
Crawling a Country: Better Strategies
than Breadth-First for Web Page Ordering

Ricardo Baeza-Yates
Center for Web Research

Universidad de Chile

rbaeza@dcc.uchile.cl

Carlos Castillo
Center for Web Research

Universidad de Chile

ccastillo@dcc.uchile.cl

Mauricio Marin
Center for Web Research

Universidad de Magallanes

mauricio.marin@umag.cl

Andrea Rodriguez
Center for Web Research

Universidad de Concepción

andrea@udec.cl

ABSTRACT
This article compares several page ordering strategies for
Web crawling under several metrics. The objective of these
strategies is to download the most “important” pages “early”
during the crawl. As the coverage of modern search engines
is small compared to the size of the Web, and it is impossi-
ble to index all of the Web for both theoretical and practical
reasons, it is relevant to index at least the most important
pages.

We use data from actual Web pages to build Web graphs
and execute a crawler simulator on those graphs. As the
Web is very dynamic, crawling simulation is the only way to
ensure that all the strategies considered are compared un-
der the same conditions. We propose several page ordering
strategies that are more efficient than breadth-first search
and strategies based on partial Pagerank calculations.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—performance evaluation; H.3.5 [Information
Storage and Retrieval]: Online Information Services—
web-based services

General Terms
Measurement, Performance, Experimentation

Keywords
Web crawler, Scheduling policy, Web page importance

1. INTRODUCTION
Web crawlers work by downloading millions or billions of

Web pages, recursively following links to create a repository
of pages. This repository of pages is indexed and used for
Web search, or it can be analyzed for Web characterization.

If a crawler is able to download completely a finite set of
pages, then any crawling order is good, because at the end

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005,, May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

all the pages will be downloaded. This is not the case for
real Web crawlers, which usually are not able to download
all of the Web, mainly due to the following reasons:

1. Network bandwidth and disk space of the Web
crawler are neither infinite nor free. The current size
of Google’s index is of more than 8 × 109 pages. If the
average page size is about 15 kB, then the crawling cost
could be around 4 million dollars for a full crawl [24] if we
only consider network costs. Given that not all pages are of
equal quality, there is a motivation for downloading just the
most important ones.

2. Pages change over time, and a Web crawler’s
copy of the Web becomes quickly obsolete. Crawling
the Web resembles, to some extent, watching the sky on a
clear night [8]. The stars we see never existed simultaneously
as we are seeing them, as the light takes different times
to reach our eyes. In the same way, pages are crawled at
different times, and the search engine’s collection is not a
snapshot of the Web. Some pages can disappear or change
by the time they are presented to a user as search results,
in the same way as some stars we see in the sky were gone
long ago.

In the case of stars we are limited by the speed of light
and the large distances, but in Web crawling we can re-crawl
Web pages if we are uncertain about their current status. So,
at some point we can no longer continue downloading only
new pages and we have to start downloading –or at least
verifying– some of the pages we have already seen. Also,
this is the only way to find new URLs.

3. The amount of information on the Web is finite,
but the number of pages is infinite.

If we define “Web page” as everything that has an URL,
then the number of Web pages is infinite [7], due to dynamic
pages, and then a crawling process never ends. What we do
is to limit the amount of dynamic pages downloaded from
any given server in an attempt to make the Web finite.

Our motivation is to develop a scheduling policy for down-
loading pages from the Web which guarantees that, even if
we do not download all of the known pages, we still download
the most “valuable” ones. As the number of pages grows,
it will be increasingly important to download the “better”
ones first, as it will be impossible to download them all.

864

This not only tries to minimize crawling time with respect
to some measure of page quality, but also reduces the real
cost of crawling.

The main contributions of this paper are the following:

• To the best of our knowledge, this is the most compre-
hensive comparison of crawling strategies published so
far.

• It proposes new strategies with better performance
than the well-known breadth-first and partial Pager-
ank ones.

• It proposes strategies which use historical information
to conduct the crawling process. By “historical” we
mean global Pagerank information calculated from the
previous crawling of the same Web.

The next section outlines previous work in the subject of
Web crawlers and Web crawling scheduling. Section 3 de-
scribes the importance metric and the crawling framework
we used in our experiments. Section 4 introduces the page
ordering strategies, which are then tested in Section 5. Fi-
nally, Section 6 presents our conclusions and directions for
future work.

2. PREVIOUS WORK
Web crawlers are a central part of search engines, and

details on their crawling algorithms are kept as business se-
crets. When algorithms are published, there is often an
important lack of details that prevents others from repro-
ducing the work. There are also concerns about “search en-
gine spamming”, which prevent major search engines from
publishing their ranking and crawling algorithms.

2.1 Web crawler architectures
Some descriptions of crawlers (in chronological order) in-

clude: RBSE [32], the WebCrawler [49], the World Wide
Web Worm [41], the crawler of the Internet Archive [15],
the personal search agent SPHINX [44], an early version of
the Google crawler [13], the CobWeb [26], Mercator, a mod-
ular crawler [38], Salticus [14], the WebFountain incremen-
tal crawler [31], the PolyBot parallel crawler [52], a crawler
module implemented in WebRACE [58], the decentralized
Ubicrawler [10], the crawler of the FAST search engine [51],
the WIRE crawler [6] which was used for this research and
the Dominos crawler [35].

