# Κινητός και Διάχυτος Υπολογισμός (Mobile & Pervasive Computing)

Δημήτριος Κατσαρός, Ph.D.

Χειμώνας 2005

Διάλεξη 11η

12/01/200

τιήμα Μηνανικών Η/Υ. Τηλεπικοινωνιών και Δικτύων. Πανεπιστήμιο Θεσσαλία

# Ιστοσελίδα του μαθήματος

- http://skyblue.csd.auth.gr/~dimitris/courses/mpc\_fall05.htm
- http://skyblue.csd.auth.gr/~dimitris/courses/mpc\_fall05/
  - books/
  - lectures/
  - papers/
  - proj\_papers/
  - present\_papers/
- Τοποθετούνται οι διαφάνειες του επόμενου μαθήματος
- Τοποθετούνται τα research papers που αντιστοιχούν σε κάθε διάλεξη. Τα σημαντικά με πρόθεμα MUST\_BE\_READ

12/01/2000

Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

# Περιεχόμενα

- Ασύρματα Δίκτυα Αισθητήρων (Wireless Sensor Networks)
  - Πρόβλημα κάλυψης και συνδεσμικότητας σε ασύρματα δίκτυα αισθητήρων

12/01/200

Γμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

### **Coverage Problems**

- In general
  - Determine how well the sensing field is monitored or tracked by sensors.
- · Possible Approaches
  - Geometric Problems
  - Level of Exposure
  - Area Coverage
    - Coverage
    - Coverage and Connectivity
    - Coverage-Preserving and Energy-Conserving Problem

### Review: Art Gallery Problem

• Place the minimum number of cameras such that every point in the art gallery is monitored by at least one camera.

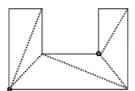
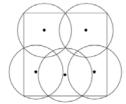




Figure 1: An example of triangulating a polygon and a possible deployment of cameras. Circles represent positions of cameras.

## **Review: Circle Covering Problem**

• Given a fixed number of identical circles, the goal is to minimize the radius of circles.

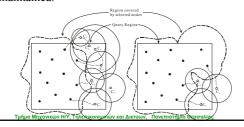


# Level of Exposure

- · Breach and support paths
  - paths on which the distance from any point to the closest sensor is maximized and minimized
  - Voronoi diagram and Delaunay triangulation
- Exposure paths
  - Consider the duration that an object is monitored by sensors

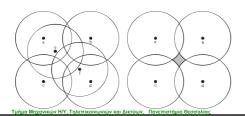







12/01/2006

ιόμα Μηνανικών Η/Υ Τηλεπικοινωνιών και Δικτύων - Πανεπιστόμιο Θεσσαλία


### **Coverage and Connectivity**

- A region is *k*-covered, then the sensor network is k-connected if  $\mathbf{R}_{\mathbf{C}} \ge 2\mathbf{R}_{\mathbf{S}}$
- Extending the coverage such that connectivity is maintained.



### Coverage-Preserving and Energy-Conserving Protocols

- Sensors' on-duty time should be properly scheduled to conserve energy.
  - thus extending the lifetime of the network.
  - This can be done if some nodes share the common sensing region.



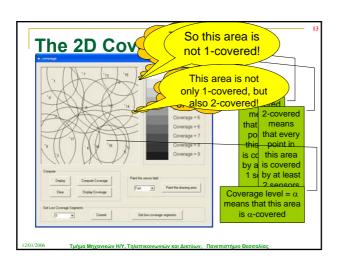
# The Coverage Problems in 2D Spaces Τμήμε Μηχονικών ΗΥ, Τηλεπικονωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

# **Coverage Problems**

- In general
  - To determine how well the sensing field is monitored or tracked by sensors
  - Sensors may be randomly deployed



12/01/200


μήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

# **Coverage Problems**

- We formulate this problem as
  - Determine whether every point in the service area of the sensor network is covered by at least  $\alpha$  sensors
  - Why  $\alpha$  sensors?
    - · Localization, positioning, and tracking applications
    - Fault-tolerance

