Improvement of HITS-based Algorithms on Web
Documents *

Longzhuang Li
Dept. of Computer Engr. and
Computer Sci.

Uni. of Missouri-Columbia
Columbia, MO 65211

11059 @ mizzou.edu

ABSTRACT

In this paper, we present two ways to improve the precision
of HITS-based algorithms on Web documents. First, by ana-
lyzing the limitations of current HITS-based algorithms, we
propose a new weighted HITS-based method that assigns
appropriate weights to in-links of root documents. Then,
we combine content analysis with HITS-based algorithms
and study the effects of four representative relevance scor-
ing methods, VSM, Okapi, TLS, and CDR, using a set of
broad topic queries. Our experimental results show that our
weighted HITS-based method performs significantly better
than Bharat’s improved HITS algorithm. When we com-
bine our weighted HITS-based method or Bharat’s HITS
algorithm with any of the four relevance scoring methods,
the combined methods are only marginally better than our
weighted HITS-based method. Between the four relevance-
scoring methods, there is no significant quality difference
when they are combined with a HITS-based algorithm.

Categories and Subject Descriptors

H.3 [Information Systems]: Information Storage and Re-
trieval; G.3 [Mathematics of Computing]: Probability
and Statistics; D.2 [Software]: Software Engineering

General Terms

Algorithms, Measurement, Performance

Keywords

HITS-based algorithms, relevance scoring methods, infor-
mation retrieval

1. INTRODUCTION

Kleinberg’s hypertext-induced topic selection (HITS) al-
gorithm [16] is a very popular and effective algorithm to
rank documents based on the link information among a set
of documents. The algorithm presumes that a good hub
is a document that points to many others, and a good au-
thority is a document that many documents point to. Hubs

*Research supported in part by the National Science Foun-
dation under grants DUE-9980375 and EIA-0086230.

Copyright is held by the author/owner(s).
WWW2002, May 7-11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

Yi Shang
Dept. of Computer Engr. and
Computer Sci.
Uni. of Missouri-Columbia
Columbia, MO 65211

yshang @ cecs.missouri.edu

527

Wei Zhang
Dept. of Computer Engr. and
Computer Sci.
Uni. of Missouri-Columbia
Columbia, MO 65211

wz206 @ mizzou.edu

and authorities exhibit a mutually reinforcing relationship:
a better hub points to many good authorities, and a better
authority is pointed to by many good hubs. To run the al-
gorithm, we need to collect a base set, including a root set
and its neighborhood, the in- and out-links of a document
in the root set.

Because the HITS algorithm ranks documents only de-
pending on the in-degree and out-degree of links, it will
cause problems in some cases. For example, Bharat [1] iden-
tified two problems: mutually reinforcing relationships be-
tween hosts and topic drift. Both problems can be solved or
alleviated by adding weights to documents. The first prob-
lem can be solved by giving the documents from the same
host much less weight [1], and the second problem can be
alleviated by adding weights to edges based on text in the
documents or their anchors [1, 2]. Bharat [1] showed that
the simple modification of HITS algorithm for the first prob-
lem achieved a remarkable better precision, while further
precision can be obtained by adding content analysis. Fur-
thermore, by manipulating the weights of documents, Chang
[3] created customized authority by adding more weights to
the documents that users are interested in. Farahat [10] im-
proved the precision through Web log records which store
the number of users’ visits to the documents.

Changing the weight of a document has been shown to
be an effective way to improve the precision of HITS algo-
rithm, but these methods need either content analysis [1,
2], user feedback [3], or Web log records [10]. As we know,
content analysis usually takes a long time, and it is almost
impossible to get users’ feedback or visiting times for most
Web documents. In the paper, we propose a new way to im-
prove HITS-based algorithms’ precision by only considering
the link information in the base set.

Disregarding the time it may take, combining connectiv-
ity and content analysis has been proven to be useful in
improving precision. But the similarity measure currently
used is vector space model [1] or just a simple occurrence
frequency of the query words in the text around the anchors
[2], which may not be the best method to evaluate the rel-
evance of Web documents because most queries submitted
to search engines are short, consisting of three terms or less
[15]. Although we can expand the short queries by adding
more related words, expanding itself can cause topic drift.

In this paper, we statistically compare the performance of
four relevance scoring methods when they are combined with
HITS-based algorithms. Three of them are variations of

methods widely used in the traditional information retrieval
field. They are cover density ranking (CDR) [7], Okapi sim-
ilarity measurement (Okapi) [13], and vector space model
(VSM) [21]. In addition, the fourth one is called three-level
scoring method (TLS) [19], which mimics commonly used
manual similarity measuring approaches. In comparing the
performance of the four relevance scoring methods, we ap-
ply two statistical metrics: ezpected loss [4] and probably
approzimately correct [5).

This paper is organized as follows. In Section 2, we discuss
the limitation of current HITS-based algorithms. In Section
3, we propose a new method to improve the HITS algorithm
by assigning appropriate weights to in-links of documents in
the root set. In Section 4, we present the ways of combining
four different relevance scoring methods with HITS-based
algorithms. In Section 5, we show the experimental results.
Finally, in Section 6, we summarize the paper.