In addition to the specific crawling architectures listed
above, there are general crawler architectures in the liter-
ature, including a parallel crawler architecture by Cho [21]
and a general crawler architecture described by Chakrabarti
[17]. Finally, some crawlers released under the GNU public
license include Larbin [4], WebBase [27] and HT://Dig [2].

Besides architectural issues, studies about Web crawling
have focused on parallelism [21, 52], discovery and control of
crawlers for Web site administrators [54, 53, 1, 40], access-
ing content behind forms (the “hidden” web) [50], detecting
mirrors [23], keeping the freshness of the search engine copy
high [30, 20, 25, 5], focused crawling [37, 18, 42, 28, 43] and
Web server cooperation [12, 48].

2.2 Web crawling ordering
Cho et al. [22] made the first study on policies for crawl-

ing scheduling. Their data set was a 180,000-pages crawl

from the stanford.edu domain, in which a crawling sim-
ulation was done with different strategies. The ordering
metrics tested were breadth-first, backlink-count and par-
tial Pagerank, which are explained later in this article. One
of the conclusions was that if the crawler wants to download
pages with high Pagerank early during the crawling process,
then the partial Pagerank strategy is the better, followed by
breadth-first and backlink-count. However, these results are
for just a single domain.

Najork and Wiener [45] performed an actual crawl on
328 million pages, using breadth-first ordering. They found
that a breadth-first crawl captures pages with high Pager-
ank early in the crawl, but they did not attempt to compare
it to other strategies.

Abiteboul et al. [3] designed a crawling strategy based on
an algorithm called OPIC (On-line Page Importance Com-
putation). In OPIC, each page is given an initial sum of
“cash” which is distributed equally among the pages it points
to. It is similar to a Pagerank computation, but it is faster
and is done just in one step. An OPIC-driven crawler down-
loads first the pages in the crawling frontier with higher
amounts of “cash”. Experiments were carried in a 100,000-
pages synthetic graph with a power-law distribution of in-
links. However, there was no comparison with other strate-
gies nor experiments in the real Web.

Boldi et al. [11] used simulation on subsets of the Web
of 40 million pages from the .it domain and 100 million
pages from the WebBase crawl, testing breadth-first against
random ordering and an omniscient strategy. The winning
strategy was breadth-first, although a random ordering also
performed surprisingly well. One problem is that the Web-
Base crawl is biased to the crawler used to gather the data.
They also showed that Pagerank calculations carried on par-
tial subgraphs of the Web give a bad approximation of the
actual Pagerank values.

This paper complements the results presented in [16] –
which include an evaluation of some crawling strategies on
the Chilean Web– by comparing a wider range of strategies
in a larger dataset and by including time in the analysis,
proposing strategies which use historical information, as well
as the Kendall’s τ metric in the evaluation.

3. METHODOLOGY
We downloaded subsets of the Web graph (complete coun-

try domains to avoid biasing the crawled data) using a Web
crawler, and then simulated different strategies. In this sec-
tion, we define the importance metric and the crawling ar-
chitecture.

3.1 Page importance metric: Pagerank
Our goal is to download “important” pages first. We use

the Pagerank score as a metric of importance of Web pages.
The Pagerank algorithm was introduced by Page et al. [47],
and has a recursive definition stating in simple terms that
“a page with high Pagerank is a page referenced by many
pages with high Pagerank”.

To calculate the Pagerank, each page on the Web is mod-
eled as a state in a system, and each hyperlink as a transi-
tion between two states. The Pagerank value of a page is
the probability of being in a given page when this system
reaches its stationary state. A good metaphor for under-
standing this is to think in terms of a “random surfer”, a
person who visits pages at random, and upon arrival to each

865

page, chooses an outgoing link uniformly at random from the
links in that page. The Pagerank of a page is the fraction
of time the random surfer spends at each page.

However, actual Web graphs include many pages with no
out-links, which act as “rank sinks” as they accumulate rank
but never distribute it to other pages. Also, we would not
like pages to accumulate ranking, by not passing all of their
score to other pages. For these reasons, most of the im-
plementations of Pagerank add “random jumps” from every
page to all pages in the collection, including itself.

In terms of the random surfer model, we can state that
when choosing the next step, the random surfer either
chooses a page at random from the collection with prob-
ability ε, or chooses to follow a link from the current page
with probability 1 − ε. This is the model used for calculat-
ing Pagerank in practice, and it is described by the following
equation:

Pagerank(p) =
ε

N
+ (1 − ε)

�

x∈Γ−(p)

Pagerank(x)

|Γ+(x)|
(1)

where N is the number of pages in the collection, and the
parameter ε is typically between 0.1 and 0.2 (we used 0.15),
based on empirical evidence. Pagerank is a global, static
measure of quality of a Web page, very efficient in terms of
computation time, as it only has to be calculated once at
indexing time and is later used repeatedly at query time.

