
Distributed Calculation of PageRank Using
Strongly Connected Components

Michael Brinkmeier

Institute for Technical and Theoretical Computer Science,
Technical University of Ilmenau, Germany

mbrinkme@tu-ilmenau.de

Abstract. We provide an approach to distribute the calculation of
PageRank, by splitting the graph into its strongly connected compo-
nents. As we prove, the global ranking may be calculated componentwise,
as long as the rankings of pages directly linking to the current compo-
nent are already known. Depending on the structure of the WWW, this
approach approach may be used to calculate the ranking on several com-
ponents in parallel, and allows to split the problem intio significantly
small subproblems.

1 Introduction

The World Wide Web is one of the most rapidly developing and perhaps the
largest source of information. Due to its de-central nature the access to the
relevant and needed information becomes increasingly difficult. Due to the pure
amount of content, more and more search engines, indexes and archives try
to harvest the information implicit in the link structure to improve speed and
quality of search. One of the tools in this field is the ranking of web pages
according to their relevance. PageRank, one of the most prominent systems, was
presented by Page, Brin et al. in [4, 5]. It is an essential part of Google’s ranking
scheme. Together with content based measures, this purely link based value is
the basis of the order of search results produced by this widely used and accepted
search engine.

Since the ranking seems to be quite successful (if considering the number of
users and their confidence in the results), the theoretical properties of PageRank
raise some interesting questions and may allow a significant speed-up of its cal-
culation. Usually PageRank is viewed as a Markov chain (e.g. [5, 12, 8, 10, 3]),
even though its original definition does not constitute one, as pointed out by
several authors. But if sinks, i.e. nodes without outgoing edges, are removed or
connected to all other nodes, one obtains a Markov chain producing the same
ranking as the original definition [3]. More general, PageRank is usually cal-
culated by iteratively multiplying a (ranking) vector to a form of normalized
adjacency matrix of the graph. Standard results of linear algebra and numerical
mathematics show, that this iteration converges to the principal eigenvector of
the normalized adjacency matrix.

A. Bui et al. (Eds.): IICS 2005, LNCS 3908, pp. 29–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

30 M. Brinkmeier

Experiments and theoretical results prove that only a small number of itera-
tions (compared to the size of the WWW) are needed to obtain a good approx-
imation [5, 3, 6]. But nonetheless, the size of the graph usually requires the use
of external memory, significantly increasing the required time.

In the literature some approaches can be found, suggesting parallelized or
distributed calculation of PageRank. In [9] T. Haveliwala suggests a way to
do one step of the iteration blockwise, reducing the number of accesses to the
external memory. But this approach still requires the execution of each step of
the iteration on the whole graph.

In [12] Kamvar et al. suggested to use the natural structure of the WWW
for a faster calculation of PageRank. The web is split into local subwebs (for
example domains), which are ranked independently. Then in a second step the
net of subwebs is ranked. The resulting local and global rankings are combined to
obtain an approximation of PageRank, which in turn is used as a starting vector
for the standard iteration, increasing the rate of convergence. A similar approach
is used in [14] by Wang and DeWitt, but instead of using the combined vectors
as starting vector for the iteration, they use the global rankings (or ServerRank,
as they call it) to refine the local rankings.

The approach of distributing the calculation of PageRank presented in this
paper is more in the tradition of [2]. There Avrachenkov and Litvak proof that
the global PageRank may be calculated from the local PageRanks on the weakly
connected components. This allows to iterate each component seperateley and
then combine them to obtain the global PageRank. But unfortunately, as former
experiments show [7], there exists one weak giant component containing about
91% of the vertices, reducing the size of the main problem by about 9%.

Similar to Arasu et al. in [1], we go a step further and prove that the iteration
may be executed separately on each strong connected component, as long as
we adhere to the structure of the interconnections of the strong components. In
detail this means, that we have to calculate the rankings inside a strong com-
ponent before the rankings inside other components, to which it links, directly
or indirectly. As [7] and additional experiments indicate, this reduces the size of
the largest subproblem to about 28% ([7]) or 46% (sec. 4), and the remaining
72%, resp. 54% consist of much smaller strong components.

