
I/O-Efficient Techniques for Computing Pagerank

Yen-Yu Chen Qingqing Gan Torsten Suel

CIS Department
Polytechnic University
Brooklyn, NY 11201

{yenyu, qq gan, suel}@photon.poly.edu

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services

General Terms
Algorithms, Performance

Keywords
Pagerank, search engines, out-of-core, external memory al-
gorithms, link-based ranking

ABSTRACT
Over the last few years, most major search engines have in-
tegrated link-based ranking techniques in order to provide
more accurate search results. One widely known approach is
the Pagerank technique, which forms the basis of the Google
ranking scheme, and which assigns a global importance mea-
sure to each page based on the importance of other pages
pointing to it. The main advantage of the Pagerank mea-
sure is that it is independent of the query posed by a user;
this means that it can be precomputed and then used to
optimize the layout of the inverted index structure accord-
ingly. However, computing the Pagerank measure requires
implementing an iterative process on a massive graph cor-
responding to billions of web pages and hyperlinks.
In this paper, we study I/O-efficient techniques to per-

form this iterative computation. We derive two algorithms
for Pagerank based on techniques proposed for out-of-core
graph algorithms, and compare them to two existing algo-
rithms proposed by Haveliwala. We also consider the imple-
mentation of a recently proposed topic-sensitive version of
Pagerank. Our experimental results show that for very large
data sets, significant improvements over previous results can
be achieved on machines with moderate amounts of mem-
ory. On the other hand, at most minor improvements are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’02, November 4–9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

possible on data sets that are only moderately larger than
memory, which is the case in many practical scenarios.

1. INTRODUCTION
The World Wide Web has grown from a few thousand

pages in 1993 to more than two billion pages at present.
Due to this explosion in size, web search engines are becom-
ing increasingly important as the primary means of locat-
ing relevant information. Given the large number of web
pages on popular topics, one of the main challenges for a
search engine is to provide a good ranking function that can
identify the most useful results from among the many rele-
vant pages. Most current engines perform ranking through a
combination of term-based (or simply Boolean) techniques,
link-based techniques, and user feedback (plus preprocess-
ing to fight search engine spam). See [3, 11, 8, 42] for back-
ground on search engines and information retrieval.
A significant amount of research has recently focused on

link-based ranking techniques, i.e., techniques that use the
hyperlink (or graph) structure of the web to identify in-
teresting pages or relationships between pages. One such
technique is the Pagerank technique underlying the Google
search engine [11], which assigns a global importance mea-
sure to each page on the web based on the number and
importance of other pages linking to it. Another basic ap-
proach, introduced by the HITS algorithm of Kleinberg [28]
and subsequently modified and extended, e.g., in [5, 13,
31, 43], first identifies pages of interest through term-based
techniques and then performs an analysis of only the graph
neighborhood of these pages. The success of such link-based
ranking techniques has also motivated a large amount of re-
search focusing on the basic structure of the web [12], effi-
cient computation with massive web graphs [9, 37, 40], and
other applications of link-based techniques such as finding
related pages [10], classifying pages [14], crawling important
pages [20] or pages on a particular topic [16], or web data
mining [29, 30], to name just a few.
Both Pagerank and HITS are based on an iterative process

defined on the web graph (or a closely related graph) that
assigns higher scores to pages that are more “central”. One
primary difference is that HITS is run at query time; this
has the advantage of allowing the process to be tuned to-
wards a particular query, e.g., by incorporating term-based
techniques. The main drawback is the significant overhead
in performing an iterative process for each of the thousands
of queries per second that are submitted to the major en-
gines. Pagerank, on the other hand, is independent of the

549

query posed by a user; this means that it can be precom-
puted and then used to optimize the layout of the inverted
index structure accordingly.
However, precomputing the Pagerank measure requires

performing an iterative process on a massive graph corre-
sponding to hundreds of millions of web pages and billions
of hyperlinks. Such a large graph will not fit into the main
memory of most machines if we use standard graph data
structures, and there are two approaches to overcoming this
problem. The first approach is to try to fit the graph struc-
ture into main memory by using compression techniques for
the web graph proposed in [9, 37, 40]; this results in very fast
running times but still requires substantial amounts of mem-
ory. The second approach, taken by Haveliwala [24], imple-
ments the Pagerank computation in an I/O-efficient manner
through a sequence of scan operations on data files contain-
ing the graph structure and the intermediate values of the
computation. In principle, this approach can work even if
the data is significantly larger than the available memory.
In this paper, we follow the second approach and study

techniques for the I/O-efficient computation of Pagerank in
the case where the graph structure is significantly larger
than main memory. We derive new algorithms for Pagerank
based on techniques proposed for out-of-core graph algo-
rithms, and compare them to two existing algorithms pro-
posed by Haveliwala. We also consider the implementation
of a recently proposed topic-sensitive version of Pagerank
[25], which greatly increases the amount of processing that
needs to be performed. Our results show that significant
improvements can be achieved in certain cases.
The remainder of this paper is organized as follows. The

next section describes Pagerank in more detail. Section 3
discusses related work, and Section 4 gives an overview of
our results. Section 5 provides a detailed description of the
previous and new algorithms for Pagerank that we study.
Section 6 presents and discusses our experimental results.
Finally, Section 7 offers some open problems and concluding
remarks. An longer version of this paper with more detailed
experimental results appears in [17].