12/01/200

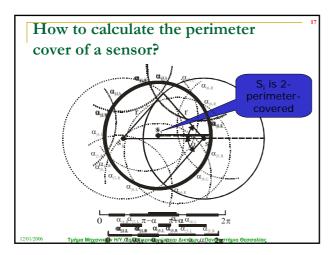
Γμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας



| Rang        | res                    |                              |                     |                       |
|-------------|------------------------|------------------------------|---------------------|-----------------------|
| •           | on range of Berkeley ! | Motes                        |                     |                       |
| Product     | Transmission Range     |                              |                     |                       |
| MPR300*     | 30m                    | Table 2: Sensing             | range of several    | typical sensors       |
| MPR400CB    | 150m                   |                              | , ,                 | 71                    |
| MPR410CB    | 300m                   | Product                      | Sensing Range       | Functions             |
| MPR420CB    | 300m                   | HMC1002                      |                     | Detecting disturbance |
| MPR500CA    | 150m                   | Magnetometer sensor[8]       | 5m                  | from Automobiles      |
| MPR510CA    | 300m                   | Reflective type              |                     | Detecting targets of  |
| MPR520CA    | 300m                   | photoelectric sensor [2]     | 1m                  | virtually any materia |
|             |                        | Thrubeam type                |                     | Detecting targets of  |
|             |                        | photoelectric sensor [2]     | 10m                 | virtually any materia |
|             |                        | Pyroelectric infrared        |                     | Detecting             |
|             |                        | sensor (RE814S) [18]         | 30m                 | moving objects        |
|             |                        | Acoustic sensor              |                     | Detecting acoustic o  |
|             |                        | Berkeley Motes * [8]         | $\sim 1 \mathrm{m}$ | sound sources         |
|             |                        | * This result is based on ou | ir own measurem     | ent on Berkeley motes |
|             |                        | **                           |                     |                       |
| lHonghai 7h | ang and Jennifer C     | Hou, "On deriving the u      | ipper bound of      | α-lifetime for        |

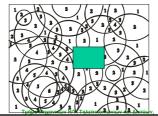
# Assumptions

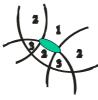
- Each sensor is aware of its geographic location and sensing radius.
- Each sensor can communicate with its neighbors.
- Difficulties:
  - $O(n^2)$  regions divided by n circles
  - How to determine boundaries of these regions?


2/01/2006 Τυάμα Μονανικών Η/Λ Τολετικονωνιών και Αυτύων - Πανετιστάνιο Θεσσαλία

### The Proposed Solution

- We try to look at how the **perimeter** of each sensor's sensing range is covered.
  - How a perimeter is covered implies how an area is covered
  - ... by the continuity of coverage of a region
- By collecting **perimeter coverage** of each sensor, the level of **coverage of an area** can be determined.
  - a distributed solution


12/01/200


Εμήμα Μηνανικών Η/Υ Τηλεπικοινωνιών και Δικτύων - Πανεπιστήμιο Θεσσαλίας



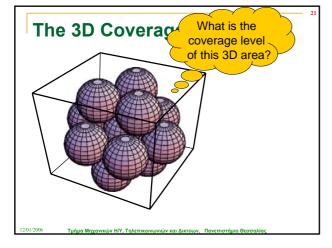
# Relationship between k-covered and k-perimeter-covered

• THEOREM. Suppose that no two sensors are located in the same location. The whole network area A is k-covered iff each sensor in the network is k-perimeter-covered.





# **Detailed Algorithm**


- Each sensor independently calculates its perimeter-covered.
  - k = min{each sensor's perimeter coverage}
- Time complexity: nd *log*(d)
  - n: number of sensors
  - d: number of neighbors of a sensor

Γμήμα Μηνανικών Η/Υ. Τηλεπικοινωνιών και Δικτύων. Πανεπιστήμιο Θεσσαλίας

# The Coverage Problem in 3D Spaces

12/01/200

μήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας



# The 3D Coverage Problem

- Problem Definition
  - Given a set of sensors in a 3D sensing field, is every point in this field covered by at least  $\alpha$  sensors?
- Assumptions:
  - Each sensor is aware of its own location as well as its neighbors' locations.
  - The sensing range of each sensor is modeled by a 3D ball.
  - The sensing ranges of sensors can be non-uniform.

