
F. Crestani, M. Girolami, and C.J. van Rijsbergen (Eds.): ECIR 2002, LNCS 2291, pp. 73-85, 2002.
© Springer-Verlag Berlin Heidelberg 2002

An Improved Computation of the PageRank Algorithm1

Sung Jin Kim and Sang Ho Lee

School of Computing, Soongsil University, Korea
1ace@nowuri.net, shlee@computing.ssu.ac.kr

http://orion.soongsil.ac.kr/

Abstract. The Google search site (http://www.google.com) exploits the link
structure of the Web to measure the relative importance of Web pages. The
ranking method implemented in Google is called PageRank [3]. The sum of all
PageRank values should be one. However, we notice that the sum becomes less
than one in some cases. We present an improved PageRank algorithm that
computes the PageRank values of the Web pages correctly. Our algorithm
works out well in any situations, and the sum of all PageRank values is always
maintained to be one. We also present implementation issues of the improved
algorithm. Experimental evaluation is carried out and the results are also
discussed.

1. Introduction

Web information retrieval tools typically make use of the text on the Web pages as
well as the links of the Web pages that contain valuable information implicitly. The
link structure of the Web represents a considerable amount of latent human
annotation, and thus offers a starting point for structural studies of the Web. Recent
work in the Web search area has recognized that the hyperlink structure of the Web is
very valuable for locating information [1, 2, 3, 4, 5, 9, 13, 14, 15].

The Google search site (http://www.google.com), which emerged in 1998, exploits
the link structure of the Web to measure the relative importance of Web pages. The
ranking method implemented in Google is called PageRank [3]. PageRank is an
objective measure of citation importance that corresponds with people’s subjective
idea of importance. Pages that are well cited from many places are worth looking at.
PageRank postulates that a link from page u to v implies the author of u recommends
to take a look at page v. A page has a high PageRank value if there are many pages
that point to it, or if there are pages that point to it and have a high PageRank value.
It is known that PageRank helps to rank pages effectively in the Google site.

The PageRank algorithm and implementation details are described in [7, 12]. The
PageRank algorithm represents the structure of the Web as a matrix, and PageRank
values as a vector. The PageRank vector is derived by computing matrix-vector
multiplications repeatedly. The sum of all PageRank values should be one during the
computation. However, we learned that the sum becomes less than one as the
computation process continues in some cases. In those cases, all PageRank values
become smaller than they should be.

1 This work was supported by grant No. (R-01-2000-00403) from the Korea Science and

Engineering Foundation.

74 S.J. Kim and S.H. Lee

In this paper, we present an improved PageRank algorithm that computes the
PageRank values of the Web pages correctly. Our algorithm works out well in any
situations, and the sum of all PageRank values is always maintained to be one. We
also present implementation issues of the improved algorithm. Experimental
evaluation is carried out and the results are also discussed.

This paper is organized as follows. The PageRank algorithm is presented in section
2. Section 3 identifies drawbacks of the original PageRank algorithm [7] and presents
an improved PageRank algorithm. In section 4, we discuss experimental evaluation
of algorithms and its results. Section 5 contains closing remarks.

2. PageRank Computation

Let v be a Web page, Fv be the set of pages v points to, and Bv be the set of pages that
point to v. Let Nv = |Fv| be the number of links from v. The PageRank (PR) equation
[12] for v is recursively defined as:

∑
∈

=
Bvu uN

uPR
vPR

)(
)(. (1)

The pages and hyperlinks of the Web can be viewed as nodes and edges in a
directed graph [10]. Let M be a square matrix with the rows and columns
corresponding to the directed graph G of the Web, assuming all nodes in G have at
least one outgoing edge. If there is a link from page j to page i, then the matrix entry
mij has a value 1/Nj. The values of all other entries are zero. PageRank values of all
pages are represented as an N × 1 matrix (a vector), Rank. The ith entry, rank(i), in
Rank represents the PageRank value of page i.

