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AUTHORITY RANKINGS FROM HITS, PAGERANK, AND SALSA:
EXISTENCE, UNIQUENESS, AND EFFECT OF INITIALIZATION∗
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Abstract. Algorithms such as Kleinberg’s HITS algorithm, the PageRank algorithm of Brin
and Page, and the SALSA algorithm of Lempel and Moran use the link structure of a network of
web pages to assign weights to each page in the network. The weights can then be used to rank
the pages as authoritative sources. These algorithms share a common underpinning; they find a
dominant eigenvector of a nonnegative matrix that describes the link structure of the given network
and use the entries of this eigenvector as the page weights. We use this commonality to give a unified
treatment, proving the existence of the required eigenvector for the PageRank, HITS, and SALSA
algorithms, the uniqueness of the PageRank eigenvector, and the convergence of the algorithms to
these eigenvectors. However, we show that the HITS and SALSA eigenvectors need not be unique.
We examine how the initialization of the algorithms affects the final weightings produced. We give
examples of networks that lead the HITS and SALSA algorithms to return nonunique or nonintuitive
rankings. We characterize all such networks in terms of the connectivity of the related HITS authority
graph. We propose a modification, Exponentiated Input to HITS, to the adjacency matrix input to
the HITS algorithm. We prove that Exponentiated Input to HITS returns a unique ranking, provided
that the network is weakly connected. Our examples also show that SALSA can give inconsistent hub
and authority weights, due to nonuniqueness. We also mention a small modification to the SALSA
initialization which makes the hub and authority weights consistent.
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1. Introduction. The rapid growth of the World Wide Web has created a need
for search tools. In the past, search engines ranked pages by using word frequency or
similar measures. Recently, new algorithms have been created that greatly improve
rankings, using the network structure of the web. Two prominent ranking algorithms
are PageRank [3] (the underlying method of the Google search engine) and HITS [9, 15]
(Hypertext Induced Topic Search). A third algorithm, SALSA [17] (Stochastic Ap-
proach for Link Structure Analysis), combines ideas from PageRank and HITS. Some
search tools, such as HITS, first use conventional information-retrieval techniques to
identify a subnetwork of pages relevant to a particular query, and then order the
results so that the most relevant web pages are presented near the top of the list.
Others, such as PageRank, rank the whole web on an absolute scale and then select

∗Received by the editors August 8, 2002; accepted for publication (in revised form) January 7,
2005; published electronically January 6, 2006. A brief preliminary version of this work appeared
in the Proceedings of the ACM SIGIR 2001 Conference. This work was supported in part by the
Harvey Mudd College Mathematics Clinic and by HNC Software, Inc.

http://www.siam.org/journals/sisc/27-4/41287.html
†PARC, 3333 Coyote Hills Rd., Palo Alto, CA 94304 (Ayman.Farahat@parc.com).
‡Department of Mathematics and Computer Science, Gustavus Adolphus College, St. Peter, MN

56082 (tlofaro@gustavus.edu). The work of this author was supported in part by a Research, Schol-
arship and Creativity Grant from Gustavus Adolphus College.

§Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge,
UK (jcm52@cam.ac.uk).

¶Department of Mathematics, Harvey Mudd College, Claremont, CA 91711 (grae@hmc.edu,
ward@math.hmc.edu).

1181



1182 FARAHAT, LOFARO, MILLER, RAE, AND WARD

those pages relevant to the query, preserving the order.

The common thread running through these methods is linear algebra. For each
method, the ranking vector is the dominant eigenvector of some matrix describing
the network. How this matrix is defined differs in each method. However, this com-
monality allows us to establish theorems (see section 3) providing conditions for each
method which ensure the convergence of the algorithm, existence of solutions, and
uniqueness of solutions. These results also apply to any other methods that reduce
to the computation of a dominant eigenvector.

Introducing the HITS algorithm in [15, p. 613], Kleinberg writes:

For the sake of simplicity, we will make the following technical as-
sumption . . . |λ1(M)| > |λ2(M)| [that is, the dominant eigenvalue
is simple]. . . . When the assumption does not hold, the analysis be-
comes less clean, but it is not affected in any substantial way.

This idea has been repeated in (among others) [2, 5, 6, 11, 18, 25]. See, for example,
this passage from [6, p. 5]:

iteration will converge to the principal eigenvector for any “nonde-
generate” choice of initial vector — . . . for example, for any vector all
of whose entries are positive. This says that the hub and authority
weights we compute are truly an intrinsic feature of the collection
of linked pages, not an artifact of our choice of initial weights or the
tuning of arbitrary parameters. [Italics in the original.]

In this paper we take up the question of the choice of initial weights. We examine
the dependence of the results of the algorithms on changes in initialization. The key
point is that the dominant eigenvalue of the appropriate matrix need not be simple.
When it is simple, the convergence asserted above for HITS is valid. However, when
the dominant eigenvalue is repeated, the ranking vector could be any nonnegative
vector in the multidimensional dominant eigenspace. (This occurs for HITS in our
example in Figure 4.1, section 4.) In particular, the ranking vector may not be unique,
but may depend on the initial seed vector.

Even when the dominant eigenvalue is simple, HITS can return inappropriate
zero weights (Figure 4.3, section 4).

We show that the HITS and SALSA algorithms are “badly behaved” on certain
networks, meaning that (i) they can return ranking vectors that are not unique but
depend on the initial seed vector or (ii) HITS can return ranking vectors that inap-
propriately assign zero weights to parts of the network. In some cases, this behavior
can cause SALSA to return hub and authority weights that are inconsistent.

We characterize all networks where HITS and SALSA are badly behaved in terms
of the connectivity of a certain related graph (our HITS authority graph, Defini-
tion 4.3). We propose a modification, Exponentiated Input to HITS , of the adjacency
matrix input to the HITS algorithm; our new input matrix adds information about
longer paths in the network. We prove that with Exponentiated Input, the HITS
algorithm returns a unique eigenvector, without inappropriate zero weights, as long
as the network is weakly connected.

Here is an outline of the paper. In section 2, we review four eigenvector ranking
algorithms, namely, the PageRank, HITS, and SALSA algorithms, along with our Ex-
ponentiated Input modification to the adjacency matrix input to the HITS algorithm.
For each algorithm, we identify the nonnegative matrix that describes the structure
of the network being considered.
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In section 3, we review the Perron–Frobenius theorems which deal with the prop-
erties of dominant eigenvalues and eigenvectors of nonnegative matrices. We present
existence and (where applicable) uniqueness results for the dominant eigenvectors the
ranking algorithms find. In particular, we show that Exponentiated Input to HITS
does return a unique ranking (independent of the initialization), without inappropri-
ate zero weights, when the network graph is weakly connected.

In section 4, we give examples of simple networks for which the HITS and SALSA
algorithms return nonunique dominant eigenvectors and for which HITS assigns inap-
propriate zero weights to significant parts of the network. We say that an algorithm is
badly behaved on a network if it has either of these two features. We give a character-
ization of all networks for which HITS and SALSA are badly behaved in terms of the
connectivity of our HITS authority graph G′ (Definition 4.3), which is an undirected
graph related to the directed graph representing the network.