2 PageRank and Strong Components

2.1 Notations

Let D = (V, E) be a directed multigraph with vertex set V and edge set E. For
each vertex v we denote the out-degree of v by out(v) and the in-degree by in(v).
If there exists an edge from u to v we write u → v, and u �→ v otherwise.

2.2 PageRank

In [4] and [5] Page, Brin et al. described an approach estimating the importance
of a web page, based purely on the link structure of the world wide web. Their

Distributed Calculation of PageRank Using Strongly Connected Components 31

proposed score PageRank was based on the assumption, that a document spreads
its relevance equally to all documents it links to.

To ‘generate’ rank a fixed value e(u), the personalization value, is given for
each vertex u, and (1 − d)e(u) is added to the rank, resulting in:

PageRank(u) = d
∑

v|v→u

PageRank(v)
out(v)

+ (1 − d)e(u).1 (1)

Using the normalized link matrix of the web, i.e. the matrix M = (muv) with
muv = 1

out(u) if there exists a link from u to v and 0 otherwise, this equation
may be reformulated as the following linear system:

(I − dMT)PageRank = (1 − d)e, (2)

with I the unit matrix. Under certain circumstances2 the equation may be solved
using the iteration

ri+1 = dMT ri + (1 − d)e, (3)

which corresponds to the iterative algorithm suggested by Page and Brin3.
Translated to the underlying graph the iteration leads to the following equa-

tion and algorithm (1).

ri+1(u) = d
∑

v|v→u

ri(v)
out(v)

+ (1 − d)e(u). (4)

The starting vector r0 can be chosen arbitrarily.
Page and Brin suggested an interpretation of the iteration in terms of a ran-

dom surfer, who occasionally jumps or teleports to another page instead of fol-
lowing a link, leading to a Markov model. But unfortunately the normalized
adjacency matrix M is not stochastic, since sinks, ie. vertices without outgoing
edges, have columns summing to 0. Usually this problem is solved by adding
virtual edges from each sink to all other vertices (including the sink), leading
to a proper Markov model (see eg. [3, 9, 10]). Results of the theory of Markov
models then ensure, that the iteration converges to a unique limit.

In [6] an alternative approach is used. There, PageRank is described as a
power-series over the damping factor d, whose coefficients are probabilities of
walks of a random surfer. In detail, it was proved that

PageRank(u) =
∞∑

l=0

dl(1 − d)
∑

v

al(v, u)e(v) (5)

1 In fact, in the original paper [4] the factor with which the personalization is multi-
plied, was given as d. But in later publications it was replaced by (1− d). As we will
see this influences the absolute values, but not on the ranking.

2 The spectral radius of the matrix I − dMT has to be less than 1.
3 Since they normalized the ranking vector, they could describe PageRank as an eigen-

vector of a specific matrix.

32 M. Brinkmeier

with

a0(v, u) =

{
1 if v = u

0 otherwise
and al+1(v, u) =

∑

w|w→u

al(v, w)
out(w)

. (6)

Using a slightly different notation, this allows another description as a sum
over paths.

PageRank(u) =
∑

v

e(v)
∑

π : v
∗→u

P (π)(1 − d)dl(π). (7)

where P (π) is defined inductively over the length l of the paths,

P (π) =

⎧
⎪⎨

⎪⎩

0 if l = 0 and u �= v

1 if l = 0 and u = v
P (π′)
out(w) if l > 0 and π : u

π′
→ w → v,

and π is the path π′ from u to w followed by the edge (x, v).
This formulation of PageRank allows an alternative description in terms of a

random surfer. Instead of choosing the start vertex uniformly, the personalization
value e(v) is used as probability for v4. at each step the surfer decides to either
continue its walk with probability d, or to stop surfing (probability 1 − d). If
she decides to continue, two situations can occur. In the first case, the current
vertex has outgoing links, and the surfer randomly chooses one of them to follow.
In the second case, the vertex has no outgoing link. In this situation the surfer
becomes ‘annoyed’ and stops surfing.

In this setting PageRank(v) is the probability that the surfer ends his walk
voluntarily in vertex v. The probability that the surfer becomes annoyed causes
a loss of ranking, ie.