�

� �

� �

� ���� � �

� �� ��� �

� ���� ��� ���

� ���� � ���

� �� � �

� ���� � �

�

�

�

�

�

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

0 5DQN 5DQN

Fig. 1. A small Web, its matrix, and its PageRank values

Fig. 1 shows a simple example of M and Rank. The rectangular shape like a
document denotes a page. A page identifier appears above each page. The small
rectangle represents a URL in a page. The directed line denotes a link from one page
to another. For an instance, page 5 has two outgoing edges to page 3 and 4 (N5 = 2),
m35 and m45 of M are (1/2), and m15, m25, and m55 are 0. Page 5 is pointed by page 2 and
3, so its PageRank value is determined by PageRank values of page 2 and 3. Since
page 2 and 3 have four links and one link respectively, the PageRank of page 5,
rank(5), is the sum of a fourth of rank(2) and rank(3). Such computation corresponds
to the matrix-vector multiplication.

An Improved Computation of the PageRank Algorithm 75

Computation of the equation (1) can be represented by the following matrix
calculation: Rank = M × Rank. The vector, Rank, is the principle eigenvector of the
matrix M. Rank can be computed by applying M to an initial Rank matrix [1 / N]N×1

repeatedly, where [1 / N]N×1 is an N × 1 matrix in which all entries are (1/N) [7, 12].
Let Ranki be the ith intermediate Rank, Rank1 be the initial Rank, and Ranki+1 be M ×
Ranki (i.e., Ranki+1 = M × Ranki). Ranki is converged to a fixed point as i increases.
The converged Ranki (i.e., Rank) contains PageRank values of all pages.

A vector in which all entries are zero is a zero vector. A page with no outgoing
edge is a dangling page. If page j is a dangling page, then the jth column of M is called
a dangling column. A dangling column of M is represented as a zero vector. An L1

norm (simply norm) represents the sum of all entries in a vector. A matrix M is
irreducible if and only if a directed graph is strongly connected. All columns in an
irreducible M have norms of value one.

Consider two Web pages that point to each other but to no other pages (i.e., a
loop). Suppose there are some Web pages that point to one of them. Then, during the
matrix-vector multiplication process, the loop accumulates PageRank values but
never distributes any PageRank values (since there are no outgoing edges) [12]. The
loop forms a sort of trap, which is called RankSink. Consequently, pages in the loop
are likely to have higher PageRank values than they should be.

To overcome the RankSink problem, they [7, 12] introduce another matrix M’,
where transition edges of probability (d/N) between every pair of nodes in G are
added to M. Let N be the number of total pages and [1 / N]N×N be an N × N square
matrix in which all entries are (1/N). The equation (2) shows a new matrix M’.

NN
N

dMdM ×+−=]
1

[)1(’ . (2)

The constant d is called a dampening factor, and it is less than one. With Fig. 1,
M’ is constructed as below:

���G�������G���1� ���G�������G���1����G���������G���1� ���G�������G���1� ���G�������G���1�

���G�������G���1� ���G�������G���1����G�������G���1� ���G���������G���1� ���G�������G���1�

���G�������G���1� ���G�������G���1����G���������G���1� ���G���������G���1� ���G���������G���1�

���G�������G���1� ���G�������G���1����G���������G���1� ���G�������G���1� ���G���������G���1�

� �� � �

���G�������G���1� ���G�������G���1����G���������G���1� ���G�������G���1� ���G�������G���1�

�

�

�

�

�

The definition of M’ has an intuitive basis in random walks on graphs. The
“random surfer” keeps clicking on successive links at random, but the surfer
periodically “gets bored” and jumps to a random page. The probability that the surfer
gets bored is a dampening factor.

Even though the matrix M’ is not sparse, there is no need to store it explicitly.
When the equation of M’ × Rank is computed, M’ is replaced with the right side of the
equation (2). The replacement and matrix transformation produce an equation (3).
Equation (3) is used to compute PageRank values of all pages.

1]
1

[)1(’ ×+×−=× N
N

dRankMdRankM . (3)

76 S.J. Kim and S.H. Lee

3. Improved PageRank Computation

We note that there is a drawback of the original PageRank algorithm. Consider the
Web structure in Fig. 2. Because there is no outgoing edge in page 1, it becomes a
dangling page.