12/01/2006

τιότια Μηνανικών Η/Υ Τηλεπικοινωνιών και Δικτύων - Πανεπιστότιο Θεσσαλία

#### **Overview of Our Solution**

- The Proposed Solution
  - We reduce the geometric problem from a 3D space to one in a 2D space, and further to one in a 1D space.

12/01/200

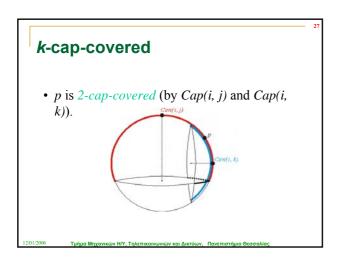
μήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

## **Reduction Technique (I)**

- 3D => 2D
  - To determine whether the whole sensing field is sufficiently covered, we look at the **spheres** of all sensors
  - <u>Theorem 1</u>: If each sphere is *\alpha*-sphere-covered, then the sensing field is *\alpha*-covered.
    - Sensor s<sub>i</sub> is α-sphere-covered if all points on its sphere are sphere-covered by at least α sensors, i.e., on or within the spheres of at least α sensors.

12/01/20

Γμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλία


# **Reduction Technique (II)**

- 2D => 1D
  - To determine whether each sensor's sphere is sufficiently covered, we look at how each spherical cap and how each circle of the intersection of two spheres is covered.
    - (refer to the next page)
  - <u>Corollary 1</u>: Consider any sensor  $s_i$ . If each point on  $S_i$  is <u> $\alpha$ -cap-covered</u>, then sphere  $S_i$  is <u> $\alpha$ -sphere-covered</u>.
    - A point p is  $\alpha$ -cap-covered if it is on at least  $\alpha$  caps.

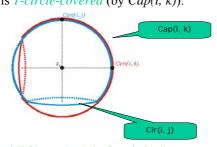
12/01/200

Τιιότια Μονανικών Η/Υ. Τολεπικοινωνιών και Δικτύων - Πανεπιστότιιο Θεασαλία

# Cap and Circle Τμήμα Μηχανικών ΗΥ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας



### **Reduction Technique (III)**

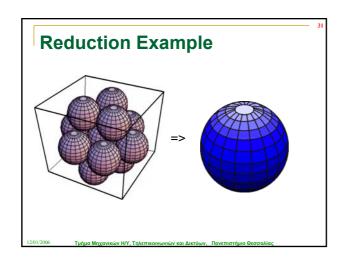

- 2D => 1D
  - <u>Theorem 2</u>: Consider any sensor  $s_i$  and each of its neighboring sensor  $s_j$ . If each circle Cir(i, j) is  $\alpha$ -circle-covered, then the sphere  $S_i$  is  $\alpha$ -cap-covered
  - A circle is  $\alpha$ -circle-covered if every point on this circle is covered by at least  $\alpha$  caps.

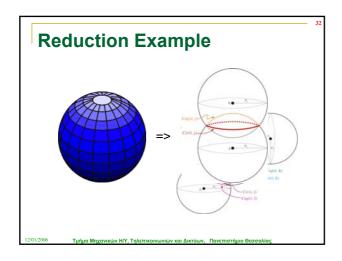
12/01/2006

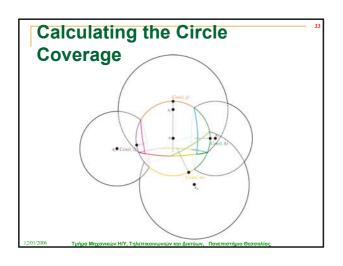
Τιιότια Μονανικών Η/Υ. Τολεπικοινωνιών και Δικτύων - Πανεπιστόμιο Θεσσαλία

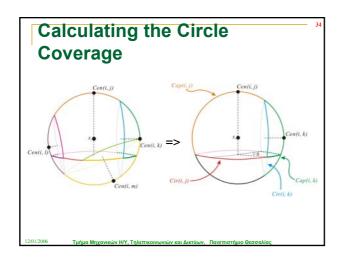
#### k-circle-covered

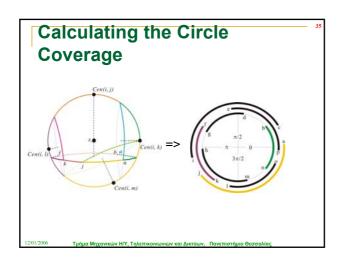
• Cir(i, j) is 1-circle-covered (by Cap(i, k)).