∑
PageRank(v) < 1, but the resulting ranking is equivalent

(cmp. [6, Prop. 2.9]).

2.3 Strong Components

An obvious consequence of equation 7 is the simple and intuitive fact, that the
ranking of a vertex u is only influenced by that of another vertex v, if there
exists a path from v to u, ie. if al(v, u) �= 0 for some l ≥ N. In [6] this was
already exploited for sinks and sources in the underlying graph. In this paper
we go further.

A strong component C of a directed multigraph D = (V, E) is a maximal
subgraph of D, such that for two arbitrary vertices u and v of C there exists a
path from u to v and vice versa. The next theorem states that the PageRank of
an arbitrary vertex may be obtained by an iteration involving only the vertices
of its strong component, assumed that the PageRanks of all vertices not in the
component, but directly linking to vertices in the component, are known.

4 We assume e(v) ≥ 0 for each v ∈ V and ‖e‖1 = 1.

Distributed Calculation of PageRank Using Strongly Connected Components 33

Theorem 1. Let D = (V, E) be a directed multigraph, and C one of its strong
components. Then for each v ∈ V the sequence r(i)(v) with r(0)(v) = (1 − d)e(v)
and

r(i+1)(v) = d
∑

u∈C|u→v

r(i)(u)
out(u)

+ d
∑

u�∈C|u→v

PageRank(u)
out(u)

+ (1 − d)e(v)

converges to PageRank(v).

Proof. If the sequence converges, the limit obviously has to be PageRank(u),
because it has to satisfy the fixpoint condition (1), whose solution is unique
(cf. [6, Thm 2.8]). Hence it remains to prove the convergence. This is done by
comparison with the partial sums

PageRank(i)(v) =
i∑

l=0

(1 − d)dl
∑

u∈V

al(u, v)e(u) ≤ PageRank(v),

which form an increasing sequence converging to PageRank(v).
Obviously, we have PageRank(v) ≥ r(0)(v) = PageRank(0)(v). Now assume

PageRank(v) ≥ r(i)(v) ≥ PageRank(i)(v)

for all v ∈ C and i ≥ 0. Then we have

PageRank(v) = d
∑

u|u→v

PageRank(u)
out(u)

+ (1 − d)e(u)

= d
∑

u∈C|u→v

PageRank(u)
out(u)

+ d
∑

u�∈C|u→v

PageRank(u)
out(u)

+ (1 − d)e(u)

≥ d
∑

u∈C|u→v

r(i)(u)
out(u)

+ d
∑

u�∈C|u→v

PageRank(u)
out(u)

+ (1 − d)e(v)

= r(i+1)(v)

≥ d
∑

u|u→v

PageRank(i)(u)
out(u)

+ (1 − d)e(v)

≥ PageRank(i+1)(v).

Since the partial sums form an increasing sequence, converging to PageRank, the
r(i)(v) have to have the same limit.

In the preceeding proof we neglected the question, wether the iteration is well-
defined. But the answer to this question is quite simple and obvious. We iterate
only on one strong component C of the graph. For each vertex v in this com-
ponent, we require values for each predecessor u. But there are two types of
predecessors. The first is itself a member of C and hence is included in the iter-
ation. The second is not a member of C and hence its PageRank is assumed to
be known.

34 M. Brinkmeier

At the first look, the result only allows us to iterate on a strong component
C, if the exact PageRanks for the predecessors are known. But using the same
estimations, one can prove the following result.

Theorem 2. Let D = (V, E) be a directed multigraph, and C one of the strong
components of D and for each vertex u directly linking to at least one vertex in
C, let r(u) be an approximation of PageRank(u) satisfying

PageRank(u) ≥ r(u) ≥ PageRank(j)(u)

for some j ≥ 0. For v ∈ C define r(i)(v) by r(0)(v) := (1 − d)e(v) and

r(i+1)(v) = d
∑

u∈C|u→v

r(i)(u)
out(u)

+ d
∑

u�∈C|u→v

r(u)
out(u)

+ (1 − d)e(v).

Then PageRank() ≥ r(j)(v) ≥ PageRank(j)(v).