Note that Pagerank can be maliciously manipulated and
in fact there are thousands or millions of Web pages created
specifically for the objective of deceiving the overall ranking
function [33]. Pagerank by itself cannot be used as the only
quality metric in real Web search, and some modifications to
the algorithm can be made to reduce the impact of collusion
[59]. Also, Pagerank might miss some high quality pages as
it is biased towards older pages [9]. However, Pagerank is a
good measure of page quality, better than just counting the
number of in-links, is used in global-scale search engines,
and in our case, and in general, it was impractical to get
human judgments (or reliable page traffic statistics) for a
significant fraction of the pages.

3.2 Crawling simulator
A valid download order for a Web crawler must obey some

restrictions. The most important self-imposed restriction for
Web crawlers is that they must not overload the Web sites
they visit [40].

Web crawlers operate with a high degree of parallelism,
opening hundreds or thousands of HTTP connections simul-
taneously, so a Web crawler could potentially overload a
Web site with requests. To avoid overloading Web sites,
Web crawlers usually download at most one page from a
given Web site at a given time, and wait a certain period
of time between two accesses to the same site. The exact
waiting time w is usually a few seconds. Anecdotal evi-
dence from the crawlers of known search engines in access
log files shows varying access intervals, from 20 seconds to
3–4 minutes, and we use w = 15 seconds as a default in both
simulation and actual Web crawls.

To comply with these restrictions, it is customary to main-
tain a queue of Web sites, and for each Web site a queue of
pages to download. This is depicted in Figure 1.

The crawling simulator receives as an input a Web graph
representing links between pages; URLs pointing to non ex-
istent pages, or to pages with errors are not included in this

Figure 1: Operation of a crawler. There is a queue
for each Web site with at most one connection to
each active Web site (sites 2, 4, and 6). Some Web
sites are “idle”, because they have transfered pages
too recently (sites 1, 5, and 7) or because they have
exhausted all of their pages to download (3).

graph. We have observed that they are about 15% of the
links found. The crawling simulator uses this information to
build a heap priority queue with nodes representing sites.

For each site-node we have another heap representing the
pages in the Web site, as depicted in Figure 2.

Figure 2: Queues used for the scheduling.

At each simulation step, the scheduler chooses the top-
most Web site from the queue of Web sites and sends this
site’s information to a module that will simulate download-
ing pages from the Web site. The page sizes, distribution
of speeds and latencies can also be provided as an input to
the simulator, although for the experiments with the simu-
lator described in this paper we were only interested in the
crawling order, and not in the total crawling time.

The crawler keeps a list of at most r actuve connections
to Web sites, and simulates (possible) bandwidth saturation
using the number of current transfers, their speeds and the
bandwidth of the simulated link. Note that, as shown in
Figure 1, r is bound by the number of active Web sites, so
crawling performance can drop dramatically if the latter is
too small. Being careful about this leads to one of the best
heuristics, as shown later.

866

4. PAGE ORDERING STRATEGIES
The most important problem of a page ordering strategy

is that it must work with partial information, because the
“complete” graph is only known by the end of the crawling.
However, if we are repeating a crawl, that is, if we are crawl-
ing a portion of the Web which was already crawled a few
weeks or a few months ago, we have historical information
available. This is typically the case for a search engine and
the historical information can be used to direct the crawl
towards pages which had a high Pagerank in the last crawl.

The schedule is done using an estimation of page quality.
This estimation can also be combined with page changes
information, because in some cases a crawler might want to
bias the download schedule towards both high-quality and
fast-changing pages [6].

We consider three types of strategies regarding how much
information they can use: no extra information, historical
information, and all the information. A random ordering
can be considered a baseline for comparison. In that case,
the Pagerank is expected to grow approximately linearly
with the number of pages crawled.

4.1 Strategies with no extra information
Breadth-first Under this strategy, the crawler visits the

pages in breadth-first ordering. It starts by visiting all the
home pages of all the “seed” Web sites, and Web page heaps
are kept in such a way that new pages added go at the end.
This is the same strategy tested by Najork and Wiener [45],
which in their experiments showed to capture high-quality
pages first.

Backlink-count This strategy crawls first the pages with
the highest number of links pointing to it, so the next page
to be crawled is the most linked from the pages already
downloaded. This strategy was described by Cho et al. [22].

Batch-pagerank This strategy calculates an estimation
of Pagerank, using the pages seen so far, every K pages
downloaded. The next K pages to download are the pages
with the highest estimated Pagerank. We used K = 100, 000
pages, which in our case gives about 30 to 40 Pagerank cal-
culations during the crawl. This strategy was also stud-
ied by Cho et al. [22], and it was found to be better than
backlink-count. However, Boldi et al. [11] showed that the
approximations of Pagerank using partial graphs can be very
inexact.

Partial-pagerank This is like batch-pagerank, but in be-
tween Pagerank re-calculations, a temporary pagerank is as-
signed to new pages using the sum of the Pagerank of the
pages pointing to it divided by the number of out-links of
those pages.

OPIC This strategy is based on OPIC [3], which can
be seen as a weighted backlink-count strategy. All pages
start with the same amount of “cash”. Every time a page
is crawled, its “cash” is split among the pages it links to.
The priority of an uncrawled page is the sum of the “cash”
it has received from the pages pointing to it. This strategy
is similar to Pagerank, but has no random links and the
calculation is not iterative – so it is much faster.

