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ABSTRACT
With the increasing importance of search in guiding today’s
web traffic, more and more effort has been spent to cre-
ate search engine spam. Since link analysis is one of the
most important factors in current commercial search en-
gines’ ranking systems, new kinds of spam aiming at links
have appeared. Building link farms is one technique that can
deteriorate link-based ranking algorithms. In this paper, we
present algorithms for detecting these link farms automati-
cally by first generating a seed set based on the common link
set between incoming and outgoing links of Web pages and
then expanding it. Links between identified pages are re-
weighted, providing a modified web graph to use in ranking
page importance. Experimental results show that we can
identify most link farm spam pages and the final ranking
results are improved for almost all tested queries.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Performance

Keywords
Web search engine, link analysis, spam, HITS, PageRank

1. INTRODUCTION
Search is the dominant method of finding information on

the Web. For most queries, only the top 10 web page re-
sults from a search engine are viewed. Since more traffic
turns into more profit for most commercial web sites, con-
tent creators want their web pages to be ranked as high as
possible in the search engine results.

Instead of making high quality web pages, some authors
aim at making their pages rank highly by playing with the
Web pages features that search engines’ ranking algorithms
base on. This behavior is usually called “search engine
spam” [22, 15].

Many spamming techniques have been discovered. Orig-
inally the traditional textual information retrieval algo-
rithms, such as TFIDF, played an important role in search
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engine ranking algorithms. So initial search engine spam-
ming techniques focused on the content of the page, such as
repeating keywords many times within a page or appending
a dictionary at the bottom of a page. With the invention
of link-based ranking algorithms, such as PageRank [8] and
HITS [17], and their great success for current major search
engines, new spamming techniques targeting links became
important, and the link farm is one of them. A link farm
is a network of web sites which are densely connected with
each other. The link farm is one example of the tightly-
knit community (“TKC”) effect [20]. Since TKCs can have
significant impact on ranking results [20, 7, 23], it is neces-
sary to detect link farms and ameliorate their effect on the
ranking process.

In this paper, we present ideas of generating a seed set
of spam pages and then expanding it to identify link farms.
First, we will use a simple but effective method based on the
common link sets within the incoming and outgoing links
of Web pages for selecting the seed set. Then an expansion
step, ParentPenalty, can expand the seed set to include more
pages within certain link farms. This spamming page set can
be used together with ranking algorithms such as HITS or
PageRank to generate new ranking lists. The experiments
we have done show that this combination is quite resistant
to link farms and the “TKC effect”.

The rest of this paper is organized as follows: the back-
ground and related work will be introduced in Section 2.
The impact of link farms on one link-based ranking algo-
rithm will be shown in Section 3. Then the details of our
algorithms for detecting link farms are given in Section 4.
The experiments and results will be shown in Section 5. We
conclude with a discussion and future work.

2. BACKGROUND AND RELATED WORK

2.1 Background
If we consider the Web as a graph, with the pages rep-

resented by nodes and the links between pages to be edges
which connect nodes, we can use an adjacency matrix M to
represent the Web, i.e., M [i, j] is 1 if there is a link from
page i to page j, otherwise it is 0.

Based on this adjacency matrix, many link-based ranking
algorithms have been proposed and several of them showed
good performance when they were proposed. PageRank and
HITS are the most famous of these algorithms.

For PageRank: Suppose a page A has incoming links
from pages T1, T2, ..., Tn, C(A) is the number of links going
out of page A, d is a constant with a value between 0 and
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1. Then the PageRank [8] of A may be defined as follows:

PR(A) =
(1 − d)

n
+ d

n
X

i=1

PR(Ti)

C(Ti)
(1)

In practice, each page’s PageRank is combined with other
features, such as a textual relevance score to determine a
final ranking, such that for pages with equal relevance to a
query, the one with highest PageRank will be ranked higher.

For HITS: The set of pages considered in HITS is only
a small subset of the whole Web and closely related to a
given query [17]. Each page u has two measures: one is the
hub score h[u] and the other is the authority score a[u]. The
higher authority score for a page, the higher indication that
the page is a good authority for this given query. The higher
hub score for a page, the more likely that the page points
to many good authority pages. Suppose E is the adjacency
matrix for this subset, we have the following equations:

~a = ET~h (2)

~h = E~a (3)

After iteration of above two matrices, ~a will converge to the

principal eigenvector of ET E, and ~h will converge to the
principal eigenvector of EET .

With the great success of link-based ranking algorithms
in commercial search engines, a new industry has emerged,
called search engine optimization (SEO) [24, 15]. The goal of
this industry is to use some techniques to help websites to get
better ranking in different search engines. Some examples of
these techniques are: using significant titles for Web pages,
giving descriptive words in the META tag, etc.

Unfortunately, there is often no clear boundary between
legitimate SEO practices and “black-hat” spamming tech-
niques. It may even be the case that some activities per-
mitted at one search engine are against the rules at another.
We are concerned with the efforts of some SEO practitioners
that build link farms in order to help their web pages to be
ranked highly.