2. CURRENTHITSBASEDALGORITHMS
AND THEIR LIMITATIONS

In the context of Web search, a HITS-based algorithm
first collects a base document set for each query. Then it
recursively calculates the hub and authority values for each
document. To gather the base document set I, first, a root
set R that matching the query is fetched from a search en-
gine; then, for each document r € R, a set of documents L
that point to r and another set of documents L' that are
pointed to by r are added to the set I as R’s neighborhood.
For a document ¢ € I, let a; and h; be the authority and
hub values respectively. To begin the algorithm, a; and h;
are initialized to 1. While the values have not converged,
the algorithm iteratively proceeds as follows:

1. For all ¢ € I which points to i,
a; = Z hir
2. For all 4/ € I which is pointed to by 1,

hi = E (e77]
il

3. Normalize a; and h; values so that >, a; =, h;i = 1.

(2)

Kleinberg showed that the algorithm will eventually con-
verge, but the bound on the number of iterations is un-
known. In practice, the algorithm converges quickly.

Bharat [1] improved Kleinberg’s HITS algorithm by giving
a document an authority weight of 1/k if the document is
in a group of k documents on a first host which link to
a single document on a second host, and a hub weight of
1/1 if there are ! links from the document on a first host
to a set of documents on a second host. In the following
discussion, we denote Bharat’s improved HITS algorithm as
BHITS algorithm.

Although BHITS generally works well, there are cases
where it generates bad results. Let’s use a simple query
cruises to illustrate the problem. The top half of Table 1
shows the top 10 authorities and top 10 hubs returned by
BHITS. All the top 10 authorities are from the out-links
of a root link www.cyprus-cruises.com, which has only 1
in-link but 271 out-links, most of which are in different
domains, while the average in-degree and out-degree of a

528

root set link are 34 and 17 respectively. Top 3 to top 10
hubs are from another root link cyprus-car-hire.com, which
is also an out-link of the root link www.cyprus-cruises.com.
Actually, the two root links and their neighborhood form
a tightly-knit community (TKC) [18]. After several itera-
tions of BHITS algorithm, the hub value of the root link
www. cyprus-cruises.com dominates all the others, as a re-
sult, the documents it points to get the largest authority
values. Consequently, the in-links of root link cyprus-car-
hire.com get the top hub values because it is assigned the
largest authority value. After we manually visited these top
10 authorities and top 10 hubs, we found most of the links
are of very low relevance to the query cruises.

The major problem of the above example is that the root
link www.cyprus-cruises.com has few in-links but a large
number of out-links, most of which are not very relevant to
the query. Let’s call such a root link small-in-large-out link.
Usually, the average in-degree and out-degree of a root link
are much smaller than the out-degree of a small-in-large-out
link.

3. ANEW WEIGHTED HITSBASED
ALGORITHM

Without content analysis, both BHITS and HITS can not
solve the above problem. BHITS only gives the links on
the same host/document small weights, whose sum equals
to 1. While in the above problem, most of the out-links
of a small-in-large-out link are in different domains. HITS
usually makes the problem worse because it gives the same
weight to all the documents in the base set. In this sec-
tion, without resorting to content analysis, user feedback,
or Web log records, to prevent the BHITS algorithm and
HITS algorithm from converging to such small-in-large-out
links, we use the link information in the base set, and add
more weights to the in-links of root set links if a small-in-
large-out link exists. In the new method, the equations (1)
and (2) are modified as follows:

1. For all i € I which points to i,

a; = E Wa,, ~hy
il

2. For all i € I which is pointed to by 1,

hi = thi, sy
i/

In equation (3), the value of h; can be HITS hub weight,
BHITS hub weight, or the hub weight of other HITS-based
algorithms. Similarly, this applies to the value of a; in
equation (4).

In our current implementation, all the wy,, values are set
to 1. The setting of w,,, consists of two parts:

(4)

1. Before starting a HITS-based algorithm, if there exists
aroot link whose in-degree is among the three smallest
ones and whose out-degree is among the three largest
ones, then set Wa,, tO 4 for in-links of all the root links.

2. Otherwise, set all Wa,, to 1. Run the HITS-based algo-
rithm for one iteration without normalization. If there
exists a root link whose authority value is among the
three smallest ones and whose hub value is among the

Table 1: Top 10 authorities and top 10 hubs obtained by BHITS algorithm and WBHITS algorithm for query
cruises, respectively. We ignore the prefix “http://” for each link.