For our example in section 4, Figure 4.1, SALSA returns authority and hub
vectors which are inconsistent. In section 4.3 we suggest a modification to the SALSA
initialization which makes the vectors consistent.

In section 5 we discuss related issues, including stability of the algorithms, sample
networks for which the dominant and second eigenvalues are arbitrarily close for Ex-
ponentiated Input to HITS, and other possible modifications of the adjacency matrix
input to HITS. Section 6 considers related work, and section 7 gives our conclusions.

2. Eigenvector-based ranking algorithms. To prepare our review of the
eigenvector-based ranking algorithms (or linear link analysis algorithms) PageRank,
HITS, Exponentiated Input to HITS, and SALSA, we give some definitions.

The network of web pages and links defines a directed graph G, with the web
pages defining the nodes 1, . . . , n and the links defining the edges. This graph is
described by an n× n adjacency matrix A, where aij = 1 if there is a link from page
i to page j and aij = 0 otherwise. We use the following standard definitions from
graph theory.

Definition 2.1. The indegree (outdegree) of a node i on a graph G is the
number of edges coming into (out of ) i.

Definition 2.2. A directed graph G is weakly connected if any node can be
reached from any other node by traversing edges either in their indicated direction or
in the opposite direction.

The notion of dominant eigenvectors and eigenvalues is central to the descriptions
of the algorithms in terms of linear algebra.

Definition 2.3. A dominant eigenvector of a matrix is an eigenvector associ-
ated with an eigenvalue of largest modulus. An eigenvalue (which may be simple or
repeated) of largest modulus is called a dominant or largest eigenvalue of the matrix.

We note that some authors use the term dominant in a slightly different sense.
Also, in [15] the term principal eigenvector indicates an eigenvector whose eigenvalue
is simple and of strictly largest modulus.

With our definitions, we can describe the four linear link analysis algorithms.

2.1. PageRank. The PageRank method, developed by Brin and Page [3], is a
random walk with random resets on G. This process describes a Markov chain. Let
W be the transition probability matrix describing the Markov chain without reset, so
that the (i, j)-entry in W gives the probability of following a link on page i to page j.
Assuming all links are equally likely, W is derived from A by

wij =
aij∑n
k=1 aik

.(2.1)
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If at least one node has zero outdegree, then the Markov chain is absorbing, and a
modification to W is needed. For instance, PageRank temporarily removes the links
to all such nodes, then replaces them after the ranking is calculated [23].

The random reset part of PageRank is described by a probability ε < 1, which
determines whether we restart, and a (positive) uniform transition probability matrix
U having uij = 1/n for all i and j. (Positive, nonuniform choices for U are also
possible.) Combining these two elements we conclude that the PageRank algorithm
is described by the stochastic matrix

P = εU + (1 − ε)W.(2.2)

With probability ε we randomly choose a new page. Otherwise we follow one of the
directed edges from our present node.

The relationship between Markov chains such as this and linear algebra is well
understood (see Gantmacher [8], for example). The stationary distribution of this
Markov chain is simply the dominant eigenvector of the matrix PT (the transpose
of P ). We return to this point in section 3.

2.2. HITS. The HITS algorithm was developed by Kleinberg [15] and is now a
part of the CLEVER Searching project of the IBM Almaden Research Center [13].
Similar ideas are used in the Teoma search engine, subsequently acquired by Ask
Jeeves [24]. The premise of the algorithm is that a web page serves two purposes: to
provide information on a topic and to provide links to other pages giving information
on a topic. This gives rise to two ways of categorizing a web page. First, we consider
a web page to be an authority on a subject if it provides good information about the
subject. Second, we consider the web page to be a hub if it provides links to good
authorities on the subject. The HITS algorithm is an iterative algorithm developed
to quantify each page’s value as an authority and as a hub.

The HITS algorithm is not applied to the graph representing the whole web,
but rather to a subgraph, typically of 1000–5000 nodes, derived from traditional text
matching of the query terms in the search topic.

We again consider the directed graph G. Each node i is given an initial authority
weight a0(i) and hub weight h0(i), although the initial authority weights are not used
by the algorithm as presented in [15, p. 612]. To begin the algorithm, these nodes are
uniformly weighted. The original paper [15, p. 614] states “one can compute weights
. . . starting from any initial [weights].” We will later discuss complications that
can arise if the initial weighting is changed or if the algorithm starts from the initial
authority weights instead of the initial hub weights.

The algorithm proceeds iteratively, until values from successive iterations are
within a specified error, as follows.

1. In the kth iteration, node i is assigned a new authority weight ak(i) equal
to the sum of hk−1(j), where the sum runs over each node j which points to node i.
This is repeated for all nodes in G.

2. The new hub weight hk(i) is the sum of ak(j), where the sum runs over the
nodes j to which node i points. This is repeated for all nodes in G. Note that the
hub weights are computed from the current authority weights, which in turn were
computed from the previous hub weights.

3. Still in the kth iteration, after new weights are computed for all nodes, the
weights are normalized so that

∑
i ak(i)

2 =
∑

i hk(i)
2 = 1.

To construct a linear algebra formulation of this method, we create a vector �ak of
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the authority weights at iteration k and another vector �hk of the hub weights, where

�ak = [ak(1), ak(2), . . . , ak(n)]T ,(2.3)

�hk = [hk(1), hk(2), . . . , hk(n)]T .(2.4)

A uniform initialization gives

�a0 = [1/
√
n, 1/

√
n, . . . , 1/

√
n]T ,(2.5)

�h0 = [1/
√
n, 1/

√
n, . . . , 1/

√
n]T(2.6)

up to normalization. When A is the adjacency matrix of the directed graph G, the
algorithm becomes

�ak = φkA
T�hk−1, �hk = ψkA�ak,(2.7)

where φk and ψk are the normalization constants chosen such that the sum of the
squares of the authority weights, as well as that of the hub weights, is 1 in the kth
iteration.

Combining the formulas in (2.7), we reach

�ak = φkψk−1A
TA�ak−1 for k > 1;(2.8)

�hk = ψkφkAAT�hk−1 for k > 0.(2.9)

When this method converges, the resulting authority and hub vectors satisfy

�a∗ =
1

λ∗A
TA�a∗, �h∗ =

1

λ∗AAT�h∗.(2.10)

In other words, the authority vector �a∗ is an eigenvector of ATA, and the hub vector �h∗

is an eigenvector of AAT . It is simple to show (see section 3.2) that these eigenvectors
are, as in the case of PageRank, dominant eigenvectors corresponding to the dominant
eigenvalue λ∗. To avoid confusion, it should be noted that throughout this paper, we
do not concern ourselves with the eigenvalues of A, but just those of ATA and AAT .

2.3. Exponentiated Input to HITS. In [20], we showed that certain network
topologies caused the standard HITS algorithm to return either nonunique or non-
intuitive results (see section 4). We developed the Exponentiated Input method to
address these limitations. HITS’s direct dependence on the adjacency matrix A re-
stricts it, in a given iteration step, to considering only paths of length 1. That is, to
determine the hub score of a page, at each iteration HITS looks only at the authority
scores of adjacent pages. We replace A by a new matrix with information about longer
paths.