2.2 Related work
The idea of “mutually reinforcing relationships” is care-

fully studied by Bharat and Henzinger in [6], which is the
first work to address the issue that HITS can be dominated
by special link patterns. A simple but effective algorithm is
also given there — to assign an authority weight of 1/k if
there are k pages from the same host pointing to a single
document on a second host and assign a hub weight of 1/l if
a single document on the first site has l links to a set of doc-
uments on a second host. We will call this method BHITS
in this paper. Unfortunately, while this method neutralizes
certain kinds of mutually reinforcing relationships, it cannot
handle larger groups acting in cohort.

The “TKC effect” is first mentioned by Lempel and Moran
in [20]. Pages within a tightly-knit community will get high
rank value for iterative processes like HITS. A link farm ex-
ploits the TKC effect to improve their position in search
engine rankings. The authors propose the SALSA algo-
rithm which is more resistant to the TKC effect than HITS.
SALSA acts much like a popularity ranking method [11, 7]),
but does not incorporate the graph re-ranking that our ap-
proach uses to eliminate the effect of link farms.

Chakrabarti proposed using Document Object Models to-
gether with hyperlinks to beat nepotistic “clique attacks”

[10]. Compared to his idea, our method only takes link
structure into account and does not need any other content
analysis.

Li et al. [21] found that HITS is vulnerable to the “small-
in-large-out” situation. The “small-in-large-out” is the root
link that has few in-links but a large number of out-links.
Usually the community associated with this root link will
dominate the HITS results. They used a revised HITS al-
gorithm that will give these “small-in-large-out” root links
different weights to ameliorate their effects. Their approach
is still vulnerable to link farms.

In many SEO discussion boards, participants discuss the
latest ranking and spam-finding techniques employed by
commercial search engines. One approach, called Bad-
Rank1, is believed by some to be used by a commercial en-
gine to combat link farms.2 The idea is similar in spirit to
our mechanism. BadRank is based on propagating negative
value among pages. The philosophy of BadRank is that a
page will get high BadRank value if it points to some pages
with high BadRank value. So it is an inversion of the PageR-
ank algorithm which believes that good pages will transfer
their PageRank value to its outgoing links. The formula of
BadRank is given as:

BR(A) = E(A)(1 − d) + d
n

X

i=1

BR(Ti)

C(Ti)
(4)

where BR(A) is the BadRank of Page A. BR(Ti) is the
BadRank of page Ti, which is the outbound link of page A.
C(Ti) is the number of inbound links of page Ti and d is
the damping factor. E(A) is the initial BadRank value for
page A and can be assigned by some spam filters. Since no
algorithms of how to calculate E(A) and how to combine
BadRank value with other ranking methods such as PageR-
ank are given in [1], we cannot tell the effectiveness of this
approach. Our ParentPenalty has similar philosophy, but it
is a more strict spam marking method based on a threshold,
rather than a spreading activation.

Gyongyi et al. describe a new algorithm, TrustRank, to
combat Web spam [16]. The basic assumption of TrustRank
is that good pages usually point to good pages and sel-
dom have links to spam pages. They first select a bunch
of known good seed pages and assign high trust scores to
them. They then follow an approach similar to PageRank;
the trust score is propagated via out-links to other Web
pages. Finally, after convergence, the pages with high trust
scores are believed to be good pages. Although they used
a great amount of data (several billion Web pages) in the
experiment and claim that TrustRank can find more good
pages than PageRank, there are still some problems with
their algorithm. Their algorithm is not appropriate to the
Web island pages; In contrast, we do not attempt to recog-
nize good sites, but instead our technique uses a syntactic
definition of link spamming behavior that can be automat-
ically detected. In addition, we are able to prevent such
behavior from affecting ranking, even when the behavior is
found on otherwise known “good” sites.

Zhang et al. [25] propose a revised PageRank algorithm
which uses different damping factors for different pages to
ameliorate the effect of collusion of Web pages. The basis

1One description of BadRank can be found at [1].
2See, for example http://www.webmasterworld.com
/forum3/20281-22-15.htm.

821



of their algorithm is that colluding pages will have a high
correlation with the damping factor in the original PageR-
ank. Although they did some simulation on different kinds
of collusion, it is not apparent as to whether their algorithm
can find spam which is not so sensitive to the damping fac-
tor. In addition, they need to calculate the PageRank values
several times, which may be infeasible for large datasets.

Fetterly et al. use statistical analysis to find spam [14].
Several distribution graphs, such as the distribution of the
number of different host-names mapping to the same IP ad-
dress, or the distribution of out-degrees, are drawn. Most of
these distributions are modeled well by some form of power
law. The outliers of such datasets are marked as spam can-
didates. By manually checking these candidates, a majority
of them are found to be spam. While this may reliably
recognize very significant spam, many less significant spam
pages or sites will survive.

Amitay et al. [4] propose categorization algorithms to de-
tect website functionality. They recognized that the sites
with similar roles exhibit similar structural patterns. Af-
ter finding one special pattern for a certain kind of website,
they can predict a new website to be in the same class if the
site shows a similar pattern. For each host, they selected 16
features such as the average level of the page, in-links per
page, out-links per leaf page, etc., to do the categorization.
In the experiment results, they claimed to have identified 31
clusters, each of which appears to be a spam ring. But which
of these 16 features are more significant for identifying spam
is unclear.