�

� �

� �

Fig. 2. A small Web with a dangling page

With Fig. 2, M’ is represented as:

���G�������G���1� ���G�������G���1����G���������G���1� ���G�������G���1� ���G�������G���1�

���G�������G���1� ���G�������G���1����G�������G���1� ���G���������G���1� ���G�������G���1�

���G�������G���1� ���G�������G���1����G���������G���1� ���G���������G���1� ���G���������G���1�

���G�������G���1� ���G�������G���1����G���������G���1� ���G�������G���1� ���G���������G���1�

� �� � �

���G�������G���1� ���G�������G���1����G���������G���1� ���G�������G���1� ���G�������G���1�

�

�

�

�

�

Let Ranki be (α, β, γ, δ, ε)T, T stands for transposition. Then Ranki+1 and its norm
are represented as follows:

Note that the norm of the first column vector of M’ (i.e., m11 + m21 + m31 + m41 + m51)
is not one, but d, and that all other columns of M’ have the norm with one. The norm
of Ranki+1 is (d*α + β + γ + δ + ε). Because d is less than one, the norm of Ranki+1 is

An Improved Computation of the PageRank Algorithm 77

less than the norm of Ranki by (1-d)*α. This is contrary to the property that the norm
of Rank should be maintained to be one during the entire computation process.
During the iteration of matrix-vector multiplication, Ranki loses a part of its norm
continuously. We call this phenomenon norm-leak. This phenomenon takes place
when there are dangling pages.

The norm-leak phenomenon has critical implications in terms of computation:
First, PageRank values are likely to be smaller than they should be, and might become
all zero in the worst case. Second, the iteration process might not converge to a fixed
point, because the norms of Ranki and Ranki+1 are not the same.

In order to put an emphasis on the original link structure of the Web (ignoring the
virtual links at the same time) in the computation of PageRank values, we need to use
a small value of the dampening factor and use a large number of iterations.
Interestingly enough, the problems caused by the phenomenon become evident when
we use a small value of the dampening factor and a large number of iterations.
Consequently, the norm-leak problem does not allow us to consider the original link
structure significantly in the computation.

In the original Google computation [7, 12], all dangling pages are simply removed
from the system, and then the PageRank values are calculated for the remaining Web
pages. After that, dangling pages are added back in a heuristic way. This paper
presents a simple but elegant technique to solve the norm-leak phenomenon in a
detailed level.

3.1 A New Matrix, M*

Before introducing a new computation technique, we need to define a matrix M+. The
matrix M+ is the same as M, except that a dangling column of M is replaced by [1 /
N]N×1. Let D be a set of dangling pages. Let <1 / N>N×N,p be an N × N matrix in
which entry mij is (1/N) if j is equal to p and mij is zero otherwise. The pth column of
<1 / N>N×N,p is exactly [1 / N]N×1. Then M+ can be expressed as follows:

∑
∈

+
×><+=

Dp

pNN
N

MM ,
1 . (4)

When a node i has outgoing edges to each of all nodes including itself, then node i
is said to have a complete set of edges. The matrix M+ implies that each dangling page
has a complete set of edges, and that a dampening factor is not used. Given Fig. 2 (N
= 5), M+ is expressed as:

��1 ���� � �

��1 �� ��� �

��1 ���� ��� ���

��1 ���� � ���

� �� � �

��1 ���� � �

�

�

�

�

�

78 S.J. Kim and S.H. Lee

Now we are ready to propose a synthesized matrix M*:

NN
N

dMdM ×+−= +]
1

[)1(* . (5)

Since M* is based on M’ and M+, the matrix M* can be viewed in two aspects: a
dampening factor is applied to M+, and complete sets of edges are applied to M’. A
dangling column of M* is represented as [1 / N]N×1, no matter what a dampening factor
d is. Note that ����������	��
������
����	�M* is always one. Consequently, it is
guaranteed that M* is irreducible. Given Fig. 2, the matrix M* is described as:

���G����1����G���1� ���G�������G���1����G���������G���1� ���G�������G���1� ���G�������G���1�

���G����1����G���1� ���G�������G���1����G�������G���1� ���G���������G���1� ���G�������G���1�

���G����1����G���1� ���G�������G���1����G���������G���1� ���G���������G���1� ���G���������G���1�

���G����1����G���1� ���G�������G���1����G���������G���1� ���G�������G���1� ���G���������G���1�

� �� � �

���G����1����G���1� ���G�������G���1����G���������G���1� ���G�������G���1� ���G�������G���1�

�

�

�

�

�

Both M’ and M* imply that each page in G has its own links and a complete set of
edges. When a page in both M’ and M* is non-dangling, it distributes d of its
importance to all pages, and (1-d) of its importance to pages along with original links.
However, a dangling page in M* evenly distributes all of its importance to all pages,
while a dangling page in M’ distributes (1-d) of importance to all pages.