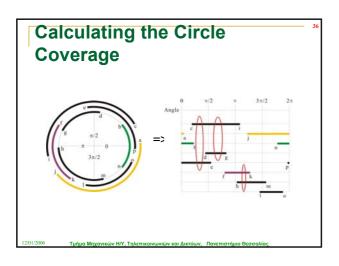




# **Reduction Technique (IV)**


- $2D \Rightarrow 1D$ 
  - By stretching each circle on a 1D line, the level of circle coverage can be easily determined.
  - This can be done by our 2-D coverage solution.


12/01/200


Γμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας














# The Complete Algorithm

- Each sensor  $s_i$  independently calculates the **circle coverage** of each of the circle on its sphere.
  - sphere coverage of  $s_i$  = min{ circle coverage of all circles on  $S_i$ }
- overall coverage = min{ sphere coverage of all sensors }

12/01/2006

Εμήμα Μηνανικών Η/Υ Τηλεπικοινωνιών και Δικτύων - Πανεπιστήμιο Θεσσαλίας

# **Complexity**

- To calculate the sphere coverage of one sensor:  $O(d^2 \log d)$ 
  - d is the maximum number of neighbors of a sensor
- Overall: O(nd<sup>2</sup>logd)
  - n is the number of sensors in this field

12/01/20

μήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

Efficient Placement and Dispatch of Sensors in a Wireless Sensor Network

12/01/2006

Γμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

#### Outline

- Introduction
- Sensor Placement
- Sensor Dispatch
- Conclusions

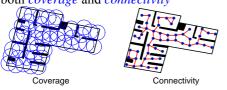
12/01/2004

Εμήμα Μηνανικών Η/Υ Τηλεπικοινωνιών και Δικτύων - Πανεπιστήμιο Θεσσαλίας

#### Introduction

• Wireless sensor networks (WSN)




- Tiny, low-power devices
- Sensing units, transceiver, actuators, and even mobilizers
- Gather and process environmental information
- WSN applications
  - Surveillance
  - Biological detection
  - Monitoring

12/01/200

μήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

#### Introduction

- Sensor deployment is a critical issue because it affects the *cost* and *detection capability* of a wireless sensor network
- A good sensor deployment should consider both *coverage* and *connectivity*



201/2006 Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλία

#### Review

- The *art gallery problem (AGP)* asks how to use a minimum set of guards in a polygon such that every point of the polygon is watched by at least one guard.
- However, the results cannot be directly applied to sensor deployment problem because
  - AGP typically assumes that a guard can watch a point as long as line-of-sight exists
    - Sensing distance of a sensor is normally *finite*
  - AGP does NOT address the communication issue between guards
    - Sensor deployment needs to address the *connectivity* issue

12/01/2006

Tubus Mayayıkiy H/Y Takstikolyuyukıy kal Alktibuy Taystigatiyu Osaqqıklar

## Two Issues in Sensor Deployment

- Sensor placement problem:
  - Ask how to place the *least number of sensors* in a field to achieve desired coverage and connectivity properties.
- Sensor dispatch problem:
  - Assume that sensors are mobilized
  - Given a set of mobile sensors and an area of interest I inside the sensing field A, to choose a subset of sensors to be delegated to I with certain objective functions such that the coverage and connectivity properties can be satisfied

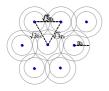
12/01/200

μήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

#### **Outline**

- Introduction
- Sensor Placement
- · Sensor Dispatch
- Conclusions

12/01/200


μήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

| - |      |      |
|---|------|------|
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   | <br> | <br> |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |
|   |      |      |

