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Abstract. In this paper, we propose techniques for scheduling data
broadcasts that are favorable in terms of both response and tuning time.
In other words, these techniques ensure that a typical data request will
be quickly satisfied and its reception will require a low client-side energy
expenditure. By generating broadcast schedules based on Acharya et
al.’s broadcast disk paradigm, we bridge the gap between these two mu-
tually exclusive bodies of work–response time and energy expenditure.
We prove the utility of our approach analytically and via experiments.
Our analysis of optimal scheduling is presented under a variety of as-
sumptions about size and popularity of data items, making our results
generalizable to a range of applications.

1 Introduction

Data broadcast is a well-known way of scalably answering data requests for
a large client population [1,2]. A single broadcast of a data item can satisfy
an unbounded number of outstanding requests for that item. The relevance of
scalable data dissemination techniques increases with the number of computer
users, especially in light of emerging wireless technologies and applications re-
quiring only asymmetric communications capabilities. Some sample applications
include traffic information systems, wireless classrooms, financial data, and news
services.

Research in wireless broadcast typically assumes a high-powered server that
transmits data to mobile clients over a wide area. The consequences of this
architecture relate to application performance and energy conservation because
data rates are low and battery lifetimes are limited.

In order to alleviate the poor performance due to low bandwidth, servers can
skew the average amount of bandwidth allocated to each data item so that more
popular data are transmitted more frequently [3,1,4,5]. Clients can further im-
prove application performance via client-side caching [6,7]. In order to conserve
energy, on the other hand, servers can reduce the amount of work a client must
do to find data by broadcasting data indices [8,9].
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1.1 Shortcomings of the State of the Art

Much of the work on response time and energy expenditure has been mutu-
ally exclusive. A typical bandwidth allocation algorithm constructs a schedule
bottom-up by deciding at each time interval the priorities of each data item, and
broadcasts the one with the highest priority. Although the average time required
for an average client to receive a given data item is near-minimal, such schedules
preclude the generation of indices, and makes client-side caching more difficult,
resulting in poor energy conservation and application performance. The main
reason for these poor results is that clients cannot predict the next data item to
be broadcast and therefore cannot doze, prefetch or pin data. Our simulations
show that even with uniform access to all items in the database, bottom-up
schedules result in significant variation in the interarrival time of consecutive
instances of a given data item. This variation increases with the number of data
items in the database. (See [10] for more details of these experiments.) Moreover,
these bandwidth allocation algorithms lack the notion of a beginning and an end
of a schedule, making techniques such as consistency control among data items
more complicated [11].

In contrast, work focusing on issues such as consistency and energy con-
servation [12,9,11,13] typically assumes a flat schedule – no data item can be
broadcast twice before all other data in the database is broadcast once. Flat
scheduling has benefits – such schedules are short, and the worst-case wait for
any data item is minimal. If there is skew in data access, however, the average
time required to receive data