Proof. Use the same sequence of inequalities as for theorem 1, but replace r(u)
for PageRank(u), where appropriate.

This result allows us to approximate PageRank componentwise, without losing
precision, as long as the number of iterations is the same for each component.
In fact, we may even obtain a better approximation, than by iterating the whole
graph. Unfortunately, the quality of the approximations can not be guaranteed, if
the common criteria for the termination of the iteration found in the literature
is used. Usually the iteration is repeated until the L1-norm of the difference
between r(i) and r(i+1), ie. the sum

∑
v∈V |r(i)(v) − r(i+1)(v)|, is below a given

threshold. This approach does not seem to be appropriate here, if this would
lead to more iterations for a given strong component, than for its preceeding
components, because the usage of the earlier calculated approximations of the
rankings causes a bias for the newly calculated rankings. But if the number of
iterations is independently fixed, we may even guarantee the quality of the global
approximation, as shown in [6]. There it was proved that

‖PageRank−PageRank(i)‖1 =
∑

v∈V

|PageRank(v)−PageRank(i)(v)|≤(1−d)di‖e‖1,

if (1 − d)e is the initial ranking. Since PageRank(v) ≥ r(i)(v) ≥ PageRank(i)(v),
this implies

‖PageRank− r(i)‖1 ≤ (1 − d)di‖e‖1.

If ‖e‖1 = 1 this implies that the error is less than ε after more than ε
1−d ln d

iterations.
Since the rankings for all vertices u �∈ C linking to vertices in the strong

component C are constant, their influence may be added to the initial ranking
vector e. In this way, only the edges inside the strong component and the global
out degrees have to be known. The edges into the component can be neglected.

Distributed Calculation of PageRank Using Strongly Connected Components 35

Hence we may iterate on the induced subgraph with global out degrees (not with
the outdegrees in the subgraph) using the initial rankings

e′(v) := e(v) +
1

1 − d

∑

u�∈C|u→v

r(u)
out(u)

.

The factor 1/(1 − d) is required, because in the iteration the personalization
vector is multiplied by (1 − d).

3 Distributing PageRank

The observations made above, allow us to calculate the PageRanks of all pages
componentwise. Obviously, this has no effect when the graph is strongly con-
nected. But as measurements of the Webgraph indicate, the World Wide Web
consists of a lot of strong components, whose size follows a so-called Power-Law
[7]. We will go further into detail about this in section 4.

Since the ranks of predecessors of a strong component C are required for the
iteration, we have to ensure that these are known if we start the iteration on
C. Hence we have to order the strong components appropriately. This step is
discussed in the following.

Let D = (V, E) be a directed multigraph. For each vertex v of D we denote the
strong component of D containing v by [v]. The strong component graph SC(D)
of D is obtained by contracting each strong component into one vertex, deleting
self-loops and merging parallel edges obtained by this procedure. In other words,
the set of vertices of SC(D) is the set {[v] | v ∈ V } of strong components of D,
and there exists an edge from component [u] to [v], if there exists an edge from
u to v in D.

Obviously, the strong component graph SC(D) is acyclic, since otherwise
one strong component of D is distributed over several vertices of SC(D) (at
least the ones on the cycle). As a consequence, the calculation of PageRank
can be distributed componentwise. We simply have to make sure, that before
the rankings inside a strong component [v] are calculated, the rankings in all
preceeding strong components are already known.

First, the strong components may be computed using an algorithm of Tarjan
[13], requiring O(|V |+ |M |) time, up to a constant the same time as an iteration
step requires.

Following that, the rankings may be computed componentwise. We require
a queue Q and one integer counter c([v]) for each strong component [v]. This
counter is initially set to the indegree of [v] in SC(D), and counts the number of
preceeding strong components not completed yet. If we guarantee, that c([v]) = 0
for every [v] in the queue, we may simply extract one strong component from Q
and calculate its rankings.