Larger-sites-first The goal of this strategy is to avoid
having too many pending pages in any Web site, to avoid
having at the end only a small number of large Web sites
that may lead to spare time due to the “do not overload”
rule. The crawler uses the number of un-crawled pages found
so far as the priority for picking a Web site, and starts with

the sites with the larger number of pending pages. We in-
troduced this strategy in [16] and was found to be better
than breadth-first.

4.2 Strategies with historical information
These strategies use the Pagerank of a previous crawl as

an estimation of the Pagerank in this crawl, and start in
the pages with a high Pagerank in the last crawl. This is
only an approximation because Pagerank can change: Cho
and Adams [19] report that the average relative error for
estimating the Pagerank four months ahead is about 78%.
Also, a study by Ntoulas et. al [46] reports that “the link
structure of the Web is significantly more dynamic than the
contents on the Web. Every week, about 25% new links are
created”.

We explore a number of strategies to deal with the pages
found in the current crawl which were not found in the pre-
vious one:

Historical-pagerank-omniscient New pages are as-
signed a Pagerank taken from an oracle that knows the full
graph.

Historical-pagerank-random New pages are assigned
a Pagerank value selected uniformly at random among the
values obtained in previous crawl.

Historical-pagerank-zero New pages are assigned
Pagerank zero, i.e., old pages are crawled first, then new
pages are crawled.

Historical-pagerank-parent New pages are assigned
the Pagerank of the parent page (the page in which the link
was found) divided by the number of out-links of the parent
page.

It is likely that modern Web search engines use historical
information to some extent, but to the best of our knowledge
neither the exact mechanism nor the performance have been
published so far.

4.3 Strategy with all the information
Omniscient: this strategy can query an “oracle” which

knows the complete Web graph and has calculated the actual
Pagerank of each page. Every time the omniscient strategy
needs to prioritize a download, it asks the oracle and down-
loads the page with the highest ranking in its frontier. Note
that this strategy is bound to the same restrictions as the
others, and can only download a page if it has already down-
loaded a page that points to it.

5. EXPERIMENTS
In this section we describe the experiments done with the

crawler simulator and the ordering strategies described in
the previous section.

5.1 Datasets: .cl and .gr
We worked with two datasets that correspond to pages un-

der the .cl (Chile) and .gr (Greek) top-level domains. We
downloaded pages using the WIRE crawler [6] in breadth-
first mode, including both static and dynamic pages. While
following links, we stopped at depth 5 for dynamic pages
and 15 for static pages – we use an heuristic to detect most
of the dynamic pages based on known filename extensions
and searching for a question mark in the URL. We also lim-
ited the crawler to download at most 25,000 pages from each
Web site.

867

We made two complete crawls on each domain, as we said
before, to avoid biasing the data to the crawling order. We
did it in April and May for Chile, and in May and Septem-
ber for Greece. The summary of the characteristics of the
collection, as well as some demographic information about
the two countries are presented in Table 5.1.

Table 1: Summary of characteristics.
Greece Chile

Population [56] 10.9 Million 15.2 Million
GDP [55] 133 US$ bn. 66 US$ bn.

Per-capita GDP [55] 17,697 US$ 10,373 US$
Human development [57] 24th 43th

Web servers contacted 29,000-31,000 50,000-51,000
Pages with HTTP OK 3.4-3.6 Mill. 2.4-2.8 Mill

Both datasets are comparable in terms of the number of
Web pages, but there are wide differences in terms of geog-
raphy, language, demographics, history, etc. Dill et al. [29]
studied several sub-sets of the Web, and found that the Web
graph is self-similar in several senses and at several scales,
and that this self-similarity is pervasive, as it holds for a
number of different parameters. Note than a large sub-set
of the whole Web (and any non-closed subset of the Web)
is always biased by the strategy used to crawl it. Top-level
domains are useful because they represent pages sharing a
common cultural context; we consider that they are more
useful than large Web sites because pages in a Web site are
more homogeneous. Obviously, different top-level domains
differ in some aspects, for instance, related to the prevalence
of spam pages, but while spam pages appear as anomalies
in the histogram of in-degree or out-degree, the overall dis-
tribution still follows a power-law [34].

5.2 Performance metrics
Our importance metric is Pagerank. Thus, for evaluat-

ing different strategies, we calculated the Pagerank value of
every page in each Web graph and used those values to cal-
culate the evolution of the Pagerank as the simulated crawl
goes by. We recall that although Pagerank is not the best
measure, there is no other practical choice.

We used three measures of performance: cumulative Page-
rank, average Pagerank and Kendall’s τ .

Cumulative Pagerank: we plotted the sum of the
Pagerank of downloaded pages at different points of the
crawling process. The strategies which are able to reach val-
ues close to the target total value 1.0 faster are considered
the most efficient ones. A strategy which selects random
pages to crawl will produce a diagonal line in this graph.

There is an upper bound on how well this can be done,
and it is given by the distribution of Pagerank, which is
shown in Figure 3.

The results for the different strategies are shown in Figure
4; in this simulation we are using r = 1, one robot at a time,
because we are not interested in the time for downloading
the full Web, but just in the crawling order.