To consider paths of length greater than 1, we note that given an adjacency
matrix A, the number of paths of length m from node i to node j is given by the
(i, j)-entry of Am. We want to consider paths of length 1 to be more important than
paths of length 2, 3, and so on. To accomplish this we use the new matrix

A + A2/2! + A3/3! + · · · + Am/m! + · · · = eA − I.(2.11)

This series converges, since each entry in the mth term of the series can be bounded
by nm/m!. While the original adjacency matrix A is binary, eA − I need not be.
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Using this new “exponentiated” matrix eA − I, the HITS algorithm with ex-
ponentiated input can be expressed in linear algebra terms as follows. We initial-
ize the authority and hub vectors so that a0(i) > 0 and h0(i) > 0 for all i, and∑

i a0(i)
2 =

∑
i h0(i)

2 = 1. (Again, the uniform initialization a0(i) = h0(i) = 1/
√
n

is one possibility, and again, �a0 is never used.) For k ≥ 1, we replace the adjacency
matrix A input to the HITS algorithm with the matrix eA − I, so that we define

�ak = φk(e
A − I)T�hk−1, �hk = ψk(e

A − I)�ak(2.12)

for k > 0, with normalization constants φk, ψk. We will show that the sequence {�ak}
approaches the eigenspace of the largest eigenvalue of (eA− I)T (eA− I), and that the

sequence {�hk} approaches the eigenspace of the largest eigenvalue of (eA−I)(eA−I)T .
We prove in sections 3.2 and 3.3 that given a weakly connected input graph, the

Exponentiated Input modification of HITS prevents the possibilities of (i) returning
nonunique rankings that depend on the initialization and (ii) returning inappropriate
zero weights. Other matrices such as A + A2/2 or I + A rather than eA − I would
also exclude these possibilities; again, so long as G is weakly connected.

2.4. SALSA. The SALSA (stochastic approach for link structure analysis) al-
gorithm, developed by Lempel and Moran [17], combines the random walk idea of
PageRank with the hub/authority idea of HITS. Given a graph G, a bipartite undi-
rected graph H is constructed by building the subset Va of all the nodes with positive
indegree (the potential authorities), and the subset Vh of all the nodes with positive
outdegree (the potential hubs). After renumbering, the elements of Va and Vh become
the nodes of H. Since some nodes may have both positive indegree and outdegree,
the number m of nodes of H satisfies m ≤ 2n, where n is the number of nodes of G.
The (undirected) edges of H are defined from G as follows: if G has a link from i to
j, then we put an edge between the nodes corresponding to i in Vh and j in Va. The
algorithm corresponds to a two-step random walk on the graph H.

If we pick a node in Va and randomly follow an edge, we traverse to a node in Vh.
A second step returns us to Va. Thus a pair of two-step random walks, one starting in
Va and the other in Vh, can be used to determine the hub and authority vectors. As
in the PageRank scheme, each random walk is a Markov chain with a corresponding
transition probability matrix. As before, let A be the adjacency matrix of G. Let Wr

be the matrix generated from A by dividing each entry of A by its row sum. Similarly
define Wc to be generated by dividing each entry of A by its column sum. We arrive
at �ak = WT

c Wr�ak−1 and �hk = WrW
T
c
�hk−1. Note that the sequence �ak depends on the

initialization �a0, and �hk depends on the initialization �h0. This contrasts with HITS,
where both sequences depend on �h0, and leads to subtle differences in the behavior of
the two algorithms. In particular the SALSA limits �a and �h may not satisfy �a = WT

c
�h.

A significant advantage of SALSA is that the weightings can be computed ex-
plicitly without the iterative process described here [17]. Although the initial pa-
per provides an explicit calculation only in the case of uniform initial weights, this
quick method of calculating the weightings can be easily generalized to accommodate
nonuniform initial weights.

3. Existence and convergence. Each of the algorithms presented in section 2
reduces to computing the dominant eigenvector of some matrix that describes the
connectivity of the given graph. In this section, we discuss the graph properties that
ensure the existence and uniqueness of these eigenvectors. If the dominant eigen-
value is repeated, it will have a full eigenspace, and a unique ranking does not exist.
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Therefore, perhaps unexpectedly, the ranking returned by an algorithm depends on
the initialization used to start the algorithm. We discuss this in greater detail in
section 4.

3.1. The Perron–Frobenius theorems. We begin by presenting the necessary
theorems concerning dominant eigenvalues and eigenvectors of nonnegative matrices.
These theorems describe why the ranking vectors of the above methods exist and when
the rankings are unique. In addition, the different hypotheses allow us to describe
shortcomings of HITS and SALSA (see section 4). The following definitions and
theorems (including proofs) can be found in Gantmacher [8].

Definition 3.1. A matrix M is positive if every entry of M is positive. The
matrix is nonnegative if every entry of M is nonnegative.

Definition 3.2. A permutation of the rows of M with the same permutation
applied to the columns is a matrix permutation. We denote by σij the fundamental
(i, j)-matrix permutation (interchanging rows i and j and columns i and j).

A matrix permutation applied to the adjacency matrix of a graph corresponds to a
relabeling of the nodes. We use the notation ◦ for composition of matrix permutations.

Definition 3.3. A matrix M is reducible if there exists a matrix permutation
σ = σi1,j1 ◦ · · · ◦ σim,jm such that

σ(M) =

(
M1 0
M2 M3

)
,(3.1)

with M1 and M3 square matrices and 0 a zero matrix. Otherwise M is irreducible.
A graph is said to be strongly connected if every node can be reached from every

other node following the direction of the edges. It can be shown that a graph whose
(weighted) adjacency matrix is M is strongly connected if and only if the matrix is
irreducible. This is commonly used as an equivalent definition of irreducibility.

The following three theorems concern the existence and multiplicity of a dominant
real eigenvalue and the properties of its corresponding eigenvector. For our results, it
is particularly important whether or not the dominant eigenvalue is simple. The first
theorem, due to Perron, has the most restrictive hypothesis.

Theorem 3.4. A positive matrix M always has a real and positive eigenvalue r
that is a simple root of the characteristic equation, and that exceeds the moduli of all
the other eigenvalues. The eigenvector corresponding to the eigenvalue r can be scaled
so that every entry is positive.

Frobenius generalized Perron’s result to irreducible nonnegative matrices. The
conclusions are naturally weaker in the sense that there may be other eigenvalues
having the same modulus as r. However, the dominant real eigenvalue has multiplic-
ity 1.

Theorem 3.5. An irreducible nonnegative matrix M always has a positive eigen-
value r that is a simple root of the characteristic equation, such that the moduli of all
other eigenvalues do not exceed r. The eigenvector corresponding to the eigenvalue r
can be scaled so that every entry is positive.

Finally, if we remove the irreducibility hypothesis, even less can be said. (Con-
sider, for instance, the identity matrix, whose dominant eigenvalue is of course not
simple.) However, the dominant real eigenvalue r does exist, is nonnegative, and has
a nonnegative eigenvector.

Theorem 3.6. A nonnegative matrix M always has a nonnegative eigenvalue r
such that the moduli of all other eigenvalues do not exceed r. An eigenvector corre-
sponding to the eigenvalue r can be chosen so that every entry is nonnegative.



1188 FARAHAT, LOFARO, MILLER, RAE, AND WARD

We give a lemma that will help to show that for HITS, the nonnegative eigenvalue
found using the above theorems is in fact larger in modulus than all other eigenvalues.