Now, consider the difference of M’ and M* in terms of random surfer model. When
a random surfer reaches a dangling page, the surfer in M* jumps to a page with (1/N)
probability (note that it is independent of a dampening factor), while the surfer in M’
jumps to a page with (d/N) probability.

3.2 Computational Efficiency

The improved computation for PageRank uses a matrix M*, which is not sparse. A
non-sparse matrix generally requires a large amount of spatial and computational
overhead. We describe an efficient computation of M* × Rank, which does require a
little overhead.

In our algorithm, a leaked value of a dangling page should be distributed to all
pages additionally. If we distributed the value whenever we found a dangling page, it
would not be an efficient approach to compute PageRank values. Instead, we
compute the sum of all leaked values from all dangling pages and distribute them to
all pages at once. An expression that corresponds to the accumulation and
distribution of leaked values needs to be added to equation (3). Equation (6) shows
the final equation. On computation of (1-d) M × Rank, we accumulate all (1-d)
rank(p) (leaked values). After the computation of (1-d) M × Rank, the sum is
redistributed to all pages.

An Improved Computation of the PageRank Algorithm 79

11]
1

[)(]
1

[)1()1(*
×× +×−+×−=× ∑

∈

NN
N

dprank
N

dRankMdRankM
Dp

 . (6)

There is one matrix-vector multiplication in the equation (6). Because the matrix
M is generally sparse, only non-zero entries in the matrix can be stored and used to
compute the matrix-vector multiplication. The matrix M should be stored in a disk,
because of its huge size. Given Fig. 2, a data structure for M, referred to as Links (see
Fig. 3 [7]), is stored on disk. Links is scanned only once for the matrix-vector
multiplication.

Source Node Out Degree Destination Nodes

2 4 1, 3, 4, 5

3 1 5

4 2 2, 3

5 2 3, 4

Fig. 3. Data structure of Links

Information of dangling pages has to be stored in Links in our computation. The
value of Destination Nodes of a dangling page is null, representing all pages. This
additional information doesn’t affect the matrix-vector multiplication. Given Fig. 2,
Fig. 4 shows Links for our algorithm.

Source Node Out Degree Destination Nodes

1 5 Null

2 4 1, 3, 4, 5

3 1 5

4 2 2, 3

5 2 3, 4

Fig. 4. Links for the improved PageRank algorithm

Now consider the size of the additional space for dangling pages. For each
dangling page, we need to know Source Node, Out Degree, and Destination Nodes.
Source Node is a sequential number, which does not need to be stored explicitly. The
value of Destination Nodes is null, which is of length zero. The pure space overhead
for n dangling pages is ‘n * the length of Out Degree’, which is (4*n) presuming an
integer value is represented by 4 bytes.

80 S.J. Kim and S.H. Lee

4. Evaluations

In order to show that the improved PageRank algorithm can solve the norm-leak and
the RankSink problem, we implemented and evaluated the improved PageRank
algorithm and the original one. We performed two experiments; one with real Web
pages and one with a small set of artificial Web pages. The hardware we used was
PentiumII-350 with 192MB main memory, running the Accel Linux Version 6.1
operating system.

4.1 An Experiment Using the Real Web

We applied the both algorithms to over 10 million Web pages that had been collected
from most of Korean sites. It is simply not feasible to show all PageRank values of
the pages. In order to show the distribution of values of PageRank among the pages,
we did as follows. We grouped the pages into 1000 groups randomly. With over 10
million, a single group contained approximately over 10,000 pages. The PageRank
values of the pages that belonged to the same group were accumulated into a variable.
There were 1000 groups, each of which has the accumulated PageRank value. We
plotted all the 1000 accumulated PageRank values graphically, as shown in Fig. 5 and
6. The maximum number of iterations and the dampening factor for computation
were set as 30 and 0.15, respectively.