Obviously the omniscient has the best performance, but
it is in some sense too greedy because by the last stages
of the crawl it performs close to random. Note that other
strategies can perform better than the omniscient strategy
at the end of the crawl, because all strategies are bound
to the same restrictions about being polite with Web sites,

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

Pa
ge

ra
nk

Fraction of documents

Chile
Greece

Figure 3: Cumulative Pagerank in the .CL and .GR

domain, showing almost exactly the same distribu-
tion; these curves represents an upper bound on the
cumulative Pagerank of any crawling strategy.

and therefore, downloading all the “good” pages too early
leads to reducing too much the list of available Web sites
and reduces the performance in the last stages of the crawl.

On the other end, backlink-count and partial-pagerank are
the worst strategy according to cumulative Pagerank, and
perform worser than a random crawl. They both tend to
get stuck in pages that are locally optimal, and then fail to
discover other pages.

Breadth-first is close to the best strategies for the first
20-30% of pages, but after that it becomes less efficient.

The strategies batch-pagerank, larger-sites-first and OPIC
have better performance than the other strategies, with an
advantage towards larger-sites-first when the desired cover-
age is high. These strategies can retrieve about half of the
Pagerank value of their domains downloading only around
20-30% of the pages.

We tested the historical-pagerank strategies in the Greek
Web graph of September, using the Pagerank calculated in
May for guiding the crawl – we are using Pagerank that is
4 months old. We were able to use the Pagerank of the old
crawl (May) for only 55% of the pages, as the other 45% of
pages were new pages, or were not crawled in May.

Figure 5 shows results for a number of ways of dealing
with the above 45% of pages along with results for the same
Web graph but using the OPIC strategy for comparison.
These results show that the May Pagerank values are not
detrimental to the crawl of September.

The OPIC has a bad performance at the beginning of the
crawl, but it improves as more link information is gathered
as the crawl goes by. The historical-pagerank-random strat-
egy has a good performance, despite of the fact that the Web
graph is very dynamic [46], and than on average it is diffi-
cult to estimate the Pagerank using historical information
[19]. A possible explanation is that the ordering of pages by
Pagerank changes more slowly and in particular the pages
with high ranking have a more stable position in the rank-
ing than the pages with low ranking, which exhibit a larger
variability. Also, as Pagerank is biased towards old pages
[9], 55% of pages that already existed in May account for
72% of the total Pagerank in September.

Average Cumulative Pagerank: this is the average
across the entire crawl. As we have normalized the cumu-
lative Pagerank as a fraction of documents, it is equivalent

868

Chile, April 2004

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 P

ag
er

an
k

Fraction of pages

Omniscient
Larger-sites-first

OPIC
Breadth-first

Batch-pagerank
Partial-pagerank
Backlink-count

Chile, May 2004

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 P

ag
er

an
k

Fraction of pages

Omniscient
Larger-sites-first

OPIC
Breadth-first

Batch-pagerank
Partial-pagerank
Backlink-count

Greece, May 2004

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 P

ag
er

an
k

Fraction of pages

Omniscient
Larger-sites-first

OPIC
Breadth-first

Batch-pagerank
Partial-pagerank
Backlink-count

Greece, Sep 2004

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 P

ag
er

an
k

Fraction of pages

Omniscient
Larger-sites-first

OPIC
Breadth-first

Batch-pagerank
Partial-pagerank
Backlink-count

Figure 4: Comparison of cumulative Pagerank vs re-
trieved pages with the different strategies, excluding
the historical strategies.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 P

ag
er

an
k

Fraction of pages

OPIC
Omniscient

Historical-Pagerank-Omniscient
Historical-Pagerank-Parent

Historical-Pagerank-Random
Historical-Pagerank-Zero

Figure 5: Comparison of cumulative Pagerank using
the historical strategies against the omniscient and
OPIC strategies, for a crawl of the Greek Web in
September 2004, using Pagerank information from
May 2004.

to the area under the curves shown in Figure 4. The his-
torical strategies are better than OPIC, mostly because of
OPIC’s poorer performance at the beginning of the crawl.
The result is presented in Table 2, in which we have calcu-
lated the average of the strategies across the four collections
(note that the historical-pagerank strategies were tested in a
single pair of collections, so their values are not average val-
ues). We can see that the strategies with history marginally
improve (at most 3%) OPIC and larger-sites-first (leaving
out the omniscient ones).

Kendall’s Tau: this is a metric for the correlation be-
tween two ranked lists, which basically measures the number
of pairwise inversions in the two lists [39]. Two identical lists
have τ = 1, while two totally uncorrelated lists have τ = 0
and reversed lists have τ = −1. We calculated this coeffi-
cient for a 5000-page sample of the page ordering in each
strategy, against the same pages when pages were ordered
by Pagerank. The results are shown in Table 2. In this
case larger-sites-first is the best of the strategies without
history, and historical-pagerank-random otherwise (without
taking in account the omniscient ones).

We attempted to measure estimated search length for dif-
ferent page percentiles, for instance, measuring how many
page downloads are necessary to get the top 10% of pages.
However, this kind of measure is very sensitive to small vari-
ations, such as having a single high-quality page downloaded
by the end of the crawl.