Lemma 3.7. If B is a real square matrix, then all eigenvalues of BTB are real
and nonnegative with full eigenspace.

Proof. The eigenvalues are real and have full eigenspaces because M = BTB is
symmetric. To show that they are nonnegative, we must show that xTMx ≥ 0 for
any vector x [16]. This is straightforward: xTMx = xTBTBx = |Bx|2 ≥ 0.

3.2. Existence and uniqueness of ranking vectors. In this section, we
present existence and uniqueness results for positive or nonnegative dominant eigen-
vectors of the associated matrices for the four algorithms. In section 3.3, we address
convergence to these eigenvectors. Theorems similar to those below can be found in
the original papers, but the results on uniqueness (or lack thereof) in Theorems 3.9
and 3.10 seem to have been largely overlooked.

Theorem 3.8 (PageRank). Let G denote a directed graph with adjacency ma-
trix A. If the ε defined in (2.2) is positive and U is a positive matrix, then the
PageRank vector exists and is unique, and all entries in this vector are positive.

Here, by the phrase the PageRank vector exists, we mean that the PageRank
matrix P for G has an eigenvector (which we call the PageRank vector) corresponding
to a positive eigenvalue that is at least as large as the modulus of every other eigenvalue
of P , and similarly for the HITS, SALSA, and Exponentiated Input to HITS hub and
authority vectors in Theorems 3.9, 3.10, and 3.11 below.

Proof of Theorem 3.8. The result follows immediately from Theorem 3.4. If ε > 0
and U is a positive matrix, then the matrix P of (2.2) is positive, and hence PT has
a simple dominant eigenvalue, which is positive, with a unique eigenvector having
positive entries. Convergence of the PageRank algorithm to this eigenvector follows
from the theory of Markov chains. See, for instance, [19, p. 490].

Theorem 3.9 (HITS). Let G denote a directed graph with adjacency matrix A.
The HITS hub and authority vectors exist and have nonnegative entries.

Proof. AAT and ATA are nonnegative. Theorem 3.6 gives the result.

Theorem 3.10 (SALSA). Let G denote a directed graph with adjacency matrix A.
The SALSA hub and authority vectors exist and have nonnegative entries.

Proof. The matrices WT
c Wr and WrW

T
c defined in section 2.4 are nonnegative.

Theorem 3.6 gives the result.

We have proved that the eigenvector exists for HITS and SALSA. As we show
in section 4, it may not be unique, since the dominant eigenvalue may be repeated
(although all other eigenvalues are smaller in modulus, by Lemma 3.7 for HITS and by
the theory of Markov chains for SALSA as shown in [17]). However, for Exponentiated
Input to HITS, the eigenvector is unique, as we now show.

Theorem 3.11 (Exponentiated Input to HITS). Let G denote a directed graph
with adjacency matrix A. If G is weakly connected, then the normalized Exponen-
tiated Input to HITS authority vector exists and is unique, the authority vector is
nonnegative, and all nodes with positive indegree receive positive weights. Further, the
analogous statements hold for the hub vector: if G is weakly connected, then the nor-
malized Exponentiated Input to HITS hub vector exists and is unique and nonnegative,
and all nodes with positive outdegree receive positive weights.

Proof. We prove this result by showing that the authority matrix (eA−I)T (eA−I)
has a simple dominant eigenvalue whose eigenvector is positive exactly on those nodes
whose indegree is positive. The proof for the hub matrix is analogous.
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Without loss of generality, we assume that G has n nodes, t of which have indegree
equal to zero, and that those nodes with indegree zero are labeled n − t + 1, . . . , n.
Then the adjacency matrix is given by

A =

(
Ã 0

B̃ 0

)
,(3.2)

where Ã is (n− t) × (n− t) and the matrix B̃ is t× (n− t). The last t columns of

eA − I = A + A2/2! + · · · + Am/m! + · · ·(3.3)

have only zero entries. Therefore

(eA − I)T (eA − I) =

(
C 0
0 0

)
,(3.4)

where C = (eÃ−I)T (eÃ−I). Moreover, the characteristic polynomial of (eA−I)T (eA−
I) is λtpC(λ) where pC(λ) is the characteristic polynomial of C. Hence if C has a
simple, dominant, positive eigenvalue, then the same is true for (eA − I)T (eA − I).
Further, if the corresponding eigenvector of C is positive, then the corresponding
eigenvector of (eA − I)T (eA − I) is the same vector, padded with 0 entries for all
the zero indegree nodes. Lemma 3.7 shows that the eigenvalues of C are real and
nonnegative. We need to show that C is irreducible so that Theorem 3.5 applies.

Let G′ be the graph whose (weighted) adjacency matrix is given by C. This
graph G′ is the analogue, for Exponentiated Input to HITS, of our HITS authority
graph; see section 4.2 and especially Definition 4.3. Note that G′ can be considered
an undirected graph because C is symmetric. C is irreducible if and only if G′ is
connected. We seek to show that G′ is connected.

The (i, j)-entry of C is nonzero if and only if there is a node k such that the
original graph G has a path from k to i and a path from k to j. From this we
conclude that all vertices that can be reached from a node k following the links in G
must be in the same component of G′. Further, if k has nonzero indegree, it follows
that k is in that component of G′ as well.

Let us assume that G′ is disconnected. Then it can be separated into two com-
ponents H1 and H2 (which may themselves be disconnected). It must be true that
there is no link between H1 and H2 in G. Since G is weakly connected, there must
be a node (with zero indegree) that links to some node l in H1 and to another node
m in H2. However, that would lead to a connection between these nodes (l and m)
in G′, contradicting the assumption that G′ is disconnected.

Thus G′ is connected and C is irreducible. This completes the proof.
A close inspection of the proof shows that if the more easily computable matrix

A + A2/2 were used instead of eA − I, then the result would still hold. The main
observation needed is that all nodes that can be reached from a given node i following
edges in G are still in the same component of G′. This is because a link from i to j
and a link from j to k in G will imply a link between j and k in G′. Consequently
the proof above still applies.

Alternatively we could use I +A, as the graph G′ contains the graph G (ignoring
direction) as a subgraph. Consequently, if G is weakly connected, then G′ is connected.
Since G′ is connected, the same arguments then show that the algorithm converges
uniquely. The graph G′ will be discussed in more detail later.
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3.3. Convergence of the ranking algorithms. All of the methods described
in section 2 reduce to the computation of a dominant eigenvector. However, PageRank
and SALSA compute this eigenvector using a Markov chain method, while HITS and
Exponentiated Input to HITS are formulated in terms of summing the weights of
linked nodes at each step.

A probability transition matrix is regular if some power of the matrix is positive.
Moreover, a regular transition matrix has a unique dominant eigenvector that (after
scaling) gives the stationary distribution of the associated Markov chain.

The transition matrix P of the PageRank method is positive, and hence regular, if
the random reset parameter ε > 0. The ergodic theorem guarantees that the random
walk process that PageRank uses converges to the stationary vector of the transition
matrix. Therefore PageRank converges to a unique ranking vector.