| Top 10 Auth. by BHITS |

Top 10 hubs by BHITS |

Www.cyprus-property.net

WWW. cyprus-cruises. com

www.cyprus-hotels.com

cyprus-car-hire.com

www.windowoncyprus.com

cruisecyprus.com

www.cyprus-villas.com

www.sunnycyprus.com/links/transport.html

CI'IliSECypI'IlS .com

www.armata.net/banner_advertising_opportunities.htm

www.fly-2-cyprus.com

www.caribbean-media.com/amex_why.htm

cyprus-car-hire.com

www.cyprus-hotels.com/ayia_napa.htm

www.cyplon.com

www.cyprus-holidays.com/cyprus.htm

www.benacon.com

windowsoncyprus.com/contacts_for_window_on_cyprus.htm

www.yacht-sale.com

sybar.com/d/Autos/autos.html

| Top 10 Auth. by WBHITS |

Top 10 Hubs by WBHITS |

www.costacruises.com

www.wxusa.com/Travel

WWW.rssc.com

www.cruiseplanners-acruz4u.com/cruises.html

www.cruisehawaii.com

www.cruisesonly.net /CLIAlinks.htm

www.regalcruises.com

www.anchorsaweigh.com/destinations.html

WWW.princesscruises.com

stablescruise.cruisesonly.net/CLIAlinks.htm

www.first-european.com

www.cruisespecials.com /newlinkspage.htm

www.silversea.com

www.caribbean-on-line.com/cruise-lines

www.princess.com

www.justcruising.org/cruise_lines.htm

www.royalolympiccruises.com

www.all-global.com/cruiselineslinks.htm

www.rivercruises.com

www.tradewinds-travel.net/cruises.htm

three largest ones, set wq,, to 4 for in-links of all the
root links.

In the above two steps, usually the in-degree of a small-
in-large-out link is as small as 0, 1, or 2, while the out-
degree can be more than several hundred. Intuitively, in
most cases, it is hard to believe that a root link with no or
few in-links can point to many highly relevant documents.
Even if it points to many good documents, due to the large
number of documents in the base set, there may be some
duplicates between the out-links of the small-in-large-out
link and the neighborhood of other links, and these good
duplicated documents still have the chance to top the hub set
or the authority set. The method of setting in-link weights
are very simple and can be further improved by adaptively
changing the weights of both in- and out-links of a small-in-
large-out link.

Let’s use WBHITS to represent the weighted BHITS al-
gorithm. The bottom half of Table 1 shows the top 10 au-
thorities and top 10 hits from WBHITS, which are much
better than those from BHITS.

4. COMBINING THE HITS-BASED
ALGORITHMSWITH RELEVANCE
SCORING METHODS

The hub value and authority value are regulated in the
way proposed in [1]. If s; is the relevance score of a Web
page i and h; the hub value, s; - h; instead of h; is used
to compute the authority values of Web pages it points to.
Similarly, if a; is its authority value, s; - a; instead of a; is
used to compute the hub values of Web pages that point to
it.

We combine four relevance scoring methods, VSM, TLS,
Okapi, and CDR, with a HITS-based algorithm, respec-
tively. In VSM, cosine normalization is used to normalize

the relevance scores to range [0,1]. For popular topic, the
relevance scores of the single term query, such as blues, will
be 1 for almost all the Web pages using both VSM and
TLS. In this case, there is almost no difference between
the HITS-based algorithm and the combination the HITS-
based algorithm with VSM or TLS. Next, we present the
four relevance scoring methods and how they are applied to
the Web-based content analysis.

4.1 Vector Space Model (VSM)

The vector space model has been widely used in the tradi-
tional IR field [11, 12]. Most search engines also use similar-
ity measures based on this model to rank Web documents.
The model creates a space in which both documents and
queries are represented by vectors. For a fixed collection of
documents, an m-dimensional vector is generated for each
document and each query from sets of terms with associated
weights, where m is the number of unique terms in the doc-
ument collection. Then, a vector similarity function, such
as the inner product, can be used to compute the similarity
between a document and a query.

In VSM, weights associated with the terms are calculated
based on the following two numbers:

e term frequency, fi;, the number of occurrence of term
y; in document z;; and

e inverse document frequency, g; = log(N/d;), where N
is the total number of documents in the collection and
d; is the number of documents containing term y;.

The similarity simys(q,;), between a query ¢ and a docu-
ment x;, can be defined as the inner product of the query

529

vector @ and the document vector X;:
0-X Do Vi Wij
S X; =
VI) S (wig)?

where m is the number of unique terms in the document
collection. Document weight w;; and query weight v; are

wij = fijwij = fij -log(N/d;)

{ log(N/d;)
0

(5)

stmys(q, ;) =

and

y;j is a term in g
otherwise

v = (6)
Cosine normalization is used to normalize the similarity
weight although queries are short in our experiments.

Due to the dynamic nature of the Web and inability to
access the whole Web, the VSM method cannot be applied
directly in evaluating the precision of search engines [20]. In
Equation (5), the inverse document frequency g; is not avail-
able because NV and d; are often unknown for the documents
on the Web. There are three ways to deal with this problem:
(1) making simple assumptions such as g; is a constant for
all the documents [22]; (2) estimating parameter values by
sampling the Web [1]; and (3) using information from search
engines, or/and experts’ estimation. In this paper, we use a
combination of the second and third approaches.

To apply VSM to the Web, we treat the Web as a big
database and estimate the parameter values of VSM. To
estimate N, we use the coverage of Google because Google
is the search engine with the largest size, which contains
about 1 billion pages in August, 2001 as reported in [24].
But because Google uses link data, it can actually achieve
a larger coverage of over 1.3 billion pages. Thus, we set
N = 1,387,000, 000 which is the number of pages in Google’s
index. To estimate d;, the number of documents containing
a certain term y;, we use information extracted from several
search engines as follows:

1. Submit the term y; to several search engines (we use
five search engines in our experiments). Each search
engine ¢ returns «;, the number of documents contain-
ing the term.