The work by Kumar et al. [18] can be considered to have
included some data cleansing. They eliminated mirror pages
to improve quality of their results. Our work can also be
considered to be kind of data cleaning, as we identify link
farms and drop the links among them before applying a
ranking algorithm.

Finally, in prior work [13] we examined the viability of
learning to recognize whether a hyperlink would be con-
sidered nepotistic. Using a variety of page characteristics,
initial experimental results on a small dataset showed sig-
nificant promise, achieving classification accuracies of over
90%.

3. IMPACT OF LINK FARM
In this section, we will show the effect of the link farm

technique on HITS results and the predominant existence of
link farm spam in current popular search engine results.

3.1 Link farm effect on HITS
Following the data collecting process in Kleinberg’s HITS

algorithm, we collected data set for 412 queries. We used
Google and Yahoo for getting the top 200 URLs as the root
set and also used these search engines for getting the incom-
ing links to expand the root set to generate the base set,
then we applied HITS on them and find that usually HITS
results are dominated by one or several link farms.

For example, for the query wireless phone company, the
top 10 authorities are listed in Table 1(a). These 10 sites
are strongly connected with each other and they dominate
HITS results.

Another example is for the query credit card application;
the top 10 authorities are listed in Table 1(b). A casino
related community dominates this query simply because it
is densely connected.

Rank URL

1 http://www.lowcostwireless4u.com/
2 http://www.cellularratesonline.com/
3 http://www.lowcostwirelessrates.com/
4 http://www.cellphoneonlinerates.com/
5 http://www.cheapwireless4u.com/
6 http://www.newpurple2.com/
7 http://www.red4dir.com/
8 http://www.affordablecellphonerates.com/
9 http://www.affordablecellphonerates.com/

cellular-phone-company.html
10 http://www.lowcostwirelessrates.com/

cell-phone-company.html

(a) Top 10 HITS authorities for wireless phone
company from Yahoo.

Rank URL

1 http://www.1001casino.com/
2 http://www.yournetcasino.com/
3 http://www.casino-gambling-online.biz/
4 http://www.internet-gambling-online.biz/
5 http://www.on-line-casino.biz/
6 http://www.the-online-casino.biz/
7 http://www.gaming-zone.biz/
8 http://www.lucky-nugget-casino.com/
9 http://www.casino-game.biz/
10 http://www.luckynugget-online-casino.com/

(b) Top 10 HITS authorities for credit card ap-
plication from Yahoo.

Table 1: Example of top 10 lists dominated by link

farms.

3.2 Existence of link farm spam
To show the existence of link farm spam pages in the cur-

rent search engine top results, we did a simple experiment
on a data set of 140 queries, each of which is collected using
the process that Kleinberg outlined for HITS, using the Ya-
hoo search engine. We wish to measure how often link spam
pages appear in search engine results.

Initially, we will mark a page as a link farm spam page
if the domains of three of its out-links match the domains
of three of its in-links. After establishing a seed set of such
pages, we expand the spam page set by adding pages that
have at least 3 outgoing links to the pages that have already
been marked as spam pages. Here we only count links point-
ing to different domains (inter-site links). By this method,
many spam pages within the top 200 list for these queries
from Yahoo have been found as we describe below.

As shown in Figure 1, we use six levels to describe the
existence of spam pages in the search engine results. The
x-axis represents the minimum number of spam pages that
are found in the top-n list, and the y-axis represents what
percentage of the queries had results that included pages
marked as spam. Six curves are drawn and each curve rep-
resents the top 10, 20, 30, 50, 100 and 200 results from the
search engine respectively. The curve at the top is for the
top 200. As we can see from the figure, about 68% of all
queries have at least one spam page within the top 200 re-
sponse list from the search engine. About 2% of queries have
7 or more spam pages. The curve at the bottom represents
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Figure 1: Percentage of queries containing spam

pages within top-n results.

the statistics for the top 10 result from the search engine,
which usually has the highest likelihood to be visited by
search engine users. As we can tell from the figure, about
9% queries have at least one spam page within the top 10
list.

4. MOTIVATION AND DETAILS OF AP-
PROACH

The motivation of our approach is that by observation,
we found that pages within link farms are densely connected
with each other and many common pages will exist both in
the incoming and the outgoing link sets for a page in a link
farm. Initially, if we can find some pages within a link farm
as the seed set, then for each new page, it is quite possible
for the page to be part of the same link farm if it has several
incoming and outgoing links from and to the seed set. Then
we can expand the seed set by adding the new page into
it. This process can be iterative, so more and more pages
within the link farm will be found and added. Finally the
process will terminate when no more pages will be added.
In fact, this mechanism works for a big data set containing
many different link farms. The only difference is that we
need to find several pages within each of these link farms
to form the seed set, then to expand it iteratively to find
additional pages within link farms. So the two key aspects
of our algorithm are how to generate the seed set and how
to expand the seed set.

As mentioned in Section 1 our algorithm has the following
steps:

• Generate a seed set from the whole data set.

• The expansion step to propagate the initial badness
value to additional pages.

• The ranking step which will combine the badness value
together with normal link-based ranking algorithm,
such as ranking by popularity, HITS, or PageRank.

4.1 Initial Step: IN-OUT common set
Like BadRank, described earlier in Section 2.2, a seed set

is needed within which each page is judged by some spam
filters to be a spam page.