SALSA also uses this approach. However, because SALSA does not incorporate
random reset, the graph structure affects whether the ranking vector is unique. In
particular, if the bipartite graph H is not connected, then the authority and hub
vectors are not unique. The original SALSA paper showed, using the ergodic theorem,
that each component of the graph has a simple dominant eigenvalue which is equal
to one. Each component will converge on its own, and the final result will depend on
how much weight each component is given in the initialization.

The HITS and Exponentiated Input to HITS methods differ only in their input
matrices, and so the proof of convergence is identical for both methods. We offer a
heuristic proof, followed by a short rigorous proof.

It is sufficient to consider the convergence of the hub vector �hk. Let λ1 ≥ λ2 ≥
· · · ≥ λn ≥ 0 be the eigenvalues of AAT . Because AAT is symmetric, each eigenvalue
has a full eigenspace and the eigenvectors can be chosen to form an orthogonal basis
for Rn.

We can express �h as a linear combination of the eigenvectors �v1, . . . , �vn. So
�h1 = α1�v1 + · · ·+ αn�vn, where αi = �h1 · �vi/‖�vi‖2. Then �h2 = λ1α1�v1 + · · ·+ λnαn�vn.

Suppose λ1 = λ2 = · · · = λr �= λr+1. We can rewrite �h2 as λ1(α1�v1 + · · · + αr�vr) +
λr+1αr+1�vr+1 + · · · + λnαn�vn. Iterating, we obtain

�hk+1 = ξk

(
λk

1 [α1�v1 + · · · + αr�vr] +

n∑
i=r+1

λk
i αi�vi

)
,(3.5)

where ξk = ψkφkξk−1 is the normalization constant. As k increases, the λk
1 term

dominates. Thus, �hk → c (α1�v1+· · ·+αr�vr). A closer analysis shows that ψkφk → λ1,
which gives a numerical test for convergence.

We now offer a rigorous proof of convergence.
Theorem 3.12. The sequence �ak provided by the HITS algorithm converges to an

authority vector, and this authority vector is a nonnegative eigenvector of the largest
eigenvalue of ATA. Similarly �hk converges to a hub vector, and this hub vector is a
nonnegative eigenvector of the largest eigenvalue of AAT .

The same is true for the Exponentiated Input to HITS algorithm, for the matrices
(eA − I)T (eA − I) and (eA − I)(eA − I)T .

The HITS algorithm computes all future hub and authority vectors, �hk and �ak,
k ≥ 1, from the initial hub vector �h0; it does not use the initial authority vector �a0

(section 2.2). A fine point is that if instead the HITS algorithm were implemented so
that it made use of the initial authority vector and ignored the initial hub vector, then
the resulting authority vectors �ak could converge to a different vector. Figure 4.1 gives
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an example where this would happen. Theorem 4.4 provides a sufficient condition for
HITS to converge to the same authority vector, regardless of whether HITS makes
use of �h0 or �a0. If G′ is weakly connected, Theorem 3.11 proves that Exponentiated
Input to HITS also enjoys that uniqueness property.

Proof of Theorem 3.12. The eigenvalues of AAT are real and nonnegative. It
follows that while the eigenvalue of largest modulus may be repeated, all other eigen-
values have strictly smaller modulus. Since AAT is symmetric, the eigenspaces are
orthogonal. In the dominant eigenspace, we can use Gram–Schmidt orthonormaliza-
tion to choose orthogonal vectors such that one of them is nonnegative. Because �h0

is positive, its dot product with this nonnegative vector is positive, and thus �h0 has a
nontrivial component in the eigenspace of the dominant eigenvalue. This ensures that
the algorithm converges to an eigenvector of the largest eigenvalue [10, pp. 351–353].
By the construction of the HITS algorithm, the limit cannot have negative entries.
Note that although the algorithm converges, it could converge to any nonnegative,
normalized vector in the eigenspace of the dominant eigenvalue λ1, depending on the
initial choice �h0 of the hub weights.

The same argument applies to the HITS authority vector and to the authority
and hub vectors for the Exponentiated Input to HITS algorithm.

We note that one could apply the PageRank idea of adding a matrix εU , where
ε > 0 and U is a positive matrix, to the matrices AAT and ATA for HITS, WrW

T
c and

WT
c Wr for SALSA, and (eA − I)(eA − I)T and (eA − I)T(eA − I) for Exponentiated

Input to HITS. (For the last-mentioned algorithm, this would be needed only when
G is not weakly connected and so the dominant eigenvalue is not already known
to be simple.) Since the resulting perturbed matrices are positive, Theorem 3.4 then
guarantees the existence and uniqueness of a dominant eigenvector for each perturbed
matrix. One could then use perturbation analysis to study the stability of the resulting
eigenvector and how close this eigenvector is to the dominant eigenspace of the original
unperturbed matrix—in particular, how close the resulting authority vector is to the
possible authority vectors given by the original matrix.

4. Limitations of the HITS and SALSA algorithms. In the previous sec-
tion, we presented conditions for the existence and uniqueness of ranking vectors.
The weakest conclusions were for the HITS and SALSA algorithms. In this section
we explore in more detail the limitations of these two methods. The key questions
here are whether the largest eigenvalue of ATA for HITS, or of WT

c Wr for SALSA, is
simple or repeated and whether its eigenvector has inappropriate zero entries.

4.1. Examples. We begin by considering a few simple examples that illustrate
some limitations of the HITS and SALSA algorithms.

We first demonstrate the problem of repeated largest eigenvalue as the initializa-
tion changes. Examples of networks with repeated largest eigenvalue for HITS have
appeared in [20] and independently in [2, section 5] (where they were considered in
the context of finding communities). The initial SALSA paper [17] mentioned the
possibility of a repeated dominant eigenvalue but did not investigate changes in the
initialization.

With the uniform initialization �h0 = [1/
√
n, 1/

√
n, . . . , 1/

√
n]T for the hub vec-

tor, the HITS algorithm applied to the network in Figure 4.1 yields �a = [2/
√

5, 1/2
√

5,

1/2
√

5, 1/2
√

5, 1/2
√

5, 0]T and �h = [0, 1/
√

5, 1/
√

5, 1/
√

5, 1/
√

5, 1/
√

5]T . This means
that vertex 6 is no better a hub than vertices 2, 3, 4, and 5. In contrast, if the chain
of �hi and �ai were to start from a uniformly initialized �a0 rather than �h0, we would find
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Fig. 4.1. A network with repeated largest eigenvalue for ATA. The HITS algorithm with
standard input yields different authority vectors for different initial seed vectors, and the SALSA
algorithm with standard input gives inconsistent authority and hub vectors.

that �a = [1/
√

5, 1/
√

5, 1/
√

5, 1/
√

5, 1/
√

5, 0]T and �h = [0, 1/2
√

5, 1/2
√

5, 1/2
√

5, 1/2
√

5,
2/
√

5]T so that vertex 1 is now no better an authority than vertices 2, 3, 4, and 5.
More generally, choosing different (positive) initial seed vectors for the HITS

algorithm, the final authority vector for the network in Figure 4.1 can be

�a = [α, β, β, β, β, 0]T(4.1)

for any positive numbers α and β such that α2 +4β2 = 1. In other words, the possible
outcomes for �a can be any normalized, nonnegative vector in the two-dimensional
eigenspace of the dominant eigenvalue for ATA except [1, 0, 0, 0, 0, 0]T and [0, 1/2, 1/2,
1/2, 1/2, 0]T .