2. FUNDAMENTALS
We now review the Pagerank technique proposed in [11].

We will not yet discuss how to implement the computa-
tion in an I/O-efficient way; this is done in Section 5. We
also describe an extension of Pagerank called Topic Sensitive
Pagerank recently proposed by Haveliwala [25].
The Basic Idea: The basic goal in Pagerank is to as-

sign to each page p on the web a global importance measure
called its rank value r(p). This rank value is itself deter-
mined by the rank values of all pages pointing to p, i.e.,

r(p) =
X
q→p

r(q)

d(q)
, (1)

where d(q) is the out-degree (number of outgoing hyper-
links) of page q. Writing the resulting system of equations
in matrix form, we obtain

�r = A · �r,
where �r is the vector of rank values over all pages, and A is a
“degree-scaled” version of the adjacency matrix of the graph.
Thus, the problem is essentially that of finding an eigenvec-
tor of A. As proposed in [11], this can be done by performing

a simple and well-known iterative process that initializes the
rank value of every page p (say, to r(0)(p) = 1/n where n is
the total number of pages) and then iteratively computes

r(i)(p) =
X
q→p

r(i−1)(q)

d(q)
, (2)

for i = 1, 2, This is the basic process that is commonly
implemented to compute Pagerank. (We also refer to [4] for
a more detailed discussion of alternative formulations and
iterative processes.)
Some Technical Issues: The above description of Pager-

ank ignores some important technical details. In general, the
web graph is not strongly connected, and this may result in
page value leaving the graph or becoming trapped in small
isolated components of the graph. These problems, which
are discussed in more detail in [17], are usually resolved by
pruning nodes with out-degree zero, and by adding random
jumps to the random surfer process underlying pagerank.
This leads to the following modification of Equation (2):

r(i)(p) = (1− α)
R(0)

n
+ α ·

X
q→p

r(i−1)(q)

d(q)
, (3)

where n is the total number of pages and R(0) =
P

p r(0)(p)
is the amount of rank initially inserted into the network.
This is the iterative process for Pagerank that we assume in
the remainder of the paper. As discussed in [24, 4], it is usu-
ally sufficient to run the process for 20 to 50 iterations, after
which the relative ordering of pages is close to that of the
converged state. In this paper, we are not concerned with
this rate of convergence, but instead focus on optimizing the
time needed per iteration.
Topic-Sensitive Pagerank: Recall that Pagerank as-

signs ranks to pages independent of the topic of a query,
thus allowing efficient preprocessing of the data set. On the
other hand, it has been argued that a link-based ranking
scheme that takes the topic of a query into account might
be able to return better results than a query-independent
scheme [13, 28]. The Topic-Sensitive Pagerank approach
recently proposed by Haveliwala [25] attempts to combine
the advantages of both approaches. The idea is to perform
multiple Pagerank computations, each biased towards a par-
ticular topic taken from a standard hierarchy such as Yahoo
or the Open Directory Project, and to then compute a rank-
ing for a particular query by combining several precomputed
rankings from topics that are relevant to the query.
We are interested only in the efficient precomputation of

multiple Topic-Sensitive Pagerank vectors. The algorithm
for performing a single iteration is as follows:

• Select a limited number of special pages that are highly
relevant to the chosen topic, e.g., by choosing pages
listed under the corresponding category of the Open
Directory Project.

• Modify the random surfer model so that instead of
jumping to a random page with probability (1 − α),
we perform a jump to a random special page.

This has the effect of modifying our recurrence as follows:

r(i)(p) =

8<
:

(1− α)R(0)

s
+ α ·P r(i−1)(q)

d(q)
p is special

α ·P r(i−1)(q)
d(q)

otherwise,
(4)

550

where s is the number of special pages. As we discuss later,
we can modify our algorithms for Pagerank to simultane-
ously compute multiple topic-sensitive rankings, resulting
in a computation on a new graph with proportionally more
pages that is often more efficient then a separate computa-
tion of each ranking.

3. DISCUSSION OF RELATED WORK
As mentioned in the beginning, there is a large amount

of recent academic and industrial work on web search tech-
nology. Most closely related to our work is the also quite
extensive literature on the analysis and utilization of the hy-
perlink structure of the web; see [3, 15, 26] for an overview.
In general, link-based ranking is closely related to other ap-
plications of link analysis, such as clustering, categorization,
or data mining, although a discussion of these issues is be-
yond the scope of this paper.
Various heuristics for link-based ranking, such as counting

in-degrees of nodes or computing simple graph measures,
have been known since the early days of web search engines
[32, 36]. The Pagerank approach was introduced in 1998 as
the basis of the Google ranking scheme [11, 35]. Another
related approach to link-based ranking, proposed at around
the same time, is the HITS algorithm of Kleinberg [28]. Over
the last few years, numerous extensions and variations of
these basic approaches have been proposed; see [5, 13, 25, 31,
43] for a few examples. We focus here on the implementation
of the basic Pagerank algorithm on massive graphs, and on
its topic-sensitive extension in [25].
The initial papers on Pagerank [11, 35] did not discuss

the efficient implementation of the algorithm in detail. The
I/O-efficient implementation of Pagerank was subsequently
studied by Haveliwala [24], who proposes an algorithm based
on techniques from databases and linear algebra. This algo-
rithm (which we refer to as Haveliwala’s Algorithm, is then
compared to a simpler scheme that assumes that the rank
vector for the entire graph fits into memory (referred to as
the Naive Algorithm). While the results show that Haveli-
wala’s Algorithm is quite efficient in many cases, we show in
this paper that further improvements are possible for very
large graphs and for the case of Topic-Sensitive Pagerank.
We note that an alternative approach is to compute Pager-

ank completely in main memory using a highly compressed
representation of the web graph [2, 9, 23, 37, 40]. In this
case, enough main memory is required to store the rank vec-
tor for the entire graph plus the compressed representation
of the hyperlink structure. The currently best compression
scheme requires about 0.6 bytes per hyperlink [37], result-
ing in a total space requirement of about 2 + 4.2 = 6.2 GB
for a graph with 500 million nodes and 7 billion edges. In
contrast, our techniques are efficient even for machines with
very moderate amounts of main-memory. Of course, it can
be argued that an 8 GB machine is now well within the reach
of most organizations involved in large-scale web research;
we discuss this issue again in the next subsection.
Very recent work by Arasu et al. [4] considers modifica-

tions of the iterative process in Pagerank that might lead to
faster convergence. In particular, using a Gauss-Seidel itera-
tion instead of the basic Jacobi iteration of Equation (3) ap-
pears to decrease the number of iterations needed by about
a factor of 2. We note that Gauss-Seidel iteration would re-
quire modifications in both Haveliwala’s and our algorithms
that would likely increase the running time per iteration.

