to Equation (1) as the original one.

3. Parallel adaptive PageRank algorithm

The most intuitive goal is how PageRank scores of
a large web graph can compute as fast as possible
because of frequent computing need in many reasons:
the up to date collection of web search engine, or the
need of several number of stationary probability
distribution using in Topic-sensitive search [5], etc. In
this section we persuade into computing PageRank
scores in a parallel way. There are two approaches in
numerical solution. The former tries to solve the
probability distribution by using power iteration that is
the standard way, while the latter focuses on the
PageRank linear system.

In this study, we propose a parallel computing on
power law solution and investigate the advantage of
adaptive PageRank idea. Therefore, we will first
mention our data structure, and continue to the
proposed parallel adaptive PageRank implementation.
However, there is an alternative way explored in [3]
which concentrates on linear system solution by using
Jacobi iterations and several Krylov subspace methods,
but we do not go into that detail here.

3.1. The binary link structure file

For the crawled web graph collection used in our
proposed algorithm, we first sorted URLs into
alphabetical order and assigned their corresponding
increasing numbers for page mapping since we will
refer to this number in computing process. Secondly,
the relationship among each web page (i.e., via its

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

hyperlinks) in this crawled collection has to be
transformed into a binary link structure file L, out-
degree file O and in-degree file I, as illustrated
textually in Figure 1. Each number (storing in 4-byte
integer) here represents a web page URL. For example
of meaning, the page number 3 has been pointed by
page number 311 and 312, and it has 3 links pointing
out to other pages and 2 links from other pages (here,
they are page number 311 and 312) pointing to it.

Figure 1: The binary link structure file L , out-degree
file O , and in-degree file I , respectively.

3.2. Parallel implementation

To accelerate the PageRank computation for a large
web graph using processors, we first equally divide
the corresponding binary link structure file L, as well
as the corresponding in-degree file I, by destination
URL numbers (i.e., dest_id) into partitions, named
later by Li and Ii; i0 , and distribute those
partitions, including with the entire out-degree file O,
to those processors in the PC cluster. Before
computing PageRank scores, any processor i should
allocate three arrays of floating point in main memory
(if it is possible). The first one is the Ri storing source
rank vector (i.e., the old rank scores) of n entries,
where n is the total number of unique pages existing in
the input web graph collection. The second one is the
Oi storing the out-degree information that correspond
to the whole n web pages, and the last one is the iR

storing the destination rank vector (i.e., the new
computed rank scores) of n entries. The parallel

adaptive PageRank algorithm running at a processor i
can be written in Algorithm 1 below.

Algorithm 1. The parallel adaptive PageRank algorithm.

1: niu uR 1][// initialize all ranks with n
1

2: initialize(CRS , NRS)

3: while (NRS) { // check empty set of non-converged ranks

4: while (iL is not end of file) { // read link structure file

5: scanIndegree (in_degIi .) // scan corresponding in-degree

6: scanLink (iddestLi _. , 1_. idsrcLi , 2_. idsrcLi , …, in_degIi i
idsrcL ._.)

7: if (CRi SiddestL _.) // whether page is in the set of converged ranks

8:]_.[]_.[iddestLRiddestLR iiii

9: else { // in case that page is in the set of non-converged ranks
10: score = 0
11: for (in_degIj i .1)

12:]_.[

]_.[

jii

jii

idsrcLO

idsrcLR
scorescore

13:
nii scoreiddestLR)1()(]_.[

14: }
15: }
16: [CRS , NRS] = detectConverge (iR , iR ,)

17: synScores (][vRiSv NR
) // update non-converged ranks at other processors

18: ii RR

19: }

file O

out_deg
(4 bytes)

1

5

3

1

file I

in_deg
(4 bytes)

1

1

2

4

file L

dest_id
(4 bytes)

src_id
(4 bytes each)

1

2 106

3 311 312

4 35 96 487 5052

1028

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

The Algorithm 1 proceeds as follows. We first
initial the rank scores of all web pages to n

1 , then

empty the set of converged rank CRS and register all

pages to the set of non-converged ranks NRS . The

block of while loop between lines 3-19 reiterates until
there is nothing left in the set of non-converged ranks.
The inner block of while loop between lines 4-15 reads
the binary link structure file Li and computes the new
rank score R following the Equation (3).

The detectConverge() function at line 16 identifies
the pages whose ranks have already converged under
the relative tolerant condition written in the Equation
(2), and then updates both converged set CRS and

non-converged sets NRS .

The synScores(…) function at line 17 performs the
duty called “pairwise rank synchronization” that
updates new computed and non-converged rank scores
locating at other processors using a simple message
passing approach. During each communication step,
any processor may send or receive a package to/from
its assigned pair, and then the next step it will send or
receive to/from another pair, and so on till the
synchronization process is complete (see more detail in
[11]). This synchronization algorithm guarantees to
finish (i.e., all processors could receive non-converged
rank scores of each other) in the optimal 2log2

communication steps.

Finally, the code at line 18 prepares the new
computed rank scores to be ready for the next iteration.
The Algorithm 1 can be easily converted to a parallel
non-adaptive PageRank one by simply removing line
7-9 and 14, respectively.

4. Experiments and preliminary results

We implemented both Algorithm 1 (noted later by
“APR”), as well as another parallel non-adaptive one
for comparison (noted later by “PR”), in C language.
We also used the standard MPICH message passing
library version 1.2.6 in synchronization process. The
preliminary test collection was synthesized from the
subset of the web graph obtained from the Stanford
WebBase project [17]. This collection consists of
around 28 million pages, and 227 million hyperlinks.
All experiments had been performed on the F32 cluster
at the AIST (Japan) under the ApGrid contract [16].
Each machine in the cluster is equipped with double
3.0 GHz Intel Xeon CPUs, 4GB of main memory, and
a SCSI hard disk, connected to each other via a Gigabit
Ethernet and runs the Linux RedHat 8.0.