Fig. 5 shows the distribution of the accumulated PageRank values that were
derived using the original algorithm. Since there were 1000 groups and most of the
accumulated PageRank values were smaller than 0.001, we can inference that the sum
of all values might be less than one. The sum of all the PageRank values was indeed
0.52 in our experiment. It shows that the norm-leak phenomenon occurs in the
original algorithm.

Fig. 5. Accumulated PageRank values by the original algorithm

An Improved Computation of the PageRank Algorithm 81

Fig. 6 shows the distribution of PageRank values that were derived using the
proposed algorithm. Note that most of the accumulated PageRank values were
plotted around 0.001. The sum of all PageRank values was indeed exactly one in our
experiment, as it should be. The norm-leak phenomenon didn’t take place in the
improved algorithm.

Fig. 6. Accumulated PageRank values by the improved PageRank algorithm

4.2 An Experiment Using Artificial Small Webs

Ten pages are used for our testing. These pages are appropriately linked each other to
simulate the RankSink problem and the norm-leak problem. Fig. 7 shows a basic
organization of the pages. Our experiments performed under four cases. The
maximum number of iteration for computation was set to 20. Three dampening
factors were considered.

�

�

�

�

�

�

�

�

�

��

Fig. 7. A basic structure of a ten page Web

82 S.J. Kim and S.H. Lee

(1) Case 1: No RankSink, No Dangling Pages
The basic organization in Fig. 7 is tested. The ten pages have no RankSink and no
dangling page. This case serves as a baseline of our testing. Fig. 8 shows the results
of the two algorithms. Two algorithms behaved identically in this case, as expected.
See the line with d = 0. Page 5 and 6 have the highest PageRank value and page 1
has the lowest one. The PageRank value of page 6 is the same as one of page 5,
because page 6 is linked by page 5 that has one outgoing edge only. The smaller a
dampening factor is, the bigger the difference between the highest PageRank and the
lowest PageRank is. The norm-leak phenomenon does not happen in this case,
because there is no dangling page. The norm of Rank is always one in the both
algorithms.

Page ID �B_BR �B_BRPSW �B_BRPW
S PRVW VRU RRR PRW[XVU WRR PRYZ XUX VRR

T PRVY STW RRR PRXS RY[SRR PRZR ZVT RRR

U PR[R ZYR YRR PSRW RVX RRR PSSV WVW RRR

V PSWU RVX RRR PSVX WYV RRR PSUT YYT RRR

W PSXS WUY RRR PSVW WRU RRR PSTS YTY RRR

X PSXS UZS RRR PSUZ XYT RRR PSSR ZXU RRR

Y PSTS [VR RRR PSTS [ZU RRR PSSS ZT[RRR

Z PRXV Y[Z XRR PRXW S[[VRR PRYW RVR ZRR

[PRZ[SRR RRR PR[S SVX SRR PR[Z YRU VRR

SR PRXV Y[Z XRR PRXW S[[VRR PRYW RVR ZRR

Norm S S S

Iterations TR TR TR
PRRR

PRTR

PRVR

PRXR

PRZR

PSRR

PSTR

PSVR

PSXR

PSZR

PTRR

S T U V W X Y Z [SR

�B_BR
�B_BRPSW
�B_BRPW

(a) (b)

Fig. 8. Case 1 result

(2) Case 2: No RankSink, One Dangling Page
Suppose that the link from page 10 to 9 is removed in Fig. 7, so that page 10 is a
dangling page. Ten pages have no RankSink, but have one dangling page. Case 2
shows that our algorithm can solve the norm-leak phenomenon, which the existing
PageRank algorithm cannot solve.