#### Sensor Placement Problem

- Input: sensing field A
  - **A** is modeled as an *arbitrary-shaped polyg*
  - A may contain several obstacles
    - Obstacles are also modeled by *polygons*
    - Obstacles do NOT partition A
- Each sensor has a sensing distance r<sub>s</sub> and communication distance r<sub>c</sub>
  - But we do NOT restrict the relationship between r<sub>s</sub> and r<sub>e</sub>
- Our goal is to place sensors in A to ensure both sensing coverage and network connectivity using as few sensors as possible

#### Two Intuitive Placements

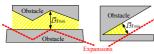


Need to add extra sensors to maintain connectivity when  $r_c < \sqrt{3}r_s$ 



Consider connectivity first

Need to add extra sensors to maintain coverage when  $r_c > \sqrt{3}r_s$ 


# Proposed Placement Algorithm

- Partition the sensing field A into two types of sub-regions:
  - Single-row regions
    - A belt-like area between obstacles whose width is NOT larger than  $3r_{min}$ , where  $r_{min} = min(r_s, r_c)$
    - We can deploy *a sequence of sensors* to satisfy both coverage and connectivity
  - Multi-row regions
    - We need multi-rows sensors to cover such areas
    - Note: Obstacles may exist in such regions.

| 1 | 1 |
|---|---|
|   |   |

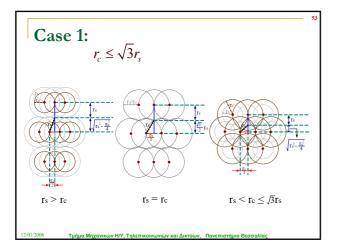
# Step 1: Partition the Sensing Field

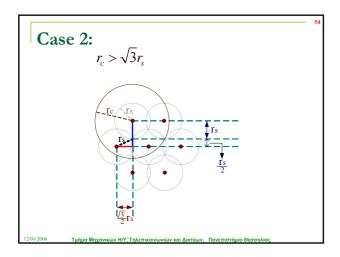
- From the sensing field A, we identify all single-row regions
  - Expand the perimeters of obstacles *outwardly* and A's boundaries *inwardly* by a distance of r<sub>min</sub>
  - If the expansion overlaps with other obstacles, then we can take a *projection* to obtain single-row regions
- The remaining regions are multi-row regions.



12/01/2006

. Τμόμα Μονανικών Η/Υ Τολεπικοινωνιών και Δικτύων - Πανεπιστόμιο Θεσσαλίας


# 


# Step 2: Place Sensors in a Singlerow Region - Deploy sensors along the bisector of region Sensor Deployment Obstacle (a) Obstacle (b) Deploy sensors along the bisector of region Tuńya Myzovikóv HIY, TpArmikorvaviów каз Дистойи, Пачетотијио Феоговаја;

## Step 3: Place Sensors in a Multirow Region

- We first consider a 2D plane without boundaries & obstacles

  - Deploy sensors row by row
     A row of sensors needs to guarantee coverage and connectivity
  - Adjacent rows need to guarantee continuous coverage
- Case  $1: r_c \le \sqrt{3}r_s$
- Sensors on each row are separated by  $r_c$  Adjacent rows are separated by  $r_s + \sqrt{r_s^2 \frac{r_s^2}{4}}$  Case  $2: r_c > \sqrt{3}r_s$
- - Each sensor is separated by  $\sqrt{3}r_s$

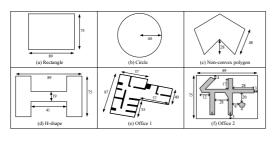





# Refined Step 3:

- For a multi-row region with boundaries and obstacles,
  - We can place sensors one by one according to the following locations (if it is not inside an obstacle or outside the region)