There are a number of other well-known techniques [7, 41]
from linear algebra that might improve convergence; note
however that the potential improvement is limited given the
modest number of iterations required even by the basic iter-
ative process. Finally, recent work in [19] proposes to reduce
the cost of computing Pagerank by incrementally recomput-
ing values as the link structure evolves.

4. CONTRIBUTIONS OF THIS PAPER
In this paper, we study techniques for the I/O-efficient

implementation of Pagerank in the case where the graph is
too large to fit in main memory. We describe two new algo-
rithms, and compare them to those proposed by Haveliwala
in [24]. In particular,

(1) We describe an algorithm based on the very general
paradigm for I/O-efficient graph algorithms proposed
by Chiang et al. in [18]. The algorithm, called the Sort-
Merge Algorithm, is conceptually very simple, and is
interesting to contrast to Haveliwala’s Algorithm as
both are related to different join algorithms in databases.
As we show, this algorithm is however not good in
practice, and hence primarily of conceptual interest.

(2) We propose another algorithm, called Split-Accumulate
Algorithm, that overcomes the bad scaling behavior of
Haveliwala’s Algorithm on very large data sets, while
avoiding the overhead of the Sort-Merge Algorithm. In
fact, the algorithm is somewhat reminiscent of hash-
based join algorithms in databases, and it exploits the
locality inherent in the link structure of the web.

(3) We perform an experimental evaluation of the two new
algorithms and the two described in [24] using a large
graph from a recent web crawl. The evaluation shows
significant improvements over previous approaches for
the Split-Accumulate Algorithm if the graphs are large
compared to the amount of memory. On the other
hand, at most minor improvements are possible on
data sets that are only moderately larger than mem-
ory, which is the case in many practical scenarios.

(4) We study the efficient implementation of the recently
proposed Topic-Sensitive Pagerank [25].

Motivation: We now briefly discuss the motivation for our
work. As mentioned earlier, it can be argued that even
for fairly large graphs we could perform the Pagerank com-
putation completely in memory given access to a machine
with 8 GB or more of main memory and a highly optimized
compression scheme for graphs. Moreover, even if the link
structure of the graph does not fit in memory, the Naive
Algorithm in [24] will provide an efficient solution as long
as we can store one floating point number for each node of
the graph. We believe that our results are nonetheless of
interest because of the following:

• The algorithms provide significant benefits for machines
with more moderate amounts of memory. As discussed
by Haveliwala [24], this might be the case if Pagerank
is performed on a client machine rather than at the
search engine company, in which case the computation
would also have to share resources with other tasks in
the system. We believe that search and in particular
ranking will become increasingly client-based in the

551

future (though it is not clear that Pagerank would be
the best choice for query-time link analysis).

• The situation is somewhat different for Topic-Sensitive
Pagerank where the space requirement of the rank vec-
tor in the Naive Algorithm increases from O(n) to
O(nk), where k is the number of topics (unless we
are willing to perform k distinct Pagerank computa-
tions at a significant cost in time). In this case, I/O-
efficient techniques have significant benefits over the
Naive Algorithm. (We note however that for large
numbers of topics, it might be more appropriate to
develop pruning techniques that limit the computa-
tion for each topic to a subset of the graph. We are
not aware of published work on this issue.)

• We believe that the techniques that we study are of in-
terest for other computations on massive graphs, which
have applications in several other areas besides web
search [21]. While a number of theoretical results on
massive graphs have been published, there are still rel-
atively few experimental studies on real data. As we
observe, some of the theoretically good approaches in
the literature [18] are not optimal for graphs that are
only moderately larger than memory, and in fact our
Split-Accumulate Algorithm attempts to overcome this
issue. We note that iterative processes very similar to
Pagerank have, e.g., been proposed for various multi-
commodity flow problems [6, 27, 33], which could be
solved in an I/O-efficient way using the same tech-
niques. Conversely, techniques based on network flow
have also recently been used in the link-based analysis
of web pages [22].

5. ALGORITHMS
We now describe the different algorithms that we study in

this paper. We begin with the two algorithms described by
Haveliwala [24] and then introduce the two new ones that
we propose. The modifications required to the algorithms
to compute Topic-Sensitive Pagerank are discussed in the
relevant subsection of the experimental evaluation.
Assume that the input data exists in the form of two files,

a URL file in text format containing the URLs of all pages
in the graph in alphabetical order, and a binary link file con-
taining all edges in arbitrary order, where each edge is a pair
of integers referring to line numbers in the URL file. This
format is obtained through a sequence of preprocessing steps
as described in Subsection 6.1. The Pagerank algorithms do
not access the URL file at all, and in fact each of them ex-
pects a slightly different format for the link file, as described
below. Also recall from Equation (3) that each iteration of
the computation can be stated as a vector-matrix multipli-
cation between a vector V containing the rank values of the
nodes before the iteration (also called source) and a matrix
implied by the link structure, resulting in a vector V ′ of new
rank values after the iteration (also called destination).
In the descriptions, we state the cost of each algorithm

in terms of the amount of data read and written in each
iteration. Note that all disk I/O is performed in blocks of at
least 512KB, and that except for the internal sort and the
heap-based merge in the Sort-Merge Algorithm, no extensive
internal computations are performed. Thus, this measure
provides a reasonable first estimate of the running time.