Let p to denote the URL for a web page and d(p) represents
the domain name of p. Suppose we are given N pages ini-
tially. IN(p) and OUT (p) represent the sets of incoming
and outgoing links of p, respectively.

1. For each URL i in IN(p), if d(i) 6= d(p) and d(i)
is not in INdomain(p), then add d(i) to the set
INdomain(p).

2. For each URL k in OUT (p), if d(k) 6= d(p) and d(k)
is not in OUTdomain(p), then add d(k) to the set
OUTdomain(p).

3. Calculate the intersection of INdomain(p) and
OUTdomain(p). If the number of elements in the in-
tersection set is equal to or bigger than the threshold
TIO, mark p as a bad page.

4. Repeat 1 to 3 for every page in the data set.

5. For all pages that have been marked bad during 1 to
4, place a 1 in the initial value array A[N ]. Return A.

Figure 2: Algorithm for finding seed set.

How should one decide which pages should belong to the
seed set? We used a simple method. A page usually has sev-
eral incoming links which point to this page and outgoing
links to which this page points. By observation, the pages
within link farms usually have several common nodes be-
tween the incoming links set and outgoing links set. If only
one or two common nodes exist, we will not mark this page
as a problem page. But, if many such common nodes exist,
it is quite possible that the page is a part of a link farm.
A threshold TIO is used here so that whenever the number
of common links of the incoming links set and the outgoing
links set is equal to or above this TIO, we will mark the page
as a bad page and put it into the seed set. In our experi-
ment, we use 3 as the threshold so that we can be able to
find link farms with as few as 4 elements.

When matching incoming and outgoing links, we are not
limited to an exact match. That is, instead of requiring that
two pages point to each other, we might wish to generalize
this to allow a page to point to a site or domain, and vice
versa. We use the granularity of domain-matching when
generating the common set, i.e., if the number of distinct
domains in the intersection of the domains of the incoming
links and the domains within the outgoing links is equal to
or above the threshold for a page, we will mark the page as
a problem page and put it into the seed set.

One advantage of using domain name matching instead of
URL matching is to catch the common web design technique
in which a separate links page is created on which links from
amateur or professional link exchanges are placed. Incoming
links are mostly to the root page of the site, while links from
the home page are typically internal links. Thus, the only
way for an external site to recognize the situation is to per-
mit the link target to be a different page within the domain
name than for the return link. The complete algorithm is
provided in Figure 2.

To make above steps clear, take a look at the simple ex-
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Figure 3: A simple example of 6 pages.

ample in Figure 3. Six pages form a network and we assume
that they are all from different domains. For this simple
example, we use 2 as the threshold. The incoming link set
for node A is [C,D,E] and outgoing link set is [B,C,D]. The
common set for node A is [C,D], which has 2 elements and
is equal to the threshold, so we put A into the seed set.
Similarly, node C and D will also be put into the seed set.
Finally the seed set is [A,C,D].

4.2 Expansion Step
With the seed set, an expansion step is needed to find

more bad pages within the data set. The intuition for this
expansion step is that the structure of real link farms varies
and the spam pages may survive the seed set detection. But
to make a link farm work, usually pages within a link farm
need to point to other pages within the same link farm. If
a page only points to one spam page, we will not punish
it. But if a page has many outgoing links to bad pages,
it is likely that the page itself is with the same link farm.
Since we have a seed set, we may enlarge it little by little
by adding more pages that have too many outgoing links
to these bad pages. Thresholds are used again for judging
whether the page will be marked bad.

We use the ParentPenalty for the expansion step. The
basic assumption is that if one page points to a bunch of
bad pages, it is likely that this page itself is bad. Thus, like
PageRank, the value of interest spreads from page to linked
page, although here we are following incoming links rather
than outgoing links. We will use another threshold (TPP ) to
judge a page: if the number of outgoing links to bad pages

ParentPenalty:

Suppose we already have an array A[N ] from the initial
step in which bad pages have value 1 in it and other pages
have value 0, and a threshold TPP ,

1. For each member p s.t. A[p] = 0, fetch its outgoing
links set OUT (p).

2. Set badnum=0.

3. For each element k in OUT (p), if A[k] is 1, then in-
crease badnum by 1.

4. If badnum ≥ TPP , set A[p] = 1.

Repeat 1 to 4 until the values of A do not change.

Figure 4: Algorithm of ParentPenalty.

meets or exceeds the threshold, the page will be also marked
bad. Whenever a new page is marked as bad, the pages that
link to it might now meet the threshold. Thus, an iterative
process can be used until no more pages are marked bad.
We again use a threshold of 3 links.

For this method, we permit the target URL to be in the
same domain as the source, and that the targets may all
be within the same domain (even the same as the source
domain). This enables us to expand the spam set to in-
clude other pages from the same site. The ParentPenalty

algorithm is summarized in Figure 4.
For the simple example in Figure 3, the seed set is [A,C,D].

If we use 2 as the threshold, i.e., the page will be marked
bad if it has 2 or more outgoing links pointing to the pages
within the seed set. Node B only has one, node E has two,
node F has zero. So node E will be marked bad and be
assigned a badness value 1. Since no other page will be
marked, the ParentPenalty algorithm ends up with the bad
set as [A,C,D,E].