Similar behavior occurs when the SALSA algorithm is applied to the same network
(in Figure 4.1). The rankings from SALSA result from the limits of two different
chains which do not interact. Each of these chains will converge, but their limits will
be unrelated.
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Fig. 4.2. The SALSA graph H associated with Figure 4.1.

The random walk performed by the SALSA algorithm is confined to whichever
component of Figure 4.2 it begins in. Using the standard uniform initialization, we
find that �a = [1/5, 1/5, 1/5, 1/5, 1/5, 0]T and �h = [0, 1/5, 1/5, 1/5, 1/5, 1/5]T , so that
all nodes with nonzero outdegree are equally good hubs and all nodes with nonzero
indegree are equally good authorities.

These two weightings are inconsistent. Because the premise of HITS and SALSA
is that good hubs point to good authorities, if four out of five equally good hubs all
point to one node and no others, then we expect that node to be a better authority
than any of the four nodes pointed to by the fifth hub. In other words, we expect that
�a = WT

c
�h and �h = Wr�a. The fact that this is not the case results from the repeated

eigenvalue of WT
c Wr. For arbitrary positive initial vectors, the final authority vector

can be any vector of the form shown in (4.1) such that α, β > 0 and α + 4β = 1.
The reason for the inconsistency is that the initial hub vector assigns the first
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component four times as much weight as the second component. In contrast, the
authority vector assigns the second component four times as much weight as the first.

For both HITS and SALSA, there are some graphs that give rise to repeated
eigenvalues. The output of all these graphs is sensitive to the initial vector chosen.
A second problem, inappropriate zero weights, can arise in HITS regardless of the
output’s dependence on or independence of the initial vector.
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Fig. 4.3. A tree with simple largest eigenvalue for ATA.

Consider the graph in Figure 4.3. If we remove vertex 5 from the graph, obtaining
the two-level binary tree, then the characteristic polynomial of ATA is (λ− 2)3λ4 and
so ATA has a repeated dominant eigenvalue leading to nonunique behavior. However,
the inclusion of vertex 5 creates a significantly different situation. Now ATA has a
simple dominant eigenvalue 3 and repeated eigenvalues of 2 and 0.

In this case, as long as the initial seed vector is positive, the output of HITS is

�a = [0, 1, 0, 0, 0, 0, 0, 0]T ,(4.2)

�h = [0, 0, 0, 1/
√

3, 1/
√

3, 1/
√

3, 0, 0]T .(4.3)

This means that node 2 gets authority weight 1, while all other nodes get authority
weight 0. The majority of the graph is deemed to be completely unimportant. How-
ever, we would expect that node 1 should be a better authority than any other node,
because it is accessible from every node. Meanwhile, node 3 should be only slightly
less important than node 2, since there is only one more node pointing to node 2.

For the same graph (Figure 4.3), SALSA once more has repeated eigenvalues and
nonunique rankings. In this case, if we use the uniform initialization, we again have
inconsistent results: �a �= WT

c
�h. In most cases where the SALSA algorithm has re-

peated eigenvalues, the uniform initialization will result in this inconsistency between
the authority and hub vectors. The following definition introduces terminology to
describe these behaviors.

Definition 4.1. We say that a ranking algorithm is badly behaved on a graph
G if the final result depends on the initial seed vector and/or if some node is given
authority (hub) weight zero even though it has indegree (outdegree) greater than zero.

4.2. Characterization of badly behaved graphs. Theorem 4.2 in this sec-
tion gives a linear algebra interpretation of what it means for the HITS and SALSA
algorithms to be badly behaved on a graph. We also characterize (Theorems 4.4
and 4.5) the graphs for which the HITS and SALSA algorithms are badly behaved.

Theorem 4.2. Let A be the adjacency matrix of a graph G. The HITS algorithm
is badly behaved if and only if at least one of the following holds:

1. AAT has a repeated largest eigenvalue;
2. the dominant eigenvector of AAT (and hence also ATA) has zero entries for

nodes whose outdegree (indegree) is nonzero.
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Proof. Assume that condition 1 of Theorem 4.2 holds; that is, AAT has a repeated
dominant eigenvalue.

Let the seed vector given to the HITS algorithm be �h0. Each iteration preserves
the direction while changing the magnitude of the component in each eigenspace.
Once the nondominant eigenvectors are effectively scaled to zero, the final result
is the (normalized) component of �h0 in the eigenspace of the dominant eigenvalue.
Since the eigenvalue is repeated, there are many possibilities for this component.
Conversely, if there are multiple possible outcomes depending on the seed vector,
then the component in the eigenspace of the dominant eigenvalue is not unique, and
so the eigenspace is multidimensional.

Now assume that condition 2 of Theorem 4.2 holds; that is, the dominant eigen-
vector has a 0 in entry i, corresponding to a node i with positive outdegree. As the
iterates converge to the dominant eigenvector, the hub weight of node i converges
to 0.

Conversely, if the hub weight of node i converges to 0, then the corresponding
entry from the dominant eigenvector must be 0.

In fact, if the dominant eigenvalue is repeated, the eigenspace is spanned by
several nonnegative eigenvectors that satisfy condition 2.

Next we characterize the set of graphs on which the HITS algorithm is badly
behaved, and describe some results about its behavior on these graphs.

Definition 4.3. Given a directed graph G on the vertex set 1, . . . , n, we define
the HITS authority graph G′ as follows. The vertex set of G′ consists of those vertices
of G with positive indegree. We define the (undirected) edge set of G′ by letting
{i, j} ∈ E(G′) if there exists a k ∈ G such that (k, i) and (k, j) are directed edges of
G.

This graph G′ was first described in [20]. Shortly thereafter, it was independently
described in [2] in the context of stability (see section 5.1).

We give some intuition for why the HITS authority graph G′ is important for
understanding the behavior of the HITS algorithm on G. Under the HITS algorithm,
the authority weight of i has an impact on the hub weight of k because (k, i) is an
edge of G. Similarly, the hub weight of k affects the authority weight of j. Thus,
the edge {i, j} represents a relation in two iterations of the algorithm between the
authority weights of nodes i and j.

If we start the HITS algorithm with node i having authority weight 1 and all
other nodes having authority weight 0, then after two iterations, all nodes joined to
i in G′ will have nonzero weight. After four iterations, all nodes that can be reached
in at most two steps in G′ will have nonzero weight. Continuing, all nodes that are
in the same component as i will get nonzero weight, but the weight will not leak into
any other components.

If we allow repeated edges {i, j} in G′ whenever there are multiple nodes pointing
to i and j in G, and if we allow a loop at i in G′ for each k pointing to i in G, then
the adjacency matrix of G′ is ATA (up to deletion of zero rows and columns in ATA).
Using appropriate matrix permutations, this matrix can be made block diagonal with
each block corresponding to a different component of G′. Therefore, the eigenvectors
(and eigenvalues) of ATA can be partitioned into disjoint subsets corresponding to the
connected components of the HITS authority graph G′. (Note that allowing repeated
edges and loops does not change the connectivity of G′.) This leads to our theorem
characterizing the cases where HITS is badly behaved.