5.1 The Naive Algorithm
This first algorithm assumes that we can store one float-

ing point number for each node in memory. The algorithm
uses a binary link file L illustrated in Figure 1. The link file
contains one record for each node, identifying the node, its
out-degree, and all destination nodes linked by it; the file
is sorted by the line number of the source node. In addi-
tion, we have two vectors of 32-bit floating point numbers, a
source vector on disk containing the rank values before the
iteration, and a destination vector in memory containing the
values afterwards.

In each iteration, we first initialize the destination vector

to (1−α)R(0)

n
. Since both source and link file are sorted by

the line numbers of the source nodes, we can scan over both
files in a synchronized fashion, adding for each source and
each link some additional rank value to the appropriate des-
tination in the memory-resident destination vector. Finally,
we write out the destination vector to be used as source in
the next iteration. Thus, assuming memory is large enough
to hold the destination vector, the total I/O cost for this
strategy is given by

Cnaive = |V |+ |L|+ |V ′| = 2 · |V |+ |L|,
where |L| is typically by a factor of 5 to 15 larger than |V |.
However, if the main memory is not large enough, then the
time will be far larger due to disk swapping.

5.2 Haveliwala’s Algorithm
We now review the improved scheme proposed in [24].

The idea is to partition the destination vector into d blocks
V ′

i that each fit into main memory, and to compute one
block at a time. However, it would be quite expensive to
repeatedly scan the large link file in this process. To avoid
this, we preprocess the link file and partition it into d files
Li, as illustrated in Figure 2, where Li only contains the
links pointing to nodes in block V ′

i of the destination vector,
sorted by source node as before.
Thus, before the first iteration we have to perform a pre-

processing step to create the Li. In each iteration, we then
essentially run the Naive Algorithm on V and Li to compute
block V ′

i of the destination vector, for 0 ≤ i < d. Thus, the
cost of each iteration is:

Ch = d·|V |+
X

0≤i<d

|V ′
i |+

X
0≤i<d

|Li| = (d+1)·|V |+(1+ε)·|L|,

where the term ε takes into account the slightly less compact
format for the Li [24]. Note that the source file has to be
read d times in this scheme; this limits its scalability to
massive data sets as the number d of partitions increases.
In addition, ε also increases slowly with d; for moderate
values of d we have ε ≈ 0.1 while the maximum possible (but
unlikely) value is 2− 6

d+2
. As observed in [24], this algorithm

is quite similar in structure to the Block Nested-Loop Join
algorithm in database systems. which also performs very

552

well for data sets of moderate size but eventually loses out
to more scalable approaches.

5.3 The Sort-Merge Algorithm
This algorithm is based on the theoretical framework for

out-of-core graph algorithms introduced by Chiang et al.
[18]. The basic idea is to partition the computation into
repeated sorting steps. Note that in each iteration of Pager-
ank, we essentially have to transmit an amount of rank value
from the source to the destination of each link. Using the
framework in [18], this can be achieved by creating for each
link a packet that contains the line number of the destina-
tion and an amount of rank value that has to be transmitted
to that destination. We can then route these 8-byte packets
by sorting them by destination and combining the ranks into
the destination node. We note that this approach is remi-
niscent of packet routing problems in parallel machines, and
that the resulting algorithm is also quite similar to the Sort-
Merge Join algorithm in database systems.
A naive implementation of this would first perform a syn-

chronized scan over V and the link file L from the Naive
Algorithm to create the packets, i.e., a scan over V and L
such that matching records from both files are processed si-
multaneously. These packets would then have to be written
out to disk, sorted by destination, and then scanned again
to create the destination vector V ′. We can improve on this
by buffering as many newly created packets as possible in
memory and writing them out in a sorted run. This way, we
can immediately perform the merge of these sorted runs of
packets in the next phase. From the output of the merge we
can directly create the destination vector without writing
the packets out again. The I/O cost of this approach is thus
given by Csort = |V | + |V ′| + |L| + 2 · |P | where |P | is the
total size of the generated packets that need to be written
in and out once. Note that in the first iteration, we can
directly create the packets from the initialization values.
There are several further optimizations that we consid-

ered. First, after sorting and before writing out the packets,
we can combine packets with the same destination. As it
turns out, this significantly decreases the total number of
packets, due to the large degree of locality in the web graph

(see, e.g., [12, 37, 40] for discussions of this issue). Sec-
ond, instead of directly writing out the combined packets,
we can now continue to generate packets and place them in
the freed-up part of the output buffer. When the buffer is
full, we can again sort and combine packets, and repeat this
process. We determined that performance was optimized
by repeating this process 6 times, sorting each time only
the newly generated packets, except for the last time when
we applied sorting and combining to the entire buffer. As
a result, the size |P | of the generated packets drops from
slightly larger than |L| to only a fraction of |L|.
There are two further optimizations that we did not in-

clude in our implementation. Note that we write out the
result V of an iteration, only to read it in again immedi-
ately afterwards in the next iteration. Instead, we could
entirely get rid of the source and destination vector files on
disk, and directly create new packets for the next iteration
as we process the output of the merge from the previous
iteration. This would remove the term |V | + |V ′| from the
cost, resulting in savings of at most 5− 10% but complicat-
ing the code. Finally, we briefly experimented with a simple
encoding scheme for packet destinations that uses a one-byte
offset from the previous destination in most cases. However,
an implementation of this scheme in the context of the Split-
Accumulate Algorithm actually resulted in a slight slowdown
due to the need for byte-level operations, and hence we de-
cided not to delve any deeper into such encoding techniques.