5.3 Validation
We performed two actual crawls using WIRE [6] in two

consecutive weeks in the .GR domain, using Breadth-first and
Larger-sites-first. We ran the crawler in a single Intel PC of
3.06GHz with 1Gb of RAM under Linux, in batches of up to
200,000 pages, using up to r = 1000 simultaneous network
connections, with w = 5 seconds between accesses to the
same Web site, and increasing to w = 15 for sites with less
than 100 pages.

869

Table 2: Comparison of the scheduling strategies,
considering average cumulative Pagerank during the
crawl and Kendall’s τ of the page ordering against
the optimal ordering.

Strategy Avg. Pagerank ±σ τ

Backlink-count 0.50 ± 0.01 0.0157
Partial-pagerank 0.52 ± 0.01 0.0236

Breadth-first 0.64 ± 0.04 0.1293
Batch-pagerank 0.63 ± 0.03 0.1961

OPIC 0.67 ± 0.03 0.2229
Larger-sites-first 0.67 ± 0.01 0.2498

Hist.-pr-zero 0.68 0.3573
Hist.-pr-random 0.70 0.3689
Hist.-pr-parent 0.70 0.3520
Hist.-pr-omni. 0.77 0.6385
Omniscient 0.74 ± 0.04 0.6504

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4

C
um

ul
at

iv
e

Fr
ac

tio
n

Day of crawling

PR Breadth-first
PR Larger-sites-first
Docs. Breadth-first

Docs. Larger-sites-first

Figure 6: Cumulative Pagerank (PR) and cumula-
tive fraction of documents (Docs.) of an actual crawl
of the .GR domain using two strategies: Breadth-

first and Larger-sites-first.

In the case of an actual Web crawl, we are interested in
the time variable, as it is worthless to download pages in the
right order if they cannot be downloaded fast. We calculated
the Pagerank of all the pages in the collection when the
crawling was completed and then measured how much of the
total Pagerank was covered during each batch. The results
are shown in Figure 6.

Both crawling strategies are efficient in terms of download-
ing the valuable pages early, but larger-sites-first is faster in
both downloading documents and downloading Pagerank.
This strategy “saves” several small Web sites for the middle
and end part of the crawl.

6. CONCLUSIONS
Most of the strategies tested were able to download impor-

tant pages first. As shown in [11], even a random strategy
can perform well on the Web, in the sense that a random
walk on the Web is biased towards pages with high Pager-
ank [36]. However, there are differences in how quickly high-
quality pages are found depending on the ordering of pages.

The historical-pagerank family of strategies were very
good, and in case of no historical information available,
both OPIC and larger-sites-first are our recommendations
and their performance is similar. Breadth-first has a bad
performance compared with these strategies; batch-pagerank
requires to do a full Pagerank computation several times
during the crawl, which is computationally very expensive,
and the performance is not better than simpler strategies.

Notice that the larger-sites-first strategy has practical ad-
vantages over the OPIC strategy. First, it requires less com-
putation time, and also does not require keeping a count of
weighted in-links to a given page as OPIC does. The latter
is relevant when we think of distributed crawlers as no com-
munication between computers is required to exchange these
data during the crawling process. Thus larger-sites-first has
better scalability making it more suitable for large scale dis-
tributed crawlers. In a real setting, this strategy should
include mechanisms to avoid spam pages, such as checking
for near-duplicate pages to avoid giving too much ranking
to sites that create artificial loops with dynamic pages to
inflate their page count.

Our results are more useful for crawls in the order of 10-
100 million pages –very large intranets, national domains,
and other subsets of the Web. In a large-scale setting of bil-
lions of pages, keeping a heap of Web pages in main mem-
ory is impossible, and keeping a heap of Web sites might
be very expensive. In those cases, using historical informa-
tion to guide the crawl might be a good alternative to avoid
downloading pages in random order.

One remaining open problem is how to compare the time
efficiency of crawlers. This has been done for the computa-
tional overhead of different focused crawling strategies [43],
but the downloading module has been explicitly left out.
For example, it is not enough to define a measure of bytes
downloaded per second and Mbs of bandwidth, for some
standardized PC configuration (GHz and RAM). We also
need a standardized set of sites and a fixed standard server,
which not only allows to compare crawlers in the same ma-
chine, but also with exactly the same connectivity.

Acknowledgments
We acknowledge the support of the Millennium Scientific
Initiative through Grant P01-029-F of Mideplan. We thank
Efthimis Efthimiadis from Univ. of Washington for the ini-
tial seeds for the Greek domain.

7. REFERENCES
[1] Robotcop. www.robotcop.org, 2002.

[2] HT://Dig. http://www.htdig.org/, 2004. GPL
software.

[3] S. Abiteboul, M. Preda, and G. Cobena. Adaptive
on-line page importance computation. In Proceedings
of the twelfth international conference on World Wide
Web, pages 280–290. ACM Press, 2003.

[4] S. Ailleret. Larbin.
http://larbin.sourceforge.net/index-eng.html, 2004.
GPL software.

[5] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and
S. Raghavan. Searching the Web. ACM Transactions
on Internet Technology (TOIT), 1(1):2–43, August
2001.

[6] R. Baeza-Yates and C. Castillo. Balancing volume,
quality and freshness in web crawling. In Soft

870

Computing Systems - Design, Management and
Applications, pages 565–572, Santiago, Chile, 2002.
IOS Press Amsterdam.