Theorem 4.4. The HITS algorithm is badly behaved on a graph G if and only if
the HITS authority graph G′ is disconnected.
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Proof. The “only if” direction of the proof follows from Theorem 3.5 along with
Lemma 3.7. If HITS is badly behaved, then the matrix C̃ defined below must be
reducible, and therefore G′ is disconnected.

Assume that there are t nodes with positive indegree. Defining C = ATA and
labeling the nodes so that those with 0 indegree have the highest index, we can rewrite
C as

C =

(
C̃ 0
0 0

)
,(4.4)

where C̃ is t× t. We are interested in the dominant eigenvalue and eigenvector of C̃.
If the dominant eigenvalue is not simple, or the eigenvector has zero entries for

nodes with nonzero indegree, then C̃ must be reducible. However, as noted in the
proof of Theorem 3.11 above, C̃ is reducible if and only if G′ is disconnected.

To prove the “if” direction, it suffices to show that for each component there is a
nonnegative eigenvector that is positive exactly on that component. Since the matrix
is symmetric, all eigenvectors of different eigenvalues are orthogonal. If there exists a
unique dominant eigenvector, it is nonnegative, and thus it cannot be orthogonal to
all of these. In fact, it must be one of these. Using this and Theorem 4.2, it follows
that the HITS algorithm is badly behaved.

(Another way to see this is, for G′ with more than one connected component,
to relabel the vertices of G′ with the vertices of the first component first, then those
of the second component, and so on. The matrix C̃ becomes block diagonal. Each
eigenvector of C̃ arises as an eigenvector of one of the blocks, padded with zeroes
“outside that block.” Thus any unique dominant eigenvector �v of C̃ is of this special
form. But then �v has zero entries everywhere “outside that block,” and in particular in
those positions corresponding to vertices in other components of G′. But these vertices
have positive indegree in G. Thus the HITS algorithm on G is badly behaved.)

There is a strong connection between the HITS authority graph G′ and the SALSA
bipartite graph H. In particular, each edge of G′ corresponds to a “vee” in H. More
specifically, if there is an edge {i, j} in G′, then there exists a node k that links to
both i and j. This means that on the graph H there is a hub node corresponding to
k that has an edge to both i and j. It follows immediately that G′ is disconnected if
and only if H is disconnected. This proves the following.

Theorem 4.5. The SALSA algorithm is badly behaved on a graph G if and only
if the HITS authority graph G′ is disconnected.

This theorem can also be proven easily from the results of section 6.1 of [17]. It
is not mentioned in [17] that multiple components can lead to inconsistent hub and
authority rankings.

We do not know how likely it is in practice for the HITS authority graph G′

corresponding to a particular query to be disconnected.

4.3. Modification to the SALSA initialization. The results of this section
show that the inconsistency encountered with SALSA is due to the SALSA graph
being disconnected. In particular, when we uniformly initialize the authority and hub
vectors, the total authority weight given to a component may differ from the total
hub weight given to that component. In all such cases, the final authority vector will
be inconsistent with the hub vector.

This suggests the following modified initialization. To each component Ci we as-
sign a component weight equal to |Ci|/|H|, the proportion of the nodes in the SALSA
graph H which are in Ci. Note that |Ci| counts nodes in both the authority and the
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hub subsets, Va and Vh, of H. When we initialize the authority weights in component
Ci, we ensure that their sum equals the component weight, and similarly we initialize
the hub weights. Then the final hub and authority weights will be consistent.

Although this correction will ensure that the weightings given are consistent, it
does not guarantee that the weightings are meaningful in terms of the application. If
some components are a priori more important than others because of extra informa-
tion, then that should be considered when assigning the component weights.

When applied to Figure 4.1, this initialization results in �a = [1/2, 1/8, 1/8, 1/8,

1/8, 0]T and �h = [0, 1/8, 1/8, 1/8, 1/8, 1/2]T . This contrasts with the results of the
standard initialization, which were that all of the nonzero weights were 1/5.

5. Related issues. In this section, we discuss the stability of HITS to changes
in the network structure; two scenarios involving closely clustered top eigenvalues;
and a different modification, Usage Weighted Input to HITS, of the adjacency matrix.

5.1. Stability. Recent work in [21, 22] studied the stability of HITS and other
algorithms under small changes in the network structure. We can view the network
perturbation as a continuous change in the adjacency matrix. An added link can be
given weight t and a deleted link can be given weight 1− t as t goes from 0 to 1. Thus
we move from an original network to the modified network by a continuous process.

If the first two eigenvectors switch, this corresponds to their associated eigenvalues
switching order. In order for this to happen, the eigenvalues must be equal at some
value t0. Consider the network structure at that value. The only restriction on the
value of the link weights in our proof of Theorem 4.4 was that they be positive. This
theorem gives a necessary condition for the dominant eigenvalue to be repeated.

The authors of [21, 22] found examples of real networks on which small changes
in the link structure appeared to cause the sort of switch in eigenvalues described
above. This suggests that the HITS authority graph G′ may have been disconnected
to have caused that effect, or nearly so to have caused a similar effect.

More generally, small changes to a matrix tend to result in large changes to
eigenvectors only when eigenvalues are close. We would expect the leading eigenvalues
to be close together when G′ is less tightly connected. This implies a close relationship
between the connectivity of G′ and the stability of HITS.

Similar results are obtained in [2]. The authors of [2] also describe the HITS
authority graph, and focus their attention on cases where it is connected (their
“authority-connected graphs”).

5.2. Arbitrarily close eigenvalues. Although we have shown that for Expo-
nentiated Input to HITS the largest eigenvalue of (eA − I)T (eA − I) is not repeated,
a potential problem arises when the second largest eigenvalue is very close to the
largest. The number of iterations needed for convergence increases without bound
as the eigenvalues get close to one another. The following examples illustrate two
scenarios where this problem appears to occur.

Example 5.1. We begin by describing a family of graphs where numerical ex-
periments suggest that the dominant and second eigenvalues can be made arbitrarily
close. These graphs are of the “broom” form shown in Figure 5.1. The graph has
a root vertex from which two identical branches begin. Each branch consists of m
consecutive nodes of outdegree 1; we call l = m − 1 the handle length of the graph.
The last node in this sequence has outdegree b, producing a “brush” at the end of
each branch. We call b the brush width of the graph.
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Fig. 5.1. Broom tree with brush width b = 2 and large handle length l.

The ratio between the second largest eigenvalue and the dominant eigenvalue of
(eA−I)T (eA−I) is called the eigenvalue ratio of the graph. Using a program written
in MATLAB [14] we fixed the brush width and let the handle length increase from
l = 5 to l = 50. For each value of l we computed the corresponding eigenvalue ratio.
When the brush width is held at b = 1 we obtain a family of brooms for which the
eigenvalue ratio increases monotonically from 0.7796 at l = 5 to 0.9277 at l = 50.
Fixing the brush width at b = 2 and letting l increase produces a dramatically faster
convergence of the gap ratio from 0.9524 at l = 5 to 1.000 at l = 50 (all calculations
rounded to 4 significant digits). Figure 5.2 shows the graph of handle length versus
eigenvalue ratio for b = 1, 2, 3.
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Fig. 5.2. Ratio between second and dominant eigenvalues appears to approach one as l → ∞.