2. Calculate the normalized value 7; for each search en-
gine 4, based on «; and the relative size (8;) of the
search engine to that of the whole Web: ~; = «;/8;.
The sizes of the five search engines, AltaVista, Fast,
Google, HotBot, and NorthernLight, used in our exper-
iments are 550, 625, 1000, 500, and 350 million doc-
uments, respectively, as reported in previous studies
[24]. Since the total size of the Web is estimated to be
about 1.387 billion documents, the relative sizes (53;)
of these search engines are 0.397, 0.451, 0.721, 0.360,
and 0.252, respectively.

3. Take the median of the normalized values of the search
engines as the final result.

After getting the values of N and dj, sim,s can be easily
computed.

4.2 Okapi Similarity Measurement (Okapi)
Okapi similarity measurement is one of the most popular

methods used in the traditional IR field. Unlike VSM, the
Okapi method not only considers the frequency of the query

530

terms, but also the average length of the whole collection and
the length of the document under evaluation. In the Okapi
method, the similarity between a query ¢ and a document
T, simo(q, ;) can also be described as the inner product of
the query vector @ and the document vector X; as follows
[13, 23]:

simo (g, x:) = Q- Xi = Y vj - wi (M
j=1

where m is the number of unique terms in the document
collection; v; is the frequency of a term y; in the query g;
and w;; is the document weight:

N-d;40.5
fi - loo* i) ®
wi =
! 2-(0.25 +0.75 - -2L) + f;;

where f;; is the term frequency of a term y; in the document
xi; N is the total number of documents in the collection; d;
is the number of documents in the collection that contain the
query term yj; dl is the length of the document (in bytes);
and awdl is the average document length in the collection
(in bytes).

For reasons similar to the VSM method, the Okapi sim-
ilarity measurement cannot be applied directly in evaluat-
ing the precision of search engines [20]. We need values for
N,d;, and avdl. In our research, we estimate the values of
N and d; in the way described in the last section for VSM.
In addition, the average length of a Web document (avdl)
is estimated as to be 10,939 bytes after removing all the
HTML tags and Java scripts.

4.3 Cover Density Ranking (CDR)

Instead of computing the relevance based on term ap-
pearance, such as VSM, other methods including CDR are
based on the appearance of phrases. CDR is developed to
meet user expectation better — a document containing most
or all of the query terms should be ranked higher than a doc-
ument containing fewer terms, regardless of the frequency of
term occurrence [25]. In CDR, the results of phrase queries
are ranked in the following two steps [7]:

1. Documents containing one or more query terms are
ranked by coordination level, i.e., a document with a
larger number of distinct query terms ranks higher.
The documents are thus sorted into groups according
to the number of distinct query terms each contains,
with the initial ranking given to each document based
on the group in which it appears.

2. The documents at each coordination level are ranked
to produce the overall ranking. The score of the cover

set w = {(p1,q1), (P2,42),--- , (Pn,qn)} is calculated as
follows:

S(W)ZZI(P]‘,QJ‘) and

if q; —p; + 1>\
otherwise

X
o) = { 7o)
where (pj,q;) is an ordered pair over a document,
called cover, specifying the shortest interval of two dis-
tinct terms in the document [7]. p; is the position of

Table 2: The 10 HITS-based algorithms used in our experiments

| Alg. | Description || Alg. | Description |
B BHITS WB WBHITS
CB Combination of BHITS and CDR || WCB | Combination of WBHITS and CDR
OB | Combination of BHITS and Okapi || WOB | Combination of WBHITS and Okapi
TB Combination of BHITS and TLS WTB | Combination of WBHITS and TLS
VB Combination of BHITS and VSM || WVB | Combination of WBHITS and VSM

one term, ¢; the position of another term, and g; is
assumed to be larger than p;. A is a constant and
is set to 16 in our experiments because it has been
shown to produce good results [6]. Covers of length A
or shorter are given score 1, and longer covers are as-
signed scores less than 1 in proportional to the inverse
of their lengths.

To adapt CDR to the Web, we need to find out how
many distinct query terms a document has and rank the
documents with more distinct terms higher. Our version of
CDR method computes the relevance scores of documents
in two steps:

1. Documents are scored according to the regular CDR
method. Each document belongs to a coordination
level group and has a score within that group.

. The scores are normalized to range (0, 1] for docu-
ments containing only one term, to range (1, 2] for
documents containing two different terms, and so on,
so forth.

The benefit of this method is that it not only considers the
number of distinct terms in a document, but also how these
distinct terms appeared in the document, such as how close
they are.

4.4 Three-Level Scoring Method (TLS)

The TLS method is developed to take human expectation
of search results into account and is modeled after existing
manual approaches. Many existing manual methods use the
following criteria to assign relevance scores [8, 9, 17]:

e Relevant links are links that are related to information
needs of a query or have many links to other Web pages
which may be useful to the query. They get score 2.