5.4 The Split-Accumulate Algorithm
The second algorithm we propose combines some of the

properties of Haveliwala’s Algorithm and the Sort-Merge Al-
gorithm. In particular, it uses a set of link structure files Li

very similar of the Li in Haveliwala’s Algorithm. Instead of
performing a local sort followed by a merge as in the Sort-
Merge Algorithm, it performs a split into buckets followed
by an aggregation in a table (which could also be interpreted
as a counting-based sort).
The algorithm splits the source vector into d blocks Vi,

such that the 4-byte rank values of all nodes in a block fit
into memory. The blocks Vi only exist in main-memory,
and the algorithm uses three sets of files Li, Pi, and Oi,
0 ≤ i < d. File Li contains information on all links with
source node in block Vi, sorted by destination, as shown in
Figure 3. Note that this is essentially the reverse of the files
Li in Haveliwala’s Algorithm except that the out-degrees of
all sources in Vi are not stored in Li but in a separate file
Oi that is a vector of 2-byte integers. File Pi is defined
as containing all packets of rank values with destination in
block Vi, in arbitrary order.
In each iteration of the algorithm, we proceed in d phases

from i = 0 to d − 1. In the ith phase, we first initialize

all values in block Vi in memory to (1 − α)R(0)

n
. We then

scan the file Pi of packets with destinations in Vi, and add
the rank values in each packet to the appropriate entry in
Vi. After Pi has been completely processed, we scan the file
Oi of out-degrees, and divide each rank value in Vi by its
out-degree. We now start reading Li, and for each record
in Li consisting of several sources in Vi and a destination
in Vj , we write one packet with this destination node and
the total amount of rank to be transmitted to it from these
sources into output file P ′

j (which will become file Pj in the
next iteration).
As in the Sort-Merge Algorithm, we can combine pack-

553

ets with the same destination. In fact, combining packets
is simpler and more efficient in this case, since all packets
originating from the same file Pi are written in sorted order
into P ′

j . Thus, no in-memory sorting of packets is needed
since we can just compare the new destination to that of the
packet previously written to the same output file P ′

j . (As
mentioned before, a 1-byte offset encoding of the destina-
tions did not result in any further improvements.) The I/O
cost of this algorithm is

Csplit =
X

0≤i<d

�|Oi|+ |Li|+ 2 · |Pi|
�

= 0.5 · |V |+ (1 + ε′)|L|+ 2 · |P |
≈ (1 + ε)|L|+ 2 · |P |,

where the factor (1 + ε′) models the slightly less concise
representation of the link files Li as compared to L in the
Naive Algorithm. The term 0.5 · |V |+ (1 + ε′)|L| for the Oi

and Li files is about the same size as the term (1 + ε)|L|
for the Li in Haveliwala’s Algorithm (not surprisingly given
the similarity of their structure and content). Moreover, the
total size |P | of the packet files is significantly smaller than
|L|, and in fact is typically less than 3 · |V |, due to the effects
of combining.
We note that the Split-Accumulate Algorithm is somewhat

reminiscent of the hash-based join algorithms widely used in
database systems. Compared to the Sort-Merge Algorithm,
instead of sorting and merging we are now splitting the pack-
ets into different buckets Pi by destination, and then directly
accumulating rank values at the destination using a table.
This has several advantages: it removes the overhead of the
internal sort and the heap-based merge, automatically com-
bines several links into one packet, and results in slightly
smaller (and fewer) output files P ′

i .

6. EXPERIMENTAL RESULTS
We now present the experimental evaluation of the differ-

ent algorithms. We first describe the machine setup, data

sets, and preprocessing steps. Subsection 6.2 and 6.3 present
the experimental results for Pagerank, and Subsection 6.4
presents the results for Topic-Sensitive Pagerank.

6.1 Experimental Setup
Hardware: For all experiments, we used a Sun Blade

100 workstation running Solaris 8 with a 500 Mhz Ultra-
Sparc IIe CPU and two 100 GB, 7200 RPM Western Digital
WD1000BB hard disks. Only one disk was used for the ex-
periments, and the disk was less than 60% full during all
except the largest experiments. All algorithms were coded
in C++ using the fread, read, fwrite and write operations
provided by the standard libraries, with all disk accesses
being of size 512KB or larger.
Memory Consumption: We considered machine con-

figurations from 32MB to 1GB of main memory, and for
each configuration we optimized the parameters of the algo-
rithms to minimize execution time. This involves choosing
the best value of d for the Split-Accumulate Algorithm and
Haveliwala’s Algorithm, and choosing the output buffer size
of the Sort-Merge Algorithm.
We physically modified the amount of memory from 128