One can consider many different modifications to the adjacency matrix A input
to HITS, beyond our Exponentiated Input eA − I. In the example above we fixed the
modification of A, and varied the graph, in order to get an eigenvalue ratio close to
one. We now give an example showing that we can vary the modification of A for a
fixed graph and thus obtain an eigenvalue ratio close to one.

Example 5.2. Consider the two-level binary tree (delete vertex 5 from the graph
shown in section 4.1, Figure 4.3). Here the standard HITS algorithm is badly behaved
because the graph has a repeated dominant eigenvalue. Consider a modification of A
where paths of length 2 are counted with value ε. Let Ã = A + εA2. With this Ã,
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we can prove that the dominant eigenvalue will be simple for any weakly connected
graph. Then the input to the HITS algorithm corresponds to finding eigenvectors of

ÃTÃ =

⎡⎢⎢⎢⎢⎢⎣
2 + 4ε2 2ε 2ε · · · 0

2ε 2 0
2ε 0 2
...

. . .

0 0

⎤⎥⎥⎥⎥⎥⎦ ,(5.1)

where all omitted entries are 0. As ε → 0, Gershgorin’s disk theorem [12, p. 344]

shows that the three largest eigenvalues of ÃTÃ become arbitrarily close.
To sum up, the examples in this subsection indicate that the top few eigenvalues,

either of (eA − I)T (eA − I) or of ÃTÃ, may be very close to each other, even if they
are not equal in modulus.

5.3. Usage Weighted Input to HITS. A different type of modification to the
adjacency matrix is possible when web server logs are available for a given network.
In [20], we proposed Usage Weighted Input to HITS, in which we initialize the matrix
to zero, and then increment the (i, j)-entry every time a user travels from node i
to node j. (The resulting input matrix need not mirror the network, since users
may ignore some hyperlinks and may navigate directly between pages that are not
hyperlinked.) In each iteration the most frequently followed links play the largest
role in determining new authority weights. The effect is similar to that of lifting by
gradient ascent [7] but does not require direct querying of users. Similar approaches
have recently been advocated by [26], [27].

6. Related work. Kleinberg’s HITS algorithm is presented in [15] and discussed
in more detail in [9]. Several authors have extended the HITS algorithm using tex-
tual analysis. In their paper [1] on topic distillation in hyperlinked environments,
Bharat and Henzinger combine the connectivity analysis of the HITS algorithm with
content analysis. They identify three limitations of the HITS algorithm: (i) mutually
reinforcing relationships between hosts; (ii) automatically generated links that do not
reflect a human assessment of the value of pages; and (iii) nonrelevant documents
leading to topic drift. They propose modifications to the HITS algorithm, using con-
tent analysis, that address these limitations. For instance, they address the common
problem of topic drift by introducing the relevance weight of a node, which measures
the similarity of the node to a query document. Relevance weights are then used
to prune nonrelevant nodes and to regulate the influence of a node according to its
relevance, specifically by multiplying the vectors of hub and authority weights com-
ponentwise by the vector of relevance weights. Both the limitations and the solutions
are different from those considered in the present paper; in particular we do not use
content analysis.

The ARC or automatic resource compiler system [5], for compiling a list of au-
thoritative web documents on a given topic, also augments the HITS algorithm with
content analysis. Specifically, the ARC system multiplies the weight assigned to an
href link to a given node by a positive factor that increases with the amount of topic-
related text occurring around the href link. These ideas are developed further in the
paper [4] on spectral filtering. Here nodes may be web pages or even smaller units,
allowing a finer analysis of the link topology and in particular inhibiting topic drift.
In [4], the HITS algorithm is also modified to address several other idiosyncratic fea-
tures of the web. The adjacency matrix is replaced by an affinity matrix in which
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the entry aij represents the strength of the affinity between nodes i and j. The value
of aij is a sum of three components, one of which quantifies the occurrence of query
terms in text near the hyperlink to node j.

The paper [7] on customized authority lists modifies the HITS algorithm by lifting
of authority weights. The idea is to incorporate user feedback to adjust the authority
weights to reflect an individual user’s evaluation of authoritativeness.

Borodin et al. [2] discuss other related theoretical aspects of authority and hub
algorithms including both HITS and SALSA. They provide two mechanisms for deter-
mining when different algorithms provide similar rankings and then use this framework
to compare several ranking algorithms. The stability of ranking algorithms to graph
modifications is also discussed in detail. These ideas are similar in spirit to those
in [21, 22].

Our work differs from [4, 5] in that we do not use textual analysis and from [7]
in that we do not require direct querying of users. Our Exponentiated Input work
differs from the other work discussed here in that the adjacency matrix is modified to
take into account paths of length greater than one. Our work differs from [2, 21, 22]
in that we are not concerned with the stability of the result to changes in the network
structure. We are interested in networks for which the results of the ranking algorithm
are sensitive to changes in the initialization.

The use of links in ranking documents and finding authoritative sources is similar
to the techniques of citation analysis in bibliometrics. See also [4, 7] for fuller surveys
of the literature.

7. Conclusions and further work. We have given a unified treatment of the
existence and uniqueness of ranking vectors generated by four link analysis algorithms,
and of convergence of the algorithms. We have shown that the HITS and SALSA
algorithms behave unexpectedly on some graphs. In particular, their output can
depend on the initial seed vector; the output of HITS can depend on whether the
implementation uses the initial authority vector or the initial hub vector; HITS can
inappropriately assign zero weights to parts of a graph; and the authority and hub
vectors produced by SALSA can be inconsistent. The PageRank algorithm does not
display this behavior; nor does Exponentiated Input to HITS if the graph is weakly
connected.

It is important to understand when this unexpected behavior occurs. We have
characterized the graphs for which HITS and SALSA are badly behaved; for this
we presented a general method that extends ideas in [2, 17]. This method can be
easily applied to other algorithms and can help motivate modifications that eliminate
the bad behavior. In this light, we have introduced a new modification of the HITS
algorithm, namely Exponentiated Input to HITS, which eliminates bad behavior as
long as the network is weakly connected. We have also proposed a change to the
initialization of SALSA which eliminates inconsistency in hub and authority weights.

The idea of Exponentiated Input can be extended to SALSA by changing the
input matrix A with similar results. The following natural extension leads to a similar
algorithm. Consider a web surfer surfing for n time steps. At each step, she either
remains where she is, with probability (n−1)/n, or she follows a link at random, with
probability 1/n. After n time steps the expected number of links followed is 1. The
surfer then follows links backward in a similar manner for n time steps. Taking the

limit as n → ∞, the algorithm reduces to finding the dominant eigenvector of eWreW
T
c .

The choice of scaling factors (for paths of each length) used in constructing the
Exponentiated Input matrix would be interesting to study. This is especially true
because calculating powers of a large matrix is computationally expensive. At present
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we have no principled way to decide which scaling factors are most appropriate for a
given application.

While the results of this paper are concerned with existence and uniqueness and
with the dependence of rankings on initialization, we have discussed how the methods
applied here may relate to other important ideas of link analysis. In particular, the
HITS authority graph G′ can be used to explore both stability and community issues
addressed in other works.
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