PRRR

PRTR

PRVR

PRXR

PRZR

PSRR

PSTR

PSVR

PSXR

PSZR

PTRR

S T U V W X Y Z [SR

�B_BR
�B_BRPSW
�B_BRPW

PRRR

PRTR

PRVR

PRXR

PRZR

PSRR

PSTR

PSVR

PSXR

PSZR

PTRR

S T U V W X Y Z [SR

�B_BR
�B_BRPSW
�B_BRPW

(a) (b)

Fig. 9. Case 2 results

Fig. 9(a) shows the result of the existing PageRank algorithm. Because page 10
confers a fraction (here d) of its importance to all pages, (1-d) of the importance is
lost at each iteration. The norm of Rank is always less than one. The smaller a
dampening factor value is, the smaller values of PageRank are. If the number of

An Improved Computation of the PageRank Algorithm 83

iteration were set to a much higher value, the PageRank values would be much
smaller.

Fig. 9(b) shows the result of the improved PageRank algorithm. Although page 10
is a dangling page, the norm of Ranki is always kept as one. The norm of Rank is one,
independent of a dampening factor and the number of iterations. It is interesting to
note that the distributions of PageRank values vary depending on dampening values.

(3) Case 3: No RankSink, Three Dangling Pages
Suppose that the links from pages 5, 8, and 10 are removed in 7. Pages 5, 8, and 10
become dangling. Ten pages have three dangling pages and no RankSink. Case 3
shows that our computation exhibits noticeable difference when there are many
dangling pages.

PRRR

PRTR

PRVR

PRXR

PRZR

PSRR

PSTR

PSVR

PSXR

PSZR

PTRR

S T U V W X Y Z [SR

�B_BR
�B_BRPSW
�B_BRPW

PRRR

PRTR

PRVR

PRXR

PRZR

PSRR

PSTR

PSVR

PSXR

PSZR

PTRR

S T U V W X Y Z [SR

�B_BR
�B_BRPSW
�B_BRPW

(a) (b)

Fig. 10. Case 3 results

Fig. 10(a) shows the result of the existing PageRank algorithm. Since the norm-
leak takes place at three dangling pages, PageRank values in Fig. 10(a) are much
smaller than those in Fig. 9(a). With many dangling pages, the norm of Rank leaks
severely. See the broken line with d = 0. The line cannot tell us importance of pages,
since all PageRank values are virtually zero. If we applied many extra iterations of
matrix-vector multiplication additionally, the PageRank values with d = 0.5 would
converge to zero.

Fig. 10(b) shows the result of the improved PageRank algorithm. Although there
are three dangling pages, the norm-leak phenomenon does not happen. Fig. 10 shows
that the effect of our algorithm becomes evident as the number of dangling pages
increases.

(4) Case 4: RankSink, No Dangling Page
Suppose that the links from pages 2, 3, and 7 to pages 4, 7, and 2 are removed in Fig.
7. Fig. 11 shows the resulting Web. Pages 1, 2, and 3 form a group 1, and the rest of
the pages form a group 2. Note that a link from page 9 to page 3, which is an only
link from a group 2 to a group 1, exists. Each of the ten pages has at least one
outgoing edge, so that there is no dangling page. Case 4 shows that the improved
PageRank algorithm handles the RankSink phenomenon, just as the PageRank
algorithm does.

The two algorithm works identically. Fig. 12 shows the result. In both algorithms,
the norm of Rank was always maintained as one. Pages in group 1 have relatively
high PageRank values, whereas pages in group 2 have low values. This is due to the

84 S.J. Kim and S.H. Lee

fact that pages of group 1 received most of the importance of pages in group 2. We
see that the improved PageRank can also solve the RankSink phenomenon by
choosing an appropriate d.

�

�

�

�

�

�

�

�

�

��

Fig. 11. A RankSink structure of a ten page Web

PRRR

PRWR

PSRR

PSWR

PTRR

PTWR

PURR

PUWR

S T U V W X Y Z [SR

�B_BR
�B_BRPSW
�B_BRPW

Fig. 12. Case 4 result

5. Conclusion

In the paper, we presented an improved PageRank algorithm that solves the norm leak
phenomenon. In the new PageRank algorithm, pages have the right PageRank values
and the iteration process always converges to a fixed point. We also described
efficient implementation issues of our algorithm. The implementation of our
algorithm does not require a large amount of spatial and computational overhead.
Recently, we learned that our approach had been very briefly mentioned in [7, 11].
However, the description of this paper about the problem is much more detailed than
those of [7, 11] are, and implementation issues were also discussed in this paper.