MB to 1GB. The runs for 32MB and 64MB were per-
formed on a machine with 128MB of physical memory, but
using parameter settings for 32MB and 64MB. One poten-
tial problem with this is that the additional physical memory
could be used by the OS for buffering purposes, resulting in
unrealistic running times. To check for this, we ran tests
on several larger physical configurations and did not ob-
serve significant differences due to extra memory available
for caching. (The reason is probably that the algorithms are
based on scans of very large input files that do not benefit
from LRU-type caching approaches.)
Input Data: Our input data was derived from a crawl

of 120 million web pages (including more than 100 million
distinct pages) performed by the PolyBot web crawler [39]
in May of 2001. The crawl started at a hundred homepages
of US Universities, and was performed in a breadth-first
manner1. As observed in [34], such a crawl will find most
pages with significant Pagerank value. The total size of the
data was around 1.8TB, and the link data was extracted and
converted into the URL file and link file format described in
Section 5 through a series of I/O-efficient parsing, sorting,
and merging operations on a cluster of Linux and Solaris
machines. We note that the preprocessing of the data took
several weeks of CPU time, and thus is much larger than the
cost of the actual Pagerank computations that we report.
We extracted a graph with 327 million URLs and 1.33

billion edges, including URLs not crawled but referenced
by crawled pages. Following Haveliwala [24], we pruned the
graph twice by removing nodes with no out-going links. This
resulted in a highly connected graph with 44, 792, 052 nodes
and 652, 901, 912 links, for an average out-degree of 15.3. We
note that decisions on pruning leaks or local and nepotistic
links can significantly impact out-degree and link locality.
Our decision to prune leaks but keep all other links results
in a large out-degree (a significant disadvantage for our al-
gorithms compared to Haveliwala’s Algorithm) and a high
degree of locality in the link structure (an advantage since
it allows efficient combining of packets).
Scaling Data Size: We created additional artificial graphs

1Subject to a 30s interval between accesses to the same
server that may cause reordering from strict breadth-first.

554

of larger size by concatenating several copies of the above
graph, and then connecting the copies by “rerouting” some
of the edges into the other copies, subject to a randomized
heuristic that aims to preserve locality, in-degree, and out-
degree distributions. This created graphs of 2 and 4 times
the size of the base graph. We note that while there are
formal random graph models that can be used to generate
web graphs, see, e.g., [12], most of these models do not ac-
count for link locality, which is crucial for our experiments.
Another problem with the formal models is that the graphs
themselves need to be generated in an I/O-efficient manner
given their size.

6.2 Results for Real Data
In our first set of experiments, we ran all algorithms on

the real web graph with 44, 792, 052 nodes and 652, 901, 912
links. We used four different setups, corresponding to dif-
ferent amounts of available main memory. We report three
different results for each experiment: (a) the running time
in seconds, (b) the I/O throughput in megabytes per sec-
ond, and (c) the running time predicted by the simple cost
estimates in Section 5. The memory sizes of 32, 64, 128, and
256MB correspond to values of 6, 4, 3, and 1, respectively,
for the number of partitions d in Haveliwala’s Algorithm and
the Split-Accumulate Algorithm.

Figure 4: Running times in seconds for all four algorithms
under different memory settings.

Figure 4 contains the measured running times for the al-
gorithms under four different memory configurations. We
note that the Naive Algorithm requires at least 180MB of
memory to hold the rank vector. As expected, the Naive
Algorithm is the best choice when applicable (we did not
attempt to time the algorithm when the vector does not fit,
but the result would obviously be quite bad). Comparing
Haveliwala’s Algorithm and the Split-Accumulate Algorithm,
we see that the latter does significantly better when memory
size is much smaller than data size, while being comparable
in speed otherwise. Of course, a memory size of 32MB or
64MB is unrealistically small given that even the base ver-
sion of the low-end Blade 100 we used comes with 128MB
of memory.
The poor performance of the simple Sort-Merge Algorithm

at first was quite disappointing to us. The primary reason
for this performance is the overhead due to the internal sort
of the packets in the output buffers. This step was im-
plemented through a fairly optimized radix sort for 8-byte
records with 32-bit keys that achieves a throughput of about

Algorithm 32 MB 64 MB 128 MB 256 MB

Naive - - - 25.09
Haveliwala 18.36 19.45 18.65 21.39
Split-Accumulate 20.69 21.06 20.58 23.75
Sort-Merge 6.01 6.53 6.73 7.04

Table 6.1: I/O throughput in MB/s for different al-
gorithms and memory consumption levels

d = 6 d = 4 d = 3 d = 1

|L| - - - 2878
|V | =P |Vi| 180 180 180 180P |Oi| 90 90 90 90P |Li| 3241 3169 3131 2966P |Li| 2902 2877 2864 2816P |Pi| 423 399 391 340P |Pi| 510 490 472 433
Sort-Merge degree 51 30 19 8

Table 6.2: Sizes of data files in MB, and number of
sorted runs, for different values of d.

16MB/s, comparable to disk speed. However, this sorting
step is applied to the packets before combining, and thus
involves a much larger data set than the one that is actually
written out afterwards. Moreover, the number of sorted runs
created by the algorithm, which is proportional to |P |/M ,
is larger than the split factor d used in the Sort-Accumulate
Algorithm, which is proportional to |V |/M , where M is the
memory size. This creates additional overhead when the
sorted runs are merged, necessitating a move to a two-level
merge at a fairly early point (though not yet in the small
data set we use here). In summary, the Sort-Merge Algo-
rithm performs significantly worse than the others, and we
decided to drop it from subsequent experiments on larger
graphs.
Table 6.1 shows the I/O throughput per second achieved

by the algorithms, which varies between 6 and 25MB/s.
The low throughput of the Sort-Merge Algorithm is due to
the bottleneck in the internal sort. Finally, we look at how
the split factor d and the combining techniques affected the
sizes of the Li, Li, Pi, and Pi files. Table 6.2 shows that
the overhead in the Li and Li files, compared to the case
of d = 1, is very moderate, particularly for the Li due to
the higher skew in the in-degree distribution that results
in a slightly more compact representation. For the Pi and
Pi files, we see that combining is quite effective even for
d = 6, resulting in files that are significantly smaller than
the link files. This is a major reason for the speed of the
Split-Accumulate Algorithm. For the Sort-Merge Algorithm,
we also see the relatively high degree in the merge phase;
e.g., for 32MB, 51 sorted runs had to be merged.