[7] R. Baeza-Yates and C. Castillo. Crawling the infinite
Web: five levels are enough. In Proceedings of the third
Workshop on Web Graphs (WAW), volume 3243 of
Lecture Notes in Computer Science, pages 156–167,
Rome, Italy, October 2004. Springer.

[8] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. ACM Press / Addison-Wesley,
1999.

[9] R. Baeza-Yates, F. Saint-Jean, and C. Castillo. Web
structure, dynamics and page quality. In Proceedings
of String Processing and Information Retrieval
(SPIRE), volume 2476 of Lecture Notes in Computer
Science, pages 117 – 132, Lisbon, Portugal, 2002.
Springer.

[10] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
UbiCrawler: a scalable fully distributed Web crawler.
Software, Practice and Experience, 34(8):711–726,
2004.

[11] P. Boldi, M. Santini, and S. Vigna. Do your worst to
make the best: Paradoxical effects in pagerank
incremental computations. In Proceedings of the third
Workshop on Web Graphs (WAW), volume 3243 of
Lecture Notes in Computer Science, pages 168–180,
Rome, Italy, October 2004. Springer.

[12] O. Brandman, J. Cho, H. Garcia-Molina, and
N. Shivakumar. Crawler-friendly web servers. In
Proceedings of the Workshop on Performance and
Architecture of Web Servers (PAWS), Santa Clara,
California, USA, June 2000.

[13] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, April 1998.

[14] R. D. Burke. Salticus: guided crawling for personal
digital libraries. In Proceedings of the first
ACM/IEEE-CS joint conference on Digital Libraries,
pages 88–89, Roanoke, Virginia, June 2001.

[15] M. Burner. Crawling towards eternity - building an
archive of the world wide web. Web Techniques, 2(5),
May 1997.

[16] C. Castillo, M. Marin, A. Rodŕıguez, and
R. Baeza-Yates. Scheduling algorithms for Web
crawling. In Latin American Web Conference
(WebMedia/LA-WEB), pages 10–17, Riberao Preto,
Brazil, October 2004. IEEE CS Press.

[17] S. Chakrabarti. Mining the Web. Morgan Kaufmann
Publishers, 2003.

[18] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: a new approach to topic-specific
web resource discovery. Computer Networks,
31(11–16):1623–1640, 1999.

[19] J. Cho and R. Adams. Page quality: In search of an
unbiased Web ranking. Technical report, UCLA
Computer Science, 2004.

[20] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In Proceedings of ACM
International Conference on Management of Data
(SIGMOD), pages 117–128, Dallas, Texas, USA, May
2000.

[21] J. Cho and H. Garcia-Molina. Parallel crawlers. In

Proceedings of the eleventh international conference on
World Wide Web, pages 124–135, Honolulu, Hawaii,
USA, May 2002. ACM Press.

[22] J. Cho, H. Garćıa-Molina, and L. Page. Efficient
crawling through URL ordering. In Proceedings of the
seventh conference on World Wide Web. Elsevier
Science, April 1998.

[23] J. Cho, N. Shivakumar, and H. Garcia-Molina.
Finding replicated web collections. In ACM SIGMOD,
pages 355–366, 1999.

[24] N. Craswell, F. Crimmins, D. Hawking, and
A. Moffat. Performance and cost tradeoffs in web
search. In Proceedings of the 15th Australasian
Database Conference, pages 161–169, Dunedin, New
Zealand, January 2004.

[25] A. Czumaj, I. Finch, L. Gasieniec, A. Gibbons,
P. Leng, W. Rytter, and M. Zito. Efficient Web
searching using temporal factors. Theoretical
Computer Science, 262(1–2):569–582, 2001.

[26] A. S. da Silva, E. A. Veloso, P. B. Golgher, B. A.
Ribeiro-Neto, A. H. F. Laender, and N. Ziviani.
Cobweb - a crawler for the brazilian web. In
Proceedings of String Processing and Information
Retrieval (SPIRE), pages 184–191, Cancun, México,
September 1999. IEEE CS Press.

[27] L. Dacharay. WebBase.
http://freesoftware.fsf.org/webbase/, 2002. GPL
Software.

[28] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and
M. Gori. Focused crawling using context graphs. In
Proceedings of 26th International Conference on Very
Large Databases (VLDB), pages 527–534, Cairo,
Egypt, September 2000.

[29] S. Dill, R. Kumar, K. S. Mccurley, S. Rajagopalan,
D. Sivakumar, and A. Tomkins. Self-similarity in the
web. ACM Trans. Inter. Tech., 2(3):205–223, 2002.

[30] R. W. Edward G. Coffman, Z. Liu. Optimal robot
scheduling for web search engines. Journal of
Scheduling, 1(1):15–29, 1998.

[31] J. Edwards, K. S. McCurley, and J. A. Tomlin. An
adaptive model for optimizing performance of an
incremental web crawler. In Proceedings of the Tenth
Conference on World Wide Web, pages 106–113, Hong
Kong, May 2001. Elsevier Science.

[32] D. Eichmann. The RBSE spider: balancing effective
search against web load. In Proceedings of the first
World Wide Web Conference, Geneva, Switzerland,
May 1994.