| Neighbor | $r_c \le \sqrt{3}r_s$                                           | $r_c > \sqrt{3}r_s$                               |
|----------|-----------------------------------------------------------------|---------------------------------------------------|
| $N_1$    | $(x + r_c, y)$                                                  | $(x + \sqrt{3}r_s, y)$                            |
| $N_2$    | $(x + \frac{r_c}{2}, y - \sqrt{r_s^2 - \frac{r_c^2}{4}} - r_s)$ | $(x + \frac{\sqrt{3}r_s}{2}, y - \frac{3r_s}{2})$ |
| $N_3$    | $(x - \frac{r_c}{2}, y - \sqrt{r_s^2 - \frac{r_c^2}{4}} - r_s)$ | $(x - \frac{\sqrt{3}r_s}{2}, y - \frac{3r_s}{2})$ |
| $N_4$    | $(x - r_c, y)$                                                  | $(x - \sqrt{3}r_s, y)$                            |
| $N_5$    | $(x - \frac{r_c}{2}, y + \sqrt{r_s^2 - \frac{r_c^2}{4} + r_s})$ | $(x - \frac{\sqrt{3}r_s}{2}, y + \frac{3r_s}{2})$ |
| $N_6$    | $(x + \frac{r_c}{2}, y + \sqrt{r_s^2 - \frac{r_c^2}{4}} + r_s)$ | $(x + \frac{\sqrt{3}r_s}{2}, y + \frac{3r_s}{2})$ |


# Step 4:



- Three unsolved problems
- Some areas near the boundaries are uncovered
   Need extra sensors between adjacent rows to maintainty connectivity when Connectivity to neighboring regions needs to be maintained Solutions
   Sequentially place sensors along.
- - Sequentially place sensors along the boundaries of the regions and obstacles

#### **Simulation Results**

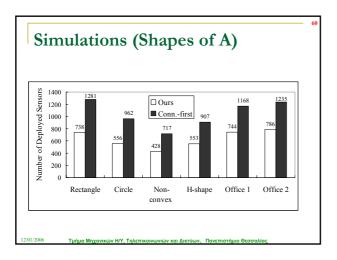
· Sensing fields



#### **Simulation Parameters**

- We use  $(r_s, r_c) = (7,5), (5,5), (3.5,5), (2,5)$  to reflect the four cases  $r_s > r_c, r_s = r_c, r_s < r_c \le \sqrt{3}r_s, \sqrt{3}r_s < r_c$
- · Comparison metric
  - Average number of sensors used to deploy
  - Compare with two deployment methods






Coverage-first

Connectivity-fire

Τμημα Μηχανικών Η/Υ, Τηλεπικοινώνιών και

# Simulations (r<sub>s</sub> vs. r<sub>c</sub>) Simulations (r<sub>s</sub> vs. r<sub>c</sub>)



### Outline

- Introduction
- Sensor Placement
- Sensor Dispatch
- Conclusions

12/01/2006

μόμα Μηνανικών Η/Υ Τηλεπικοινωνιών και Δικτύων Πανεπιστόμιο Θεασαλία

#### **Problem Definition**

- We are given
  - A sensing field A
  - An area of interest I inside A
  - A set of mobile sensors S resident in A
- The sensor dispatch problem asks how to find a *subset* of sensors **S'** in **S** to be moved to **I** such that after the deployment, **I** satisfies *coverage* and *connectivity* requirements and the movement cost satisfies some *objective functions*.

12/01/20

Γμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

# Example Mobile sensor Tuńya Mnyevikóv H/Y, Tajattikowawióv και Δικτύων, Πανετιστήμιο Θεσσαλίας

| Example                                                                             | - ( |
|-------------------------------------------------------------------------------------|-----|
| A • • •                                                                             |     |
|                                                                                     |     |
|                                                                                     |     |
| 12/01/2006 Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας |     |

| Ex         | ample                                                                   | - 65 |
|------------|-------------------------------------------------------------------------|------|
|            | • • • • • A                                                             |      |
|            |                                                                         |      |
| 12/01/2006 | Τμήμα Μηχανικών Η/Υ, Τηλεπικονωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας |      |

| Tv | wo Objective Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                | — 66 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | Minimize the <i>total energy consumption</i> to move sensors $\min_{i \in S'} \Delta_m \times d_i$ $-\Delta_m : \text{unit energy cost to move a sensor in one step}$ $-d_i : \text{the distance that sensor } i \text{ is to be moved}$ Maximize the <i>average remaining energy</i> of sensors in S' after movement $\sum_{\substack{n \in S' \\ max \text{ ins}^i \\ i}} \underbrace{(e_i - \Delta_m \times d_i)}_{i}$ $-e_i : \text{initial energy of sensor } i$ |      |