6.3 Results for Scaled Data
Due to the limited size of the real data, we had to assume

fairly small amounts of memory in order to get interesting
trade-offs in the performance. Next, we run experiments
on larger data sets obtained by scaling the real data as de-
scribed above.
Figure 5 shows the running times for the two algorithms

on 256MB of memory as we scale the data set to twice
and four times its original size, resulting in 90 million nodes
and 1.304 billion links and 180 million nodes and 2.609 bil-

555

lion links, respectively. As expected, the advantage of the
Split-Accumulate Algorithm is now more pronounced, and
we would expect additional gains over Haveliwala’s Algo-
rithm as we scale the data size further up.

Figure 5: Running times in seconds versus data size.

6.4 Results for Topic-Sensitive Pagerank
As described in Section 2, the Topic-Sensitive Pagerank

scheme involves running multiple, slightly modified Pager-
ank computations on the web graph, where each computa-
tion is biased with respect to a different topic. This bias
towards a topic is achieved by a very slight modification of
the way in which the random jump with probability (1−α)
is performed, requiring only very minor changes in the im-
plementations.
Thus, if we have k topics in our Topic-Sensitive Pagerank

scheme, then one approach is to run Pagerank for k times.
An alternative approach is to simultaneously perform all
k computations, as follows. We simply maintain for each
node not one rank value, but a vector of k rank values, one
for each topic. Since all Pagerank computations are on the
same underlying graph, we can simultaneously update all
k values in each iteration. This scheme can be applied to
all 4 algorithms that we described; the net effect is that of
a Pagerank computation on a graph with k times as many
nodes but the same number of edges. Thus, we are now
dealing with a scenario where even for larger amounts of
memory, we cannot hope to keep the rank vectors for all k
topics in main memory.

Figure 6: Running times in seconds for Topic-Sensitive
Pagerank with 10 and 20 topics on 256MB and 512MB.

We experimented with three schemes for Topic-Sensitive
Pagerank. (a) Haveliwala’s Algorithm, modified to simul-

taneously compute Pagerank on all k topics, (2) the Split-
Accumulate Algorithm, modified to simultaneously compute
Pagerank on all k topics, and (3) a modified version of the
Naive Algorithm, where we run k/c consecutive computa-
tions but where the rank vectors for c topics are computed
simultaneously and thus have to fit in main memory. We
used the real graph with 45 million nodes and 662 million
edges for these experiments.
Figure 6 shows the results for 10 and 20 topics, with the

algorithm configured for 256MB and 512MB of memory.
(Note that for these runs we again did not modify the phys-
ical memory of the machine, similar as in the case of the
earlier 32MB and 64MB runs.) The value c in the modi-
fied Naive Algorithm was 1 for the case of 256MB, and 2
for the case of 512MB of memory. We note that the Split-
Accumulate Algorithm is significantly more efficient then
Haveliwala’s Algorithm and the Naive Algorithm.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have derived new I/O-efficient algo-

rithms for Pagerank based on techniques proposed for out-
of-core graph algorithms. Our experiments show that there
is significant benefit over previous algorithms for Pagerank
if the data size is significantly larger than main memory,
and also in the case of the recently proposed topic-sensitive
version of Pagerank. However, as we admit, under many
realistic scenarios the existing algorithms will do just fine
given the availability of machines with very large amounts
of main memory. Thus, our experimental results show that
techniques designed for massive amounts of data are not al-
ways a good choice for the more common case where the
data size is only slightly larger than memory, e.g., by some
small constant factor larger. Most theoretical approaches
assume a large gap between data size and memory size; see
[1] for an exception.
There are many open challenges in the general area of

link-based ranking, and we expect many new schemes to be
proposed. We are particularly interested in topic-sensitive
schemes such as those in [25, 38] that employ off-line prepro-
cessing in order to allow higher throughput at query time,
as opposed to HITS and related schemes that are processed
at query time.

Acknowledgements:
This work was supported by NSF CAREER Award NSF
CCR-0093400 and the New York State Center for Advanced
Technology in Telecommunications (CATT) at Polytechnic
University, and by equipment grants from Sun Microsystems
and Intel Corporation. Yen-Yu Chen was also supported
by a Sun Foundation Fellowship, and Qingqing Gan was
supported by NSF Awards CCR-9972568 and ITR-0081964.

8. REFERENCES
[1] J. Abello, A. Buchsbaum, and J. Westbrook. A

functional approach to external graph algorithms. In
European Symposium on Algorithms, pages 332–343,
1998.

[2] M. Adler and M. Mitzenmacher. Towards compressing
web graphs. In Proc. of the IEEE Data Compression
Conference (DCC), March 2001.

[3] A. Arasu, J. Cho, H. Garcia-Molina, and S. Raghavan.
Searching the web. ACM Transactions on Internet
Technologies, 1(1), June 2001.

556

[4] A. Arasu, J. Novak, Tomkins A, and J. Tomlin.
Pagerank computation and the structure of the web:
Experiments and algorithms. In Poster presentation at
the 11th Int. World Wide Web Conference, May 2002.

[5] Ask Jeeves, Inc. Teoma search engine.
http://www.teoma.com.

[6] B. Awerbuch and T. Leighton. A simple local-control
approximation algorithm for multicommodity flow. In
IEEE Symp. on Foundations of Computer Science,
pages 459–468, 1993.

[7] O. Axelsson. Iterative Solution Methods. Cambridge
University Press, 1994.

[8] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addision Wesley, 1999.