4.3 Ranking the marked graph
The goal of the previous steps is to find bad pages within a

given data set. After finding these bad pages, we need a way
to incorporate this information into a ranking algorithm.
One obvious mechanism is to change the adjacency matrix
of the web graph for this data set. The elements in the
adjacency matrix can either be down-weighted or deleted.

Since we have pages marked as participants in link farms,
one way is to penalize these pages strictly, i.e., to remove
them from the graph. But in reality, this may be too much.
For a simple example, consider a business that owns sev-
eral different web sites for its products or subsidiaries. Of-
ten, these web sites will point to each other to form a link
farm. So instead of penalizing these pages, we only penal-
ize the links among these web sites, because the web pages
themselves may still be good candidates for some real world
queries. By penalizing these links, the pages can only get
votes from other fair authors and (hopefully) cannot get
votes from link farm collaborators.

Two possibilities are available to penalize these links. One
is to down-weight them, such as assign a weight proportion
to the total number of bad links to each of these links, e.g.,
a page contains 10 outgoing links related to link farms, then
0.1 is given to these links in the adjacency matrix. Another
method is to delete all of them and set 0 to them in the
adjacency matrix. Since we have not taken any page content
into account in the ranking, and the bad links are crucial
to our ranking process, we choose to penalize these links
strictly. We delete all links between pages that have been
marked as link farm participants from the above steps.

Although our algorithms can detect link farm spam, it
is not immune to the “mutual reinforcement” [6] problem.
So, we adopt a variant of Bharat and Henzinger’s version of
HITS in which we assign an edge a weight of 1/k if there are
k pages from the same host pointing to a single document
on a second host.

Now the adjacency matrix is ready for ranking. Several
ranking algorithms can be used on this adjacency matrix,
such as PageRank, HITS and weighted popularity.

Here “weighted popularity” is a generalization of the sim-
pler approach ranking pages by the number of incoming
links. Simple popularity has been explored by others (e.g.,
[7]) and found to have good performance. Since we have
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down-weighted the matrix (using a variant of B&H) and
even set some link weights to 0 because of the spam pages
we have marked, we use the sum of all the weighted values
for the incoming links in the adjacency matrix as a metric
and rank all pages according to this metric.

We consider this “weighted popularity” ranking algorithm
because of its simplicity and speed, and in Section 5, we will
show that it always gives better results than the original
HITS formulation.

4.4 Comparison of ParentPenalty and Bad-
Rank

As we mentioned before, BadRank uses the following phi-
losophy: a page should be penalized for pointing to bad
pages. However, it does not specify how far it should go. If
page A points to page B, and B points to some known bad
pages, it is intuitive to consider B to be bad, but should A
be penalized just for pointing to B? For example, a com-
puter science department’s homepage points to a student’s
homepage and the student may join some link exchange pro-
gram by adding some links within his homepage. It makes
sense that the student’s homepage should be penalized, but
the department’s homepage is innocent. In the BadRank al-
gorithm, the department’s homepage will also realize some
non-zero badness value by propagation upward from one or
more other pages with non-zero badness values.

Our ParentPenalty idea is more resistant to this issue. A
threshold is used in Section 4.2 to decide whether the bad-
ness of the child pages should be propagated to a parent.
If the number of bad children is equal to or larger than the
threshold, then the parent should be penalized. Further,
if the number of parents that should be penalized is meets
or exceeds the threshold, then the grandparents should be
penalized. This also makes sense in real life. So the thresh-
old plays an important role in preventing the badness value
from propagating upwards to too many generations.

4.5 Algorithm Complexity
While asymptotically expensive (because of an O(n2) ex-

pansion step), in practice our technique is quite scalable.
If we assume that the average number of incoming links
and outgoing links are constants, then for each page we can
compare the incoming link set and the outgoing link set in a
constant number of steps. In that case, the time complexity
for seed set selection over all n pages in the collection is just
Θ(n).

We can reduce the cost of seed set selection further
through a simple filter. For example, if we use the threshold
3 in seed set selection, then all the pages that have in-degree
or out-degree less than 3 cannot be selected for the seed set,
so we can mark only the pages with a bigger in-degree and
out-degree than 3 as seed set candidates. By using this pre-
cleaning method, we can decrease greatly the number of the
candidates for the seed set. In our experiments, this pre-
cleaning method typically filtered nearly half of the nodes.
For the expansion step, we can similarly use a pre-cleaning
method to get rid of pages that have fewer outgoing links
than the threshold.

At its heart, the expansion process needs to repeatedly
examine unmarked pages to see if they point to a sufficient
number of marked pages. Fortunately, in practice, this pro-
cess only needs to be iterated a few times (e.g., 5-6 times
for our search.ch domain graph, described below).

5. EXPERIMENTS AND RESULTS

5.1 Data collection
To test our algorithm, we used two data sets. The first

one is that we adopted the similar data collecting process
as HITS to collect our experiment data. Initially we send
a query to search.yahoo.com to get top 200 URLs for this
query, then for each URL, we get the top 50 incoming links
to this URL by querying Yahoo again. We also download
all pages referenced by these top 200 URLs. The expanded
data set is then used as the base data set for this query. For
this experiment, we tried 412 queries and downloaded more
than 2.1 million unique Web pages. These queries include
queries used by previous researchers [17, 23, 10, 12, 20, 21],
the names of the categories from dmoz.org [3], and popular
queries from Lycos and Google [2, 19].