Slightly relevant links are the pages that are partially
related to a query. They contain too short a definition
to be useful, or contain the introduction of company
products that have some technical solutions to a prob-
lem relevant to the query, or contain some description
to a related textbook. They are given score 1.

Duplicate links are the pages that appear in the re-
turned links with the same URL more than one time,
and the links that differ in that one has index.htm or
index.html as the suffix and the other does not. They
are given score 0. Mirror sites are not counted as du-
plicates.

Inactive links are the links that give error messages
like file not found (404), forbidden, or server not re-
sponding (603) errors. These links are given score 0.

531

e Irrelevant links are the links containing irrelevant in-
formation to the query. They get score 0.

TLS method computes the relevance of a Web page to a
query in the following two steps:

1. Given a query phrase g with n terms and a Web page
x, a raw score is calculated as:

tn k" by KT 4
kn—l

where k is a constant, corresponding to the weight for
longer sub-phrases; ¢;,1 < i < n, is the number of
occurrence of the sub-phrases of length i, i.e., contain-
ing ¢ terms. The order of the terms in the sub-phrases
should be exactly the same as that in the original query
phrase q.

+t

Alg,z) = (10)

Convert the raw score A(g, z) to a three-level relevance
score simys(q,) through thresholding, with value 2
for relevant, 1 for partially relevant, and 0 for irrele-
vant:

2
1
0

if A(q,7) > ©
if© > A(q,z) > a®
if A(g,z) < a®

(11)

simys(q, @) =

where O is a constant threshold, representing the re-
quirement for being relevant; « is a value between 0
and 1, representing the requirement for being partially
relevant.

The TLS method is modeled after the way of how manual
evaluation of relevance is commonly done. Its benefit is
that it not only gives higher scores to the occurrence of
substrings with more distinct terms, but also considers the
order of query terms because the changing of the order of
query terms may change the meaning of the phrase.

Let’s use a simple example to illustrate how the method
works. For query “distributed computing systems”, there are
1 phrase with 3 terms (distributed computing systems), 3
sub-phrases with 2 terms (distributed computing, computing
systems and distributed systems), and 3 sub-phrases with 1
term (distributed, computing and systems). Assume that in
a given Web page, the number of occurrence of the exact
phrase is t3 = 2, the total number of occurrence of the sub-
phrases with two terms is to = 7, and the total number of
occurrence of the sub-phrases with one term is ¢; = 18. If
the three parameters in the algorithm are set as © = 1,
a = 0.1, and k = 10, then we get A = (2% 10% +7 % 10 +
18)/10% = 2.88, and simy = 2. In the previous work, it is
observed that performance evaluation results were not very
sensitive to the parameter values of TLS and the default
setting, © = 1, @ = 0.1, and k = 10, generally worked well
[19]. Thus, we used the default setting in the experiments.

5. EXPERIMENTS

In our experiments, 28 queries and five search engines are
used. The queries are exactly the same ones as those used
in [1, 2], they are vintage car (VC), recycling cans (RE), zen
buddhism (ZB), thailand tourism (TH), parallel architec-
ture (PA), stamp collecting (SC), telecommuting (TE), sushi
(SU), alcoholism (AL), classical guitar (CG), lyme disease
(LD), bicycling (BI), field hockey (FH), amusement park
(AP), table tennis (TT), rock climbing (RC), computer vi-
sion (CV), shakespeare (SH), cruises (CR), gulf war (GW),
gardening (GA), cheese (CH), hiv (HI), affirmative action
(AA), mutual funds (MF), blues (BL), graphic design (GD),
and architecture (AR). For each query, to build a base set,
we started five threads simultaneously to collect top 20 hits
and their neighborhood from five search engines, AltaVista,
Fast, Google, HotBot, and NorthernLight, respectively. The
combination of these top hits and their neighborhood forms
the base set. For a document in the root set, we limit it to
at most 50 in-links and collect all its out-links. The default
search mode of the five search engines and lower-case queries
were used. The way we construct the base set is different
from the previous works [16, 1, 3], which usually build the
base set from only one search engine, e.g., AltaVista. Com-
bining top 20 hits and their neighborhood from five search
engines gives us a more relevant base set. Running on a Sun
Ultra-10 workstation with 300 MHz UltraSPARC-IIi proces-
sor connected to the Internet by the 100 Mbps fast Ethernet,
our Java program took about three to five minutes to gather
the base set for each query.

Duplicates or intra-domain links are then removed. For
a link in either in-link set or out-link set of a root link,
(1) it is considered a duplicate if it has the same name as
another link in the same set, whether they are in lower case
or not; (2) it is an intra-domain link if it is on the same
domain as the root link. If two links only differ in that one
ends with index.html, index.htm, home.htm, or home.html,
while the other does not, they are considered duplicates. In
addition, if two links are the same except that one begins
with www and the other does not, they are also regarded
duplicates. For example, link http://www.zenki.com/ and
link http://zenki.com/ are duplicates.