[9] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and
S. Venkatasubramanian. The connectivity server: Fast
access to linkage information on the web. In 7th Int.
World Wide Web Conference, May 1998.

[10] K. Bharat and M. Henzinger. Improved algorithms for
topic distillation in a hyperlinked environment. In
Proc. 21st Int. Conf. on Research and Development in
Inf. Retrieval (SIGIR), August 1998.

[11] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proc. of the
Seventh World Wide Web Conference, 1998.

[12] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web: experiments and models.
In 9th Int. World Wide Web Conference, 2000.

[13] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,
P. Raghavan, and S. Rajagopalan. Automatic resource
list compilation by analyzing hyperlink structure and
associated text. In Proc. of the 7th Int. World Wide
Web Conference, May 1998.

[14] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced
hypertext categorization using hyperlinks. In Proc. of
the ACM SIGMOD Int. Conf. on Management of
Data, pages 307–318, June 1998.

[15] S. Chakrabarti, B. Dom, R. Kumar, P. Raghavan,
S. Rajagopalan, A. Tomkins, David Gibson, and
J. Kleinberg. Mining the web’s link structure. IEEE
Computer, 32(8):60–67, 1999.

[16] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: A new approach to topic-specific
web resource discovery. In Proc. of the 8th Int. World
Wide Web Conference, May 1999.

[17] Y. Chen, Q. Gan, and T. Suel. I/o-efficient techniques
for computing pagerank. Technical Report
TR-CIS-2002-03, Polytechnic University, CIS
Department, September 2002.

[18] Y. Chiang, M. Goodrich, E. Grove, R. Tamassia,
D. Vengroff, and J. Vitter. External-memory graph
algorithms. In Proc. of the 6th Annual ACM-SIAM
Symposium on Discrete Algorithms, January 1995.

[19] S. Chien, C. Dwork, S. Kumar, and D. Sivakumar.
Towards exploiting link evolution. Unpublished
manuscript, 2001.

[20] J. Cho, H. Garcia-Molina, and L. Page. Efficient
crawling through URL ordering. In 7th Int. World
Wide Web Conference, May 1998.

[21] J. Feigenbaum. Massive graphs: Algorithms,
applications, and open problems. Invited Lecture at
the 1999 SIAM Annual Meeting.

[22] G. Flake, S. Lawrence, L. Giles, and F. Coetzee.
Self-organization and identification of web
communities. IEEE Computer, pages 66–71, 2002.

[23] J. Guillaume, M. Latapy, and L. Viennot. Efficient
and simple encodings for the web graph. 2001.
Unpublished manuscript.

[24] T.H. Haveliwala. Efficient computation of pagerank.
Technical report, Stanford University, October 1999.

Available at
http://dbpubs.stanford.edu:8090/pub/1999-31.

[25] T.H. Haveliwala. Topic-sensitive pagerank. In Proc. of
the 11th Int. World Wide Web Conference, May 2002.

[26] International WWW Conference Committee.
Proceedings of the World Wide Web Conferences,
1994–2002. http://www.iw3c2.org/Conferences/.

[27] A. Kamath, O. Palmon, and S. Plotkin. Fast
approximation algorithm for minimum cost
multicommodity flow. In ACM-SIAM Symp. on
Discrete Algorithms, 1995.

[28] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Proc. of the 9th ACM-SIAM Symposium
on Discrete Algorithms, pages 668–677, January 1998.

[29] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Extracting large-scale knowledge bases
from the web. In Proc. of the 25th Int. Conf. on Very
Large Data Bases, September 1999.

[30] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the web for emerging
cyber-communities. In Proc. of the 8th Int. World
Wide Web Conference, May 1999.

[31] R. Lempel and S. Moran. The Stochastic Approach
for Link-Structure Analysis (SALSA) and the TKC
Effect. In Proc. of the 9th Int. World Wide Web
Conference, May 2000.

[32] M. Marchiori. The quest for correct information on
the web: Hyper search engines. In Proc. of the Sixth
Int. World Wide Web Conference, April 1997.

[33] S. Muthukrishnan and T. Suel. Second-order methods
for distributed approximate single- and
multicommodity flow. In 2nd Int. Workshop on
Randomization and Approximation Techniques in
Computer Science, pages 369–383. Springer LNCS,
1998.

[34] M. Najork and J. Wiener. Breadth-first search
crawling yields high-quality pages. In 10th Int. World
Wide Web Conference, 2001.

[35] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Computer Science Department,
Stanford University, 1999. Available at
http://dbpubs.stanford.edu:8090/pub/1999-66.

[36] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s
ear: Extracting usable structures from the web. In
Proc. of ACM Conf. on Human Factors in Computing
Systems, April 1996.

[37] K. Randall, R. Stata, R. Wickremesinghe, and
J. Wiener. The link database: Fast access to graphs of
the web. In Proc. of the IEEE Data Compression
Conference (DCC), March 2002.

[38] M. Richardson and P. Domingos. The intelligent
surfer: Probabilistic combination of link and content
information in pagerank. In Advances in Neural
Information Processing Systems, 2002.

[39] V. Shkapenyuk and T. Suel. Design and
implementation of a high-performance distributed web
crawler. In Proc. of the Int. Conf. on Data
Engineering, February 2002.

[40] T. Suel and J. Yuan. Compressing the graph structure
of the web. In Proc. of the IEEE Data Compression
Conference (DCC), March 2001.

[41] R. Varga. Matrix Iterative Analysis. Prentice-Hall,
1962.

[42] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, second edition, 1999.

[43] D. Zhang and Y. Dong. An efficient algorithm to rank
web resources. In Proc. of the 9th Int. World Wide
Web Conference, May 2000.

557