The second data set is courtesy of a search engine com-
pany in Switzerland: search.ch. The search.ch data set
contains around 20M pages and 317,640 different domains.
We build a domain graph for this data set and applied our
link farm detection algorithm on it.

5.2 Sample experimental results
In this section we demonstrate some of the striking results

that this technique makes possible.

5.2.1 Query: IBM research center
For the initial step to generate the seed set, only 10 URLs

are found. They are shown in Table 2(a). Most URLs in
this table are pages for good companies but strongly con-
nected with each other. We also consider this kind of links
as forming link farms.

For the expansion step, by using the ParentPenalty, 161
more URLs are marked as belonging to link farms. When
we checked these URLs manually, all of them wee with
one or more link farms based on the initial set. For ex-
ample, URL number 5, 6 and 7 in Table 2(a) are all
part of the same business. After using ParentPenalty

extension step, several more sites are found which are
also part of this link farm: http://line56.bitpipe.com/,
http://www.destinationcrm.com/. For URL No. 1
and No. 2, we found http://linuxtoday.com/ and
http://www.internet.com/ that are cross-linked with
them. A lot of pages within these sites are also marked.
After deleting all links within these bad pages and down-
weighting all links from the same site to a single page, we
get a new adjacency matrix for the data set of this query.
By using the “weighted popularity” algorithm, the new top
list for the query is generated and shown in Table 2(c).

5.2.2 Query: wireless phone company
This query aims at finding wireless service, such as

http://www.verizon.com/. Without using any of our al-
gorithm and only using HITS, the top 10 results are shown
in Table 1(a). These results are dominated by a set URLs
that are strongly connected.

By using our initial step, 16 URLs were identified as seed
pages. They are listed in Table 3(a). Interestingly, most
URLs from Table 1(a) are caught even in this initial step.

By using the ParentPenalty extension step, in to-
tal 122 URLs are marked bad. More members
within the link farm of Top 10 URLs in Table 3(a)
are found, e.g., http://cellulardirectory.com/,
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ID URL

1 http://www.phpbuilder.com/
2 http://alllinuxdevices.com/
3 http://www.earthweb.com/
4 http://www.jupitermedia.com/
5 http://www.destinationkm.com/
6 http://www.line56.com/
7 http://www.portalsmag.com/
8 http://www.nwfusion.com/
9 hhttp://www.cio.com/
10 http://www.cxo.com/

(a) Seed set of graph from query
IBM research center from Google.

Rank URL

1 http://www.watson.ibm.com/
2 http://www.research.ibm.com/
3 http://www.openoffice.org/
4 http://www.ibm.com/
5 http://www.opensecrets.org/
6 http://www.arborday.org/trees/aerialbenefits.html
7 http://www.nrdc.org/
8 http://www.bushin30seconds.org/
9 http://www-users.cs.umn.edu/ agupta/wsmp.html
10 http://www.almaden.ibm.com/

(b) Top 10 Popularity results before detecting link
farms.

Rank URL

1 http://www.watson.ibm.com/
2 http://www.almaden.ibm.com/
3 http://www.zurich.ibm.com/
4 http://www.ibm.com/
5 http://www.research.ibm.com/
6 http://www.research.ibm.com/nanoscience/
7 http://dimacs.rutgers.edu/
8 http://www.amazon.com/
9 http://www.symantec.com/
10 http://www.infoworld.com/

(c) Top 10 Popularity results after detecting link farms.

Table 2: Results for query IBM research center.

http://www.getabooster.com/,
http://www.affordablecellphonerates.com/,
http://www.great-cellphone-deals.com/ and
http://www.phone-cards-4u.com/.

As in the previous example, we delete all links among
these pages. The top results for applying “weighted popu-
larity” to the adjusted matrix is in Table 3(b).

5.2.3 Query: picnic
The HITS result for this query is shown in Table 4(a).

Most of them are irrelevant to picnic and some of them are
densely connected with each other.

Our seed set selection step identified 41 bad URLs which
include No. 1, No. 2, No. 3 and No. 8 in Table 4(a). The Par-

entPenalty extension step found 368 bad URLs altogether
which including No. 9 in Table 4(a).

After deleting all links among these pages identified by

ID URL

1 http://www.cellphoneonlinerates.com/
2 http://www.newpurple2.com/
3 http://www.red4dir.com/
4 http://www.affordablecellphonerates.com/
5 http://www.cellularratesonline.com/
6 http://www.cheapwireless4u.com/
7 http://www.lowcostwireless4u.com/
8 http://www.lowcostwirelessrates.com/
9 http://www.lowcostwireless4u.com/

wireless-phone-service-24.html
10 http://www.cellphoneonlinerates.com/

wireless-handsfree-cell.html
11 http://www.cellphoneonlinerates.com/

wireless-phone-provider.html
12 http://www.cheapwireless4u.com/

cellular-phone-services.html
13 http://www.cellularratesonline.com/

cell-phone-services.html
14 http://www.nexteljobs.com/
15 http://www.cellphoneonlinerates.com/

cellular-phone-service.html
16 http://www.phone-telecom-wireless.net/

(a) Seed set for wireless phone company from
Yahoo.