Obviously all source components, ie. those without incoming links, have c([v])
initially set to 0 and may be inserted into Q. If later, a strong component [v]
is fetched from the queue and its rankings are computed, the counters of all

36 M. Brinkmeier

Algorithm 1. Componentwise calculation of PageRank
forall [v] ∈ SC(D) do

c([v]) ← in([v]);
if in([v]) = 0 then Q.append([v]);

end
while Q is not empty do

[v] ← Q.get();
Calculate the Rankings of vertices in [v];
forall [u] with [v] → [u] do

c([v]) ← c([v]) − 1;
if c([v]) = 0 then Q.append([v]);

end
end

successors can be decreased by one, and if one counter reaches 0 the strong
component is inserted into Q. This leads to algorithm 1.

3.1 The System

If Algorithm 1 is executed on a single machine, the main gain is the reduction
of the size of the graphs on which the iteration has to be done. This may enable
the calculation in local memory, if the strong components are small enough.
Fortunately, the topology of the WWW allows a more efficient calculation, as
discussed in section 4, using more machines.

If a strong component is extracted from the queue, its rankings may be cal-
culated completely independent from all other components in the queue at the
same moment. Hence we may extract as many components as we have free ma-
chines, if possible. This allows us to speed up the complete calculation, if the
topology of the strong component graph is good enough.

We assume that there exists a data storage system D storing the graph,
the strong component graph and the rankings. Furthermore we assume, that
this depot can be accessed by several clients C1, . . . , Cn in parallel, without a
significant loss of performance. In addition there exists a server S, storing the
strong component graph and handling the queue.

The clients C1, . . . , Cn may request an id of a strong component from the
server, ready for calculation. The client retrieves the necessary data from D, ie.
the strong component and the rankings of all vertices linking into this compo-
nent, executes the calculation, stores the results in D and sends s message to S,
indicating the completion of the calculation for the component. Following that,
the server updates the queue and, if it is empty, stops the whole process.

4 Measurements

The measurements and experiments described in this section were conducted on
the WebBase dataset from [16] constructed from the WebBase crawl of 2001 [15].

Distributed Calculation of PageRank Using Strongly Connected Components 37

D

C1

Retrieve subgraph
Store rankings

Fetch Component

...

Cn

S

Fig. 1. A schematic sketch of the system for the distributed calculation of PageRank

Table 1. Basic numbers about the WebBase Dataset

Number of vertices 118 142 115
Number of edges 1 019 903 190
Number of strong components 41 126 852
Average size of strong components ∼ 2.8726
Largest strong component 53 891 939
Second largest strong component 9 428
Third largest strong component 5 925
Number of strong components of size 1 39 843 421
Number of strong components of size 2 323 994
Number of strong components of size 3 154 786
Ratio of vertices in largest component ∼ 0.456
Ratio of vertices in components of size ≤ 3 ∼ 0.341

Some basic numbers regarding the structure of the dataset are given in table 1.
The distribution of the sizes clearly follows a power law (cmp. fig. 2).

As we can see, about 46% of the vertices form one giant strong component,
while the second and third largest strong components contain 9428 and 5925
vertices. Furthermore about 34% are contained in tiny strong components of at
most 3 vertices, resulting in an average size of strong components about 3.

These numbers indicate that the componentwise calculation of PageRank may
significantly decrease the required time. Except for the giant component, every
component may be held in the main memory of a standard computer, allowing a
fast iteration. Due to the large number of very small components (≤ 3 vertices),
PageRank of at least a third of the vertices may even be calculated without
iteration, using a direct solution of a system of linear equations with at most 3
variables.

Assume that there exists a path of components in SC(D) and that the it-
eration and the access to server and database for a component with n vertices

38 M. Brinkmeier

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

N
um

be
r

of
 c

om
po

ne
nt

s

Component size

SCC sizes

Fig. 2. The distribution of sizes of strong components in the WebGraph in logarithmic
scale

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 1.1e+08

 1.2e+08

 0 2 4 6 8 10

S
im

ul
at

ed
 T

im
e

Clients

Simulated Runtime
Lower bound

Fig. 3. The simulated time over the number of clients

Distributed Calculation of PageRank Using Strongly Connected Components 39

takes about O(n) time5. Since the components on this path has to be calculated
subsequently, the time to calculate PageRank is bounded below by Ω(n). Hence
we may use the maximal number of vertices in components on a path in SC(D)
from a source to a sink, as a lower bound for the time required for the calcula-
tion. This lower bound proved to be 53 903 795 vertices, which is only slightly
more than the giant SCC of 53 891 939 vertices.