Table 3 shows the base sets for the various queries. The
number of distinct links in these sets ranges from 912 to
4037. The average in-degree and out-degree of a base-set
link are 31 and 14, respectively, and about 43% of base-set
links have 50 in-links. These sets of links are used for the
BHITS algorithm or WBHITS algorithm. Let’s call these
sets of links set 1.

Another sets of links, called set 2, were generated from set
1 by further reducing the number of links. Each link is fol-
lowed to evaluate its relevance to the query. We first remove
broken links. If two links have the same document length
and the same relevance score using the relevance scoring
methods, they are considered duplicates, and one of them
is discarded if they are in the same in-link set or out-link
set of a root link. Set 2 were used by the methods combin-
ing BHITS algorithm or WBHITS algorithm with one of the
four scoring methods.

Table 2 lists the 10 HITS-based algorithms used in the
experiments. They are five unweighted algorithms and five
weighted algorithms. The five unweighted algorithms are
BHITS and its combination with one of the four relevance
scoring methods. The five weighted algorithms include our

532

weighted BHITS and its combination with one of the four
relevance scoring methods.

To compare the performance of the above mentioned 10
algorithms, we first use the pooling method [14] to build a
query pool formed by the top 10 authority links and the
top 10 hub links generated by each of the 10 algorithms,
then recruit three graduate students to personally visit all
documents in each query pool, and manually score them
in a scale between 0 and 10, with 0 representing the most
irrelevant and 10 most relevant. A Web page receives a
high score if it contains both useful and comprehensive in-
formation about the query. Also, a page may be given a
high score it has many links which lead to relevant message
because we encouraged three evaluators to follow outgoing
link and browse a page’s neighborhood. We did not score
the broken links and the pages that are written in language
we do not understand. We did not tell the evaluators the
algorithm from which a set of links are derived, and take
the average of three scores as the final score for a link. the
average relevance score of each query is shown in Table 3.

The average relevance scores of BHITS and WBHITS on
28 queries is plotted in Fig. 1, which clearly demonstrates
that WBHITS remarkably improves BHITS. In our experi-
ments, we notice that small-in-large-out links are very com-
mon in the base sets of queries, and we find small-in-large-
out links in all the 28 queries except query 5, 15, 16, and
18. WBHITS shows good job on almost all the queries with
small-in-large-out links except that the relevance scores are
slightly worse than those of BHITS algorithm for queries 1
and 13. Especially, WBHITS gets significant improvement
over BHITS on queries 2, 8, 17, 19, and 26 by preventing
the results from converging to small-in-large-out links.

Table 4 presents the average improvement/degradation
(%) of relevance scores between two algorithms. It shows
that the combinations of BHITS/WBHITS algorithm with
a relevance scoring method outperform BHITS algorithm,
with improvement ranging from 18.3% to 22.7%. For ex-
ample, WB improves the relevance scores of B by 18.3%.
The improvement of CB, OB, TB, and VB over WB is
marginal, ranging from 0.1% to 2.7%. The improvement
of WCB, WOB, WTB, and WVB over CB, OB, TB, and
VB is 0.9%, 0.9%, 1.0%, and 1.7% respectively, which tells
us that a weighted in-link approach has little effect on the
BHITS algorithm when both of them combine content anal-
ysis. Table 4 shows that the combination of BHITS algo-
rithm with any of the four scoring methods has comparable
performance, with CDR. the best and VSM the worst. The
best algorithm CB improves OB, T'B, and VB by only 0.7%,
0.7%, and 2.9%, WCB improves WOB, WTB, and WVB by
only 0.7%, 0.7%, and 2.4%, respectively.

Besides the improvement of average relevance scores be-
tween two algorithms, we compare the performance of dif-
ferent algorithms using two statistical metrics: ezpected loss
(EL) [4] and probably approzimately correct (PAC) [5]. We
set the confident level 0.95 for PAC and the loss threshold
0.05 for EL. The results are shown in Table 5. Both metrics
give consistent results: WB is better than B; CB is the best
and VB is the worst among the four algorithms combined
with relevance scoring methods; and OB better than TB,
although two PAC values are a little below the confident
level.

Table 3: The number of links in the base set for each query and the average relevance scores of 28 queries
computed by the 10 HITS-based algorithms.