Rank URL

1 http://www.nextel.com/
2 http://www.att.com/
3 http://www.attws.com/
4 http://www.verizon.com/
5 http://www.bellsouth.com/
6 http://www.alltel.com/
7 http://www.nokia.com/
8 http://www.airtouch.com/
9 http://www.sprintpcs.com/
10 http://www.voicestream.com/

(b) Top 10 Popularity results after
detecting link farms.

Table 3: Results for query wireless phone company.

ParentPenalty step, the “weighted popularity” ranking al-
gorithm generates the top 10 list shown in Table 4(b).

5.3 Evaluation of our data
To compare the relevance of results generated by our al-

gorithms with the results generated by HITS and BHITS,
an evaluation web interface was built in order to allow real
users to judge the results.

For this evaluation, 20 queries were selected. For each
query, the top 10 URLs generated from Kleinberg’s HITS
and our “weighted popularity” after dropping links among
spam pages are mixed together for blind evaluation. Given a
query and a subset of the mixed URL list to this query, real
users have five relevancy choices: quite relevant, relevant, not

sure, not relevant and totally irrelevant for each URL. Only
one choice can be made for each URL, although a user can
refrain from making a judgment.

Twenty-eight users participated, generating 541 prefer-
ences related to HITS, 469 entries for BHITS and 422 entries
related to our “weighted popularity” algorithm. The distri-
bution of preferences is shown is Table 5. Our approach
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ID URL

1 http://www.askthepreschoolteacher.com/
2 http://www.preschoolprintables.com/
3 http://www.preschoolcoloringbook.com/
4 http://www.lehighvalleykids.com/
5 http://www.theperfecttitle.com/
6 http://s12.sitemeter.com/

stats.asp?site=s12preschooledu
7 http://www.freesummervacation.com/to.cgi?l=5a
8 http://www.preschooleducation.com/
9 http://www.preschooleducation.com/ads.shtml
10 http://www.preschooleducation.com/newsletter.shtml

(a) Top 10 results from HITS on original data set.

Rank URL

1 http://www.picnicbackpacksgvshop.com/
2 http://www.google.com/
3 http://www.picnicplaza.com/
4 http://www.alanskitchen.com/
5 http://www.picnic-baskets.com/
6 http://www.fabulousfoods.com/

holidays/picnic/picnic.html
7 http://home.att.net/ cordelli/picnic.html
8 http://www.worldsoffun.com/
9 http://www.steamrollerpicnic.com/
10 http://www.recipeamerica.com/picnic.htm

(b) Top 10 results for weighted popularity after
detecting link farms.

Table 4: Results for query picnic.

has significantly larger values in the “quite relevant” and
“relevant” categories than Kleinberg’s original HITS. If we
combine the first two categories, we can say that our tech-
nique has a precision at rank 10 of 72.6% versus HITS with
23.6% and BHITS 42.8%. This shows that our algorithm
generates more relevant top 10 ranking lists for the queries.
Moreover, in Figure 5, we find that our approach out-scores
BHITS for the majority of queries.

To test the correctness of our algorithm, we check how
users think of the sites that our algorithm marked bad.
From the evaluation data base, we select URLs that have
been marked bad by our algorithm. The distribution of user
opinions is in Table 6. While users marked approximately
85% of those nodes as irrelevant, we should point out that in
some cases, a node that employes link spamming techniques
may still be relevant (and perhaps even authoritative) for
a given query. We discuss this issue further in subsection
5.4 where we also provide a few specific examples of this
situation.

Since we have a seed selection step and expansion step,
in order to show that the expansion step is necessary, we

Category HITS BHITS OURS

quite relevant 12.9% 24.5% 47.1%
relevant 10.7% 18.3% 25.5%
not sure 6.6% 10.5% 7.3%

not relevant 26.8% 14.8% 12.0%
totally irrelevant 42.8% 31.9% 7.8%

Table 5: Evaluation results.

A. IBM research center

B. US open tennis
C. aerospace defense

D. art history
E. California lottery
F. hand games

G. healthcare

H. image processing
I. jennifer lopez

J. picnic
K. rental car

L. super bowl
M. table tennis
N. teen health

O. translation online

P. trim spa
Q. weather

R. web browser
S. web proxy
T. wine

Figure 5: Query-specific retrieval performance.

calculated the statistics for the data without using the ex-
pansion step. The results are in Table 7. The sum of “quite
relevant” and “relevant” is only 70.7%, which is lower than
72.6%, generated with the expansion step.

Some may argue that the pages pointing to bad pages
are not necessarily bad themselves. In order to test this
argument, we also tried a new expansion step — in order to
be marked bad, a node not only needs to point to at least
the number of bad sites, but also should be pointed back by
some of these bad sites. We did tests that require the node
to be referenced by at least one bad site besides pointing to
three bad sites for us to mark it bad in the expansion step.
Intuitively, fewer sites will be marked bad this time because
stronger conditions must be met for a node to be marked
bad this time. But the evaluation shows that this new step
does not generate better results and even generates slightly
worse results (when the top 30 results are considered). So
in our experiments we still use the expansion step algorithm
shown in Figure 4.