[33] N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking
the web frontier. In Proceedings of the 13th
international conference on World Wide Web, pages
309–318. ACM Press, 2004.

[34] D. Fetterly, M. Manasse, and M. Najork. Spam, damn
spam, and statistics: Using statistical analysis to
locate spam Web pages. In Proceedings of the seventh
workshop on the Web and databases (WebDB), June
2004.

[35] Y. Hafri and C. Djeraba. High performance crawling
system. In Proceedings of the 6th ACM SIGMM
international workshop on Multimedia information
retrieval, pages 299–306. ACM Press, 2004.

[36] M. Henzinger, A. Heydon, M. Mitzenmacher, and

871

M. Najork. On near–uniform url sampling. In
Proceedings of the Ninth Conference on World Wide
Web, pages 295–308, Amsterdam, Netherlands, May
2000. Elsevier Science.

[37] M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg,
M. Shtalhaim, and S. Ur. The shark-search algorithm.
An application: tailored Web site mapping. In
Proceedings of the seventh conference on World Wide
Web, pages 317–326. Elsevier Science, April 1998.

[38] A. Heydon and M. Najork. Mercator: A scalable,
extensible web crawler. World Wide Web Conference,
2(4):219–229, April 1999.

[39] M. G. Kendall. Rank Correlation Methods. Griffin,
London, England, 1970.

[40] M. Koster. Robots in the web: threat or treat ?
ConneXions, 9(4), April 1995.

[41] O. A. McBryan. GENVL and WWWW: Tools for
taming the web. In Proceedings of the first World Wide
Web Conference, Geneva, Switzerland, May 1994.

[42] A. K. McCallum, K. Nigam, J. Rennie, and
K. Seymore. Automating the construction of internet
portals with machine learning. Information Retrieval,
3(2):127–163, 2000.

[43] F. Menczer, G. Pant, P. Srinivasan, and M. E. Ruiz.
Evaluating topic-driven web crawlers. In Proceedings
of the 24th conference on research and development in
information retrieval (SIGIR), pages 241–249. ACM
Press, 2001.

[44] R. Miller and K. Bharat. Sphinx: A framework for
creating personal, site-specific web crawlers. In
Proceedings of the seventh conference on World Wide
Web, Brisbane, Australia, April 1998. Elsevier Science.

[45] M. Najork and J. L. Wiener. Breadth-first crawling
yields high-quality pages. In Proceedings of the Tenth
Conference on World Wide Web, pages 114–118, Hong
Kong, May 2001. Elsevier Science.

[46] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web?: the evolution of the web from a search engine
perspective. In Proceedings of the 13th conference on
World Wide Web, pages 1 – 12, New York, NY, USA,
May 2004. ACM Press.

[47] L. Page, S. Brin, R. Motwani, and T. Winograd. The
Pagerank citation algorithm: bringing order to the
web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[48] G. Pant, S. Bradshaw, and F. Menczer. Search
engine-crawler symbiosis. In Proceedings of the
European Conference on Digital Libraries (ECDL),
volume 2769 of Lecture Notes in Computer Science,
pages 221–232. Springer, August 2003.

[49] B. Pinkerton. Finding what people want: Experiences
with the WebCrawler. In Proceedings of the first
World Wide Web Conference, Geneva, Switzerland,
May 1994.

[50] S. Raghavan and H. Garcia-Molina. Crawling the
hidden web. In Proceedings of the Twenty-seventh
International Conference on Very Large Databases
(VLDB), pages 129–138, Rome, Italy, 2001. Morgan
Kaufmann.

[51] K. M. Risvik and R. Michelsen. Search engines and
web dynamics. Computer Networks, 39(3), June 2002.

[52] V. Shkapenyuk and T. Suel. Design and
implementation of a high-performance distributed web
crawler. In Proceedings of the 18th International
Conference on Data Engineering (ICDE), pages 357 –
368, San Jose, California, February 2002. IEEE CS
Press.

[53] J. Talim, Z. Liu, P. Nain, and E. G. C. Jr. Controlling
the robots of web search engines. In Proceedings of
ACM Joint International Conference on Measurement
and Modeling of Computer Systems
(SIGMETRICS/Performance), pages 236–244,
Cambridge, Massachusetts, USA, June 2001.

[54] P.-N. Tan and V. Kumar. Discovery of web robots
session based on their navigational patterns. Data
Mining and Knowledge discovery, 6(1):9–35, 2002.

[55] The Economist. Country Profiles, 2002.

[56] United Nations. Population Division, 2002.

[57] United Nations. Human Development Reports, 2003.

[58] D. Zeinalipour-Yazti and M. D. Dikaiakos. Design and
implementation of a distributed crawler and filtering
processor. In Proceedings of the fifth Next Generation
Information Technologies and Systems (NGITS),
volume 2382 of Lecture Notes in Computer Science,
pages 58–74, Caesarea, Israel, June 2002. Springer.

[59] H. Zhang, A. Goel, R. Govindan, K. Mason, and B. V.
Roy. Making eigenvector-based reputation systems
robust to collusion. In Proceedings of the third
Workshop on Web Graphs (WAW), volume 3243 of
Lecture Notes in Computer Science, pages 92–104,
Rome, Italy, October 2004. Springer.

872