Query || Links HITS-based Algorithm
B [WB|][CB|]OB]TB]| VB]|WCB]|WOB]|]WTB]|WVB
1 VC 2065 | 6.9 | 595 | 75 | 7.5 [735|705 | 74 7.4 7.4 6.0
2 RE 912 | 495 (755 | 7.9 [725 | 7.7 | 615 | 7.9 7.25 7.7 6.15
3 ZB 2017 | 85 | 85 | 845|835 | 8.55 | 855 | 8.9 8.7 8.65 8.5
4 TH 2634 | 6.7 | 6.95 | 7.55 | 7.6 | 7.75 [6.05 | 7.95 7.95 7.65 8.0
5 PA 2645 | 8.25 | 8.25 | 8.5 | 8.45 | 8.45 | 8.25 8.5 8.4 8.4 8.15
6 SC 1994 | 8.45 | 845 | 8.6 | 845|845 | 845 | 8.6 8.45 8.45 8.45
7 TE 1958 | 85 | 85 | 86 | 85 | 87 | 8.7 8.5 8.4 8.4 8.4
8 SU 2068 | 3.15 | 7.95 | 8.25 | 8.2 | 8.25 [825 | 8.25 8.2 8.25 8.25
9 AL 2299 | 7.95 | 875 | 8.25 | 8.7 | 835|835 | 87 8.75 8.75 8.75
10| CG 2060 | 95 | 95 | 96 | 9.7 | 9.7 | 9.7 9.6 9.7 9.7 9.7
11| LD 2243 | 85 | 885 | 87 | 88 | 82 [825 | 89 8.65 8.8 8.9
12 BI 2534 | 72 | 7.7 | 87 | 84 | 85 | 85 8.7 8.35 8.6 8.6
13| FH 1453 | 79 | 745| 78 | 78 | 7.8 | 7.8 7.8 7.8 7.8 7.8
14| AP 1732 | 85 | 85 | 85 | 85 | 85 | 85 8.5 8.5 8.5 8.5
15| TT 1499 | 80 | 80 | 825 |7.65| 7.6 | 7.55 | 8.6 8.7 8.65 8.65
16 | RC 2049 | 79 | 7.9 | 7.55 [8.05 | 80 | 7.65 | 7.55 8.05 8.0 7.65
17| CV 3589 | 6.0 | 8.25 | 8.25 | 8.25 | 8.25 | 8.25 | 8.25 8.25 8.25 8.25
18 SH 2909 | 84 | 84 | 81 | 845 | 845|845 | 8.1 8.65 8.65 8.65
19| CR 2608 | 345 | 7.2 | 75 | 745 | 745|745 | 7.5 7.35 7.3 7.3
20| GW 1806 | 7.3 | 795 83 | 83 | 83 | 83 | 845 8.1 8.1 8.4
21| GA 3459 | 7.95 | 855 | 84 | 865 | 88 | 838 9.0 8.75 8.8 8.8
22 CH 2336 | 8.15 | 8.15 | 8.2 8.2 | 825 | 8.25 8.2 8.2 8.2 8.2
23 HI 3028 | 7.2 | 875 | 88 | 87 | 87 | 87 8.8 8.7 8.7 8.7
24 | AA 1425 | 7.75 | 825 | 8.6 | 8.6 | 8.65 | 8.65 | 8.4 8.4 8.25 8.35
25 | MF 3357 | 755 | 83 | 88 | 84 | 79 | 81 | 8.25 8.4 8.35 8.4
26 | BL 4037 | 4.05 | 7.95 | 8.65 | 7.55 | 8.15 | 8.15 | 8.8 8.45 8.25 8.25
27| GD 2818 | 80 | 8.0 | 80 | 805 |8.05|805| 8.0 8.05 8.05 8.05
28 | AR 3322 | 825 | 86 | 815 | 85 | 815|815 | 8.45 8.45 8.45 8.45
T T
10 - BHITS —— -
ol A WBHITS -+ |
Q) N ’*\\
o 8 "
8 7
8 o
T 4
3r i
2 i
| | | | | | | | | | | | | | | | | |

12345678 910111213141516171819202122232425262728
query

Figure 1: The average relevance scores of 28 queries computed by BHITS and WBHIT'S, respectively.

533

Table 4: Average improvement/degradation (%) of relevance scores between two algorithms. Each number in
the table is the improvement/degradation of the method in the column over the method in the row. Positive
numbers mean improvement, and negative numbers mean degradation.

| [B [WB]CB]OB] TB [VB | WCB][WOB| WIB [WVB |

B 0.0 | -18.3 | -21.7 | -20.3 | -20.7

-18.3 | -22.7 | -21.5 | -21.6 | -19.8

WB 183 | 0.0 -2.7 | -2.0 | -21 | -0.1 -3.6 -2.9 -2.9 -1.5
CB 21.7 | 2.7 0.0 0.7 0.7 2.9 -0.9 -0.3 -0.3 1.5
OB 203 | 2.0 -0.7 0.0 0.0 2.2 -1.7 -0.9 -1.0 0.8
TB 207 | 21 -0.7 0.0 0.0 2.2 -1.6 -0.9 -1.0 0.8
VB 18.3 | 0.1 -2.9 | -2.2 | -2.2 0.0 -3.9 -3.1 -3.2 -1.7
WCB || 22.7 | 3.6 0.9 1.7 1.6 3.9 0.0 0.7 0.7 2.4
WOB || 215 | 29 0.3 0.9 0.9 3.1 -0.7 0.0 0.0 1.6
WTB || 21.6 | 2.9 0.3 1.0 1.0 3.2 -0.7 0.0 0.0 1.7
WVB || 198 | 1.5 -1.5 | -0.8 | -0.8 1.7 -2.4 -1.6 -1.7 0.0

Table 5: Statistical performance comparison of different algorithms. WBvB means the statistical comparison

of WB over B, and the others are similarly defined.