The selection of a threshold is also a problem in our algo-
rithms. In order to show the effect of different thresholds, we
used different thresholds for the seed selection step and ex-
pansion step. For each of them, we tried six different values,
from 2 to 7. Altogether, we tried 36 different combinations
of thresholds. The user evaluation of the accuracy of us-
ing different thresholds are shown in Figure 6. It is obvious
that with larger threshold, fewer sites will be marked and so
more spam sites may occupy the top ranking positions. As
we can tell, the accuracy is decreasing with the increasing
value of the threshold.

Opinion Percentage

quite relevant 5.4%
relevant 4.8%
not sure 4.1%

not relevant 23.7%
totally irrelevant 61.7%

Table 6: User evaluation for sites marked as bad.
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Figure 6: Retrieval performance as thresholds vary.

5.4 Results for search.ch data
In order to show that our algorithm is also useful for global

ranking algorithms, such as PageRank, we applied our algo-
rithm on the search.ch data set.

If we set the threshold both to be 3 for the initial seed
set selection step and the expansion step, 27,568 sites were
identified in the seed set selection step and an additional
42,833 sites were marked during the expansion step.

We calculated PageRank for both the original domain ma-
trix and the domain matrix after dropping the links between
the nodes that have been marked by our algorithm.

First, we show the distribution of 70,401 bad sites for
the two domain matrices. We put the nodes into 10 buck-
ets according to their PageRank value, and the sum of the
nodes PageRank value of each bucket equal to 10% the to-
tal PageRank value for the whole graph. We organize this
with a decreasing order, i.e., the nodes in bucket 1 have the
highest PageRank value and the nodes in bucket 10 have
the lowest PageRank value. Figure 7 shows the distribution
of the number of nodes within each bucket. The light bar
represents the distribution for the original domain graph;
the dark bar represents the distribution for the domain ma-
trix after dropping links among the bad sites marked by our
algorithm.

The philosophy of our algorithm is to find densely con-
nected components of the web graph and drop links among
them because we believe that the links from these densely
connected components is not objective enough to be a
good vote. If the Web site is truly good, the links from
other sites out of the community will still make the site
ranked high. In Figure 7, we see that there are nodes,
though marked bad by our algorithm, in each bucket that
do not move for the two domain matrix calculation. Ide-
ally, these sites should be the ones that do not rely on
the densely connected components to get rank. To verify

Opinion Percentage

quite relevant 45.9%
relevant 24.8%
not sure 7.8%

not relevant 13%
totally irrelevant 8.3%

Table 7: Users evaluation for results calculated with

only seed set.

Figure 7: Distribution of sites marked by our algo-

rithm.

this, we manually checked the 52 nodes that remain in the
first bucket. Almost all of them are good sites. For ex-
ample, the domain http://www.admin.ch/ is the Author-
ities of the Swiss Confederation web site and should be
ranked very high. Our algorithm marked it bad because it
points to the sites like http://www.snl.ch/ (Swiss National
Library), http://www.zivil-dienst.ch/ (Civilian service)
and http://www.swiss-energy.ch/ (Federal Office for En-
ergy) and all these sites point back to admin.ch. Obviously
all these sites are government sites and they link to each
other for political and administration reasons, not necessar-
ily for authority vote. Even though our algorithm dropped
these links, the admin.ch is still ranked in the top bucket for
the whole data set.

We also obtained a list of spamming domains from the
search.ch company. They listed 732 sites as spam sites.
Among them, 728 are found during the seed set selection
step and two more are identified with the expansion step.
We also draw a distribution of these 732 sites for the do-
main matrix before using our algorithm and after using our
algorithm. Figure 8 has similar buckets as Figure 7, but
we use percentage instead of absolute number. As we can
tell, the light color bars, which represents the percentage of
these spam sites for the original domain matrix, have a more
even distribution among buckets from 5 to 8, while the dark
color bars, which represents the percentage after using our
algorithm, have much higher value in the last two buckets.
This shows most of the spam sites are moved to the lowest
level after using our algorithm.

Figure 8: Distribution of sites on the blacklist.
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6. CONCLUSION AND DISCUSSION
This paper has demonstrated the utility of our technique

of finding and expanding upon a seed set of likely spamming
pages.

One issue to discuss is that it is appropriate to punish links
among link farms, but not good to punish some web pages.
For example, most of the URLs in Table 2(c) are well-known
companies. They are not good for the query IBM research

center, but they are quite good for a query like jupiter media.
So, we should not remove these web sites from the index
just because they link with each other, but it makes sense
to delete links among the pages in Table 2(c) to prevent
them from getting authority value from collaborators. These
pages should only get votes from pages outside their business
in the ranking system. If many other pages point to them,
they will still be ranked high and be hit for queries like
jupiter media.

One weakness of the algorithms in this paper is that du-
plicate pages cannot be detected. For example, often pages
in dmoz.com will be copied many times, but these pages
do not connect with each other so we do not mark them
as spam. As a result of the duplication, the targets cited
by these pages will be ranked highly. In general, duplicate
pages should be eliminated before using our algorithm to
generate better ranking (e.g., using methods from [9, 5]).
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