We applied our algorithm to over 10 million Web pages that had been collected
from most of Korean sites. The elapsed times of the both algorithms to compute
PageRank values were less than an hour in a medium-sized server machine. Our
algorithm only needs a few mega-byte disk spaces to store the information of
dangling pages additionally. It took less than minutes to read the additional space.

An Improved Computation of the PageRank Algorithm 85

We have learned that a number of pre-processing operations are recommended to
compute the PageRank values correctly. These operations may affect PageRank
values and computing time significantly. Examples of these pre-operations include
how to extract URLs in Web pages (in particular a URL associated with an image in a
script language), how to convert a relative URL to an absolute URL, how to map a
URL to a page identifier, and so on. The effectiveness of a Web crawler affects
PageRank values significantly, too. In order for the link graph to represent the real
Web exactly, a crawler should collect all Web pages. Crawling all Web pages is not a
simple job in our experience.

References

1. G. O. Arocena, A. O. Mendelzon, and G. A. Mihaila: Applications of a Web Query
Language, Proceedings of WWW6 (1997), 1305-1315

2. K. Bharat and M. Henzinger: Improved Algorithms for Topic Distillation in Hyperlinked
Environments, Proceedings of the 21st ACM SIGIR Conference (1998), 104-111

3. S. Brin and L. Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine,
Proceedings of WWW7 (1998), 107-117

4. J. Carriere and R. Kazman: Webquery: Searching and Visualizing the Web through
Connectivity, Proceedings of WWW6 (1997), 1257-1267

5. J. Dean and M. R. Henzinger: Finding Related Web Pages in the World Wide Web,
Proceedings of WWW8 (1999), 1467-1479

6. D. Gibson, J. Kleinberg, and P. Raghavan: Inferring Web Communities from Link
Topology, Proceedings of the 9th ACM Conference on Hypertext and Hypermedia (1998),
225-234

7. T. H. Haveliwala: Efficient Computation of PageRank, unpublished manuscript, Stanford
University (1999)

8. E.-J. Im and K. Yelick: Optimizing Sparse Matrix Vector Multiplication on SMPS,
Proceedings of the 9th SIAM Conference on Parallel Processing for Scientific Computing
(1999), 127-136

9. J. Kleinberg: Authoritative Sources in a Hyperlinked Environment, Proceedings of the 9th

ACM-SIAM Symposium on Discrete Algorithms (1998), 604-632
10. J. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins: The Web as a

Graph: Measurements, Models and Methods, Invited survey at the International
Conference on Combinatorics and Computing (1999), 1-17

11. A. Y. Ng, A. X. Zheng, and M. I. Jordan: Stable Algorithms for Link Analysis, Procee-
dings of the 24th ACM SIGIR Conference (2001), 258-266

12. L. Page, S. Brin, R. Motwani, and T. Winograd: The PageRank Citation Ranking:
Bringing Order to the Web, unpublished manuscript, Stanford University (1998)

13. J. Pitkow and P. Pirolli: Life, Death, and Lawfulness on the Electronic Frontier,
Proceedings of the Conference on Human Factors in Computing Systems (CHI 97) (1997),
383-390

14. P. Pirolli, J. Pitkow, and R. Rao: Silk from a Sow’s Ear: Extracting Usable Structures from
the Web, Proceedings of the Conference on Human Factors in Computing Systems (CHI
96) (1996), 118-125

15. E. Spertus: ParaSite: Mining Structural Information on the Web, Proceedings of WWW6
(1997), 1205-1215

16. S. Toledo: Improving the Memory-system Performance of Sparse-matrix Vector
Multiplication, IBM Journal of Research and Development, volume 41 (1997)

17. Google Search Engine: http://www.google.com

	1. Introduction
	2. PageRank Computation
	3. Improved PageRank Computation
	3.1 A New Matrix, M*
	3.2 Computational Efficiency

	4. Evaluations
	4.1 An Experiment Using the Real Web
	4.2 An Experiment Using Artificial Small Webs

	5. Conclusion
	References