Statistical Statistical Comparison of a Pair of HITS-Based Algorithms

Method | WBvB [CBvOB | CBvIB | CBvVB [OBvIB | OBvVB [TBvVB

EL 0.0 0.007 0.005

0.001 0.017 0.001 0.001

PAC 0.999 0.941 0.964

0.995 0.878 0.993 0.989

6. CONCLUSION

In this paper, we present a new weighted HITS-based al-
gorithm that improves the Bharat’s pure link weighting ap-
proach. Our experimental results show that there are no
significant performance differences among the four relevance
scoring methods when they are combined with HITS-based
algorithms. Our weighted HITS-based algorithm is simple,
yet effective. Without any content analysis, it achieved good
results comparable to those obtained by combining connec-
tivity and content analysis.

7. REFERENCES

[1] K. Bharat and M. R. Henzinger. Improved algorithms
for topic distillation in a hyperlinked environment. In
Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 104-111, 1998.
S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,
P. Raghavan, and S. Rajagopalan. Automatic resource
compilation by analyzing hyperlink structure and
associated text. Computer Network and ISDN
Systems, 30:65—-74, 1998.
[3] H. Chang, D. Cohn, and A. McCallum. Creating
customized authority lists. In Proceedings of the
Seventeenth International Conference on Machine
Learning, Stanford, CA, 2000.
S. Chien, J. Gratch, and M. Burl. On the efficient
allocation of resouces for hypothesis evaluation: A
statistical approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(7):652-665,
July 1995.
S. Chien, A. Stechert, and D. Mutz. Efficient heuristic
hypothesis ranking. Journal of Artificial Intelligence
Research, pages 375-397, 10 (1999).
[6] C. L. A. Clark, G. V. Cormack, and F. J. Burkowski.
Shortest substring ranking. In Fourth Text Retrieval
Conference (TREC-4), pages 295-304, Gaithersburg,

[2

[4

[5

534

[10]

[12]

[13]

[14]

[15]

[16]

MD, 1995.

C. L. A. Clarke, G. V. Cormack, and E. A. Tudhope.
Relevance ranking for one to three term queries.
Information Processing € Management, 36:291-311,
2000.

S. J. Clarke and P. Willett. Estimating the recall
performance of web search engines. Aslib Proceedings,
pages 184-189, July/August 1997.

W. Ding and G. Marchionini. A comparative study of
web search service performance. In ASIS’96: Proc.
59th ASIS Annual Meeting, pages 136-141, Medford,
NJ: Information Today, Inc., 1996.

A. Farahat, T. LoFaro, and J. C. Miller. Modification
of kleinberg’s hits algorithm using matrix
exponentiation and web log records. In Proceedings of
the 24th International Conference on Research and
Development in Information Retrieval (SIGIR 2001),
New Orleans, USA, September 2001.

L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss:
Text-source discovery over the internet. ACM
Transactions on Database Systems, 24(2):229-264,
June 1999.

D. Grossman, O. Frieder, D. Holmes, and D. Roberts.
Integrating structured data and text: A relational
approach. Journal of the American Society for
Information Science, 48(2), February 1997.

D. Hawking, P. Bailey, and N. Craswell. Acsys trec-8
experiments. In Proceedings of the TREC-8, 1999.

D. Hawking, N. Craswell, and P. Thistlewaste.
Overview of the trec-7 very large collection track. In
Proceedings of the TREC-7, 1998.

B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic.
Real life information retrieval: A study of user queries
on the web. SIGIR Forum, 32(1):5-17, 1998.

J. Kleinberg. Authoritative sources in a hyperlinked
environment. In Proc. Ninth Ann. ACM-SIAM Symp.
Discrete Algorithms, pages 668-677, ACM Press, New

[17]

18]

[21]

[24]

[25]

York, 1998.

H. V. Leighton and J. Srivastava. First 20 precision
among world wide web search services (search
engines). J. of the American Society for Information
Science, 50(10):870-881, 1999.

R. Lempel and S. Moran. The stochatic approach for
link-structure analysis (salsa) and the the tkc effect.
In Proceedings of the 9th International World Wide
Web Conference, pages 387—401, Elsevier Science, New
York, 2000.

L. Li and Y. Shang. A new statistical method for
evaluating search engines. In Proc. IEEE 12th Int’l
Conf. on Tools with Artificial Intelligence, 2000.

S. L. MacCall and A. D. Cleveland. A relevance-based
quantitative measure for internet information retrieval
evaluation. In Proceedings of the American Society for
Information Science 1999 Annual Meeting, pages
763-768, 1999.

G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wesley Series in
Computer Science. Addison-Wesley Longman Publ.
Co., Inc., 1989.

Y. Shang and L. Li. A new method for automatic
performance comparison of search engines. World
Wide Web, 3(4), December 2000.

A. Singhal, G. Salton, M. Mitra, and C. Buckley.
Document length normalization. technical report
tr95-1529. Technical report, Department of Computer
Science, Cornell University, Ithaca NY, 1995.

D. Sullivan.

www.searchenginewatch.com /reports/sizes.html,
Search Engine Sizes, August 15, 2001.

R. Wilkinson, J. J. Zobel, and R. Sacks-Davis.
Similarity measures for short queries. In Fourth Text
Retrieval Conference (TREC-4), pages 277-285,
Gaithersburg, MD, 1995.

535