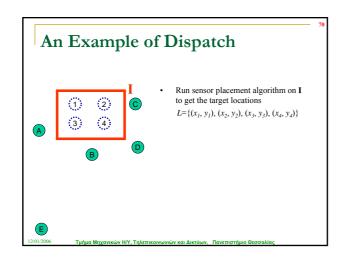
#### Proposed Dispatch Algorithm (I)

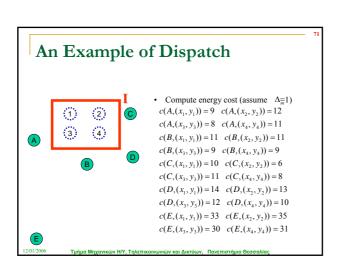
- Run any sensor placement algorithm on **I** to get the target locations  $L=\{(x_1,y_1),\ldots,(x_m,y_m)\}$
- For each sensor  $s_i \in S$ , determine the energy cost  $c(s_i, (x_j, y_j))$  to move  $s_i$  to each location  $(x_j, y_j)$ )
  - $c(s_i,(x_j,y_j)) = \Delta_m \times d(s_i,(x_j,y_j))$
- Construct a weighted complete bipartite graph G=(S∪L,S×L) such that the weight of each edge is
  - $w(s_i, (x_j, y_j)) = -c(s_i, (x_j, y_j))$ , if objective function (1) is used; or as
  - $-w(s_i, (x_j, y_j)) = e_i c(s_i, (x_j, y_j)), \text{ if objective function (2) is}$ used

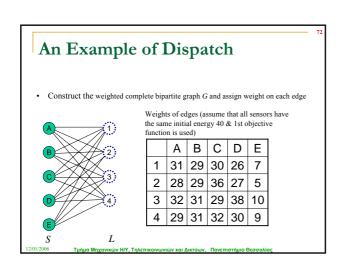
12/01/2006

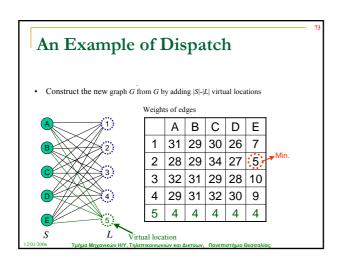
Τιιότια Μηνανικών Η/Υ. Τηλεπικοινωνιών και Δικτύων - Πανεπιστότιο Θεασαλία

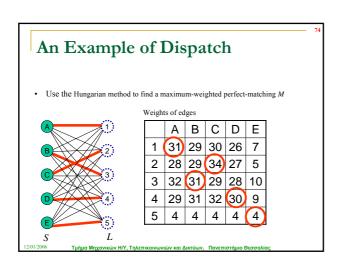
#### Proposed Dispatch Algorithm (II)

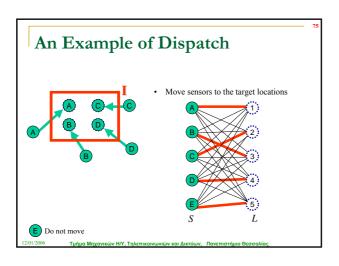

- Construct a new graph Ḡ = (S ∪ L ∪ L̄, S × {L ∪ L̄}) from G, where L̄ is a set of |S|-|L| elements, each called a virtual location. The weights of edges incident to L̄ are set to w<sub>min</sub>, where w<sub>min</sub> = {min. weight in G}-1.
- Find the maximum-weight perfect-matching *M* on graph  $\hat{G}$  by using the *Hungarian method*.
- For each edge c(s<sub>i</sub>, (x<sub>j</sub>, y<sub>j</sub>)) in M such that (x<sub>j</sub>, y<sub>j</sub>) ∉ L


  , move sensor s<sub>i</sub> to location (x<sub>j</sub>, y<sub>j</sub>) via the shortest path.
  - If  $e_i c(s_i, (x_j, y_j)) \le 0$ , it means that we do not have sufficient energy to move all sensors. Then the algorithm terminates.