Using the above assumption, that the iteration takes linear time, the dis-
tributed calculation of PageRank was simulated to obtain estimations of the
speedup. The server was implemented as a simple queue. The results for 1 to 10
clients are shown in figure 3. As the simulation demonstrates, the use of a small
number of clients may reduce the required time significantly (2 clients to ca. 73%,
3 to ca. 64% and 4 to ca. 59%). But the speedup decreases with more clients.

4.1 Future Work

The results of the experiment seem promising, even though they indicate that
only small number of clients are effective. But the conducted experiments have a
major drawback. The measured “times” are not times used by real calculations
of PageRank. They are estimations based solely on the topology of the strong
component graph. Additional factors, like limited resources are not taken into
account. These may be included in subsequent experiments.

In addition further extensions of the described system are possible. First of
all, the rankings may easily be dynamically updated. As soon as a strong com-
ponent changes, is split or several are composed, it may be inserted into the
queue again and cause the recalculation of all succeeding components. Secondly,
the calculation of the giant strong component may be distributed among several
clients, reducing the resources required by single clients (but increasing the num-
ber of necessary communication and/or iterations). And last but not least, the
clients may be weighted by their performance, restricting the size of the assigned
components, and the extraction strategy of the queue may be varied to obtain
better results.

References

[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. Pagerank computation and
the structure of the web: Experiments and algorithms, 2001. citeseer.ist.psu.edu/
arasu02pagerank.html.

[2] Konstantin Avrachenkov and Nelly Litvak. Decomposition of the google pagerank
and optimal linking strategy. Technical Report RR-5101, Institut National de
Recherche en Informatique et en Automatique, 2004.

[3] M. Bianchini, M. Gori, and F. Scarselli. Inside PageRank. ACM Trans. Internet
Tech., 5:92–128, 2005.

5 In fact the required time for a constant number of iterations is about O(n + m),
where m is the number of edges. But since the average degree is small and can
assumed to be constant, this bound can be viewed as O(n).

40 M. Brinkmeier

[4] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web-
search engine. In Proc. of the 7th World Wide Web Conference (WWW7), 1998.

[5] Sergey Brin, Lawrence Page, Rajeev Motwani, and Terry Winograd. The Page-
Rank citation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford Digital Library Technologies Project, 1999. http://dbpubs.stanford.
edu:8090/pub/1999-66.

[6] Michael Brinkmeier. Pagerank revisited. Technical report, Technical University
Ilmenau, 2005. to appear.

[7] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar
Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet L. Wiener. Graph struc-
ture in the web. Computer Networks, 33(1-6):309–320, 2000.

[8] T. Haveliwala and S. Kamvar. The second eigenvalue of the google matrix. Tech-
nical Report 2003-20, Stanford University, 2003. http://dbpubs.stanford.edu/
pub/2003-20.

[9] Taher H. Haveliwala. Efficient computation of pagerank. Technical Report 1999-
31, Stanford University, 1999. http://dbpubs.stanford.edu:8090/pub/1999-31.

[10] Taher H. Haveliwala. Topic-sensitive pagerank. In Proc. of the 11th WWW
Conference (WWW11), pages 517–526, 2002.

[11] Glen Jeh and Jennifer Widom. SimRank: A measure of structural-context simi-
larity. In Proc. 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, July 2002.

[12] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H.
Golub. Exploiting the block structure of the web for computing pagerank. Tech-
nical Report 2003-17, Stanford University, 2003. http://dbpubs.stanford.edu:
8090/pub/2003-17.

[13] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

[14] Yuan Wang and David J. DeWitt. Computing pagerank in a distributed internet
search engine system. In VLDB, pages 420–431, 2004.

[15] Webbase project. Stanford University,
http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/.

[16] Webgraph. University of Milano, http://webgraph.dsi.unimi.it/.

	Introduction
	PageRank and Strong Components
	Notations
	PageRank
	Strong Components

	Distributing PageRank
	The System

	Measurements
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