Both the APR and PR algorithms had been tested
with the synthesized web data using 1, 2, 4, 8, 16, and
32 machines. During the experiments, we only used
one processor in each machine for running an assigned
task, and investigated the wall-clock time needed to
converge all rank scores with the pre-defined relative
tolerant values of 0.001 and 0.0001. We also repeated
the experiments several times and then averaged the
obtaining results. Figure 2 concludes the results.

Figure 2: Wall-clock time need to converge the rank
scores to relative tolerance values of 0.001 and 0.0001.

Figure 3: Acceleration ratio graphs concluded from the
experiments.

From the results graphically shown in the Figure 2,
we can see that the running time of the parallel
adaptive PageRank algorithm (APR) can be
significantly reduced by eliminating the redundant
computation needed for the already converged pages.
The running time gradually decreases when we employ
more processors in the PC cluster. To clearly see how
much acceleration we can obtain, we additionally

0

1000

2000

3000

4000

5000

6000

T
im

e
(s

ec
o

n
d

s)

1 2 4 8 16 32

Processor(s)

PR (0.0001) PR (0.001)
APR (0.0001) APR (0.001)

0

2

4

6

8

10

1 2 4 8 16 32

Processor(s)

A
cc

el
er

at
io

n
 R

at
io

0.001
0.0001

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

define the acceleration ratio as the ratio between the
average wall-clock time needed for PR and APR
algorithms using n processor(s), and re-plot the graphs
in Figure 3.

The two acceleration ratio graphs in Figure 3
clearly show the nearly linear speed up rates. The
slopes of the curves tend to increase as the excessive
computation that is needed to converge the PageRank
scores to lesser relative tolerance value decreases.

5. Conclusion

This paper proposes an implementation of a parallel
adaptive PageRank algorithm on the PC cluster. The
main idea of the algorithm is based on the study of
Kamvar et al. [7] on their findings that the majority of
pages in the test dataset have their PageRank scores
converged more quickly than the remaining. Following
this idea, we then devise the parallel algorithm to
reiterate the PageRank computation only on those
pages whose rank scores do still not converge.

We test the algorithm on the F32 cluster, a powerful
set of PC machines on the ApGrid network [16]. From
the experiments performed on a web graph synthesized
from the Stanford WebBase project [17], we found that
the average wall-clock time required to converge the
PageRank scores to relative tolerance value of 0.001
and 0.0001 drastically reduces. The algorithm can
provide nearly linear acceleration rate when the
number of computing processors has been increased.
We can obtain up to 6-8 times acceleration rates when
using up to 32 processors.

Since the results in this paper are only concluded
from the preliminary experiments, more extensive
study on a set of larger and realistic web graphs is
expected. Moreover, we believe that there are still
more rooms to better optimize the algorithm to utilize
the computing power of the both processors on each
F32 machine, and employ the maximum performance
of the Gigabit Ethernet network that connects all those
machines.

6. References

 [1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin.
PageRank Computation and the structure of the web:
Experiments and algorithms. In Proceedings of the 11th

International World Wide Web Conference, Poster
Track, 2002.

[2] Y. Chen, Q. Gan, and T. Suel. I/O efficient techniques
for computing PageRank. In Proceedings of the 11th

International Conference on Information and
Knowledge Management, 2002.

 [3] D. Gleich and L. Zhukov. Scalable Computing for
Power Law Graphs: Experience with Parallel
PageRank. Yahoo! Technical Report, 2005.

[4] T.H. Haveliwala. Efficient computation of PageRank.
Computer Science Technical Report, Stanford
University, 1999.

[5] T.H. Haveliwala. Topic-Sensitive PageRank. In
Proceedings of the 11th International World Wide Web
Conference, 2002.

[6] G. Jeh and J. Widom. Scaling Personalized Web Search.
In Proceeding of the 12th International World Wide Web
Conference, 2003.

[7] S.D. Kamvar, T.H. Haveliwala, and G.H. Golub.
Adaptive Methods for the Computation of PageRank.
Computer Science Technical Report, Stanford
University, 2003.

[8] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and
G.H. Golub. Exploiting the block structure of the web
for computing PageRank. Computer Science Technical
Report, Stanford University, 2003.

[9] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and
G.H. Golub. Extrapolating methods for accelerating
PageRank computations. In Proceeding of the 12th

International World Wide Web Conference, 2003.

[10] J. Kleinberg. Authoritative sources in a hyperlinked
environment. In Proceedings of the 9th ACM-SIAM
Symposium on Discrete Algorithms, 1998.

[11] B. Manaskasemsak and A. Rungsawang. Parallel
PageRank Computation on a Gigabit PC cluster. In
Proceedings of the International Conference on
Advanced Information Networking and Applications,
2004.

[12] L. Page, S. Bill., R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the web.
Stanford Digital Libraries Working Paper, 1998.

[13] S.M. Ross. Introduction to Probability Models, 8th

Edition, Academic Press, 2003.

[14] A. Rungsawang and B. Manaskasemsak. PageRank
Computation using PC Cluster. In Proceedings of the
10th European PVM/MPI Users’ group Meeting, 2003.

[15] K. Sankaralingam, S. Sethummadhavan, and J.C.
Browne. Distributed PageRank for P2P Systems. In
Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing, 2003.

[16] The ApGrid, http://www.apgrid.org/, 2004.

[17] The Stanford WebBase Project, http://www-diglib.stan
ford.edu/~testbed/doc2/WebBase/, 2004.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