12/01/200


Τιιότια Μηνανικών Η/Υ Τηλετικοινωνιών και Δικτύων - Πανετιατότιο Θεαααλίας

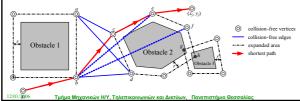

# An Example of Dispatch Initially, there are five mobile sensors A, B, C, D, and E B












# Find the Shortest Distance $d(s_p, (x_p))$ $y_i)$

- Find collision-free shortest path

  - A sensor is modeled as a circle with a radius r
     Expand the perimeters of obstacles by the distance of r to find the collision-free vertices
  - Connect all pairs of vertices, as long as the corresponding edges do not cross any obstacle.
     Using Dijkstra's algorithm to find the shortest path.



#### Find the Maximum-Weight Perfect-Matching

**Definition 1.** Given  $\hat{G} = (S \cup L \cup \hat{L}, S \times \{L \cup \hat{L}\})$ , a feasible vertex labeling of  $\hat{G}$  is a real-valued function f on  $S \cup L \cup \hat{L}$  such that for all  $s_i \in S$  and  $(x_j, y_j) \in \{L \cup \hat{L}\}$ ,

$$f(s_i) + f((x_j, y_j)) \ge w(s_i, (x_j, y_j)).$$

**Definition 2.** Given a feasible vertex labeling of  $\hat{G}$ , an equality subgraph  $\hat{G}_f = (S \cup L \cup I)$  $\hat{L}, E_f$ ) is the subgraph of  $\hat{G}$  in which  $E_f$  contains all edges  $(s_i, (x_j, y_j))$  in  $\hat{G}$  such that

$$f(s_i) + f((x_j, y_j)) = w(s_i, (x_j, y_j)).$$

**Theorem 1.** Let f be a feasible vertex labeling of  $\hat{G}$  and M be a perfect matching of  $\hat{G}_f$ , then M is a maximum-weight perfect matching of  $\hat{G}$ .

Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, Πανε

# The Hungarian Method

Step 1: Find a maximum matching M in  $\hat{G}_f$ . If M is perfect, we find out the solution and the method terminates. Otherwise, there must be an unmatched vertex  $s_i \in S$ . We then assign two sets  $A=\{s_i\}$  and  $B=\emptyset.$ 

Step 2: In the graph  $\hat{G}_f$ , if  $N_{\hat{G}_f}(A) \neq B$ , where  $N_{\hat{G}_f}(A)$  is the set of vertices in  $\{L \cup \hat{L}\}$ that are adjacent to the vertices in A, then go to step 3. Otherwise, we set

$$\alpha = \min_{s_i \in A, \; (x_j, y_j) \in \{L \cup \hat{L}\} - B} \{f(s_i) + f((x_j, y_j)) - w(s_i, (x_j, y_j))\},$$

and construct a new labeling f' for  $\hat{G}$  by

$$f'(v) = \left\{ \begin{array}{ll} f(v) - \alpha & \text{for } v \in A \\ f(v) + \alpha & \text{for } v \in B \\ f(v) & \text{otherwise} \end{array} \right.$$

Then we replace f by f', reconstruct the equality subgraph  $G_{P'}$ , and go to step 1. Note that we have to satisfy the conditions of  $\alpha>0$  and  $N_{\hat{G}_{P'}}(A)\neq B$ ; otherwise, we need to reselect another  $\alpha$  value that can satisfy the above conditio

Step 3: Choose a vertex  $(x_l, y_l)$  in  $N_{G_f}(A)$  but not in B. If  $(x_l, y_l)$  is matched with  $s_k \in S$ in M, then we update  $A=A\cup\{s_k\}$  and  $B=B\cup\{x_l,y_l\}$ , and go back to step 2. Τμήμα Μηχανικών ΗΥ, Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

26

# Time complexity

- The time complexity of our sensor dispatch algorithm is  $O(mnk^2 + n^3)$ 
  - -m: number of target locations in **I**
  - -n: number of mobile sensors
  - -k: number of vertices of the polygons of all obstacles and  $\mathbf{I}$

| 2/01/2006 | Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων, | Πανεπιστήμιο Θεσσαλίας |
|-----------|---------------------------------------------------|------------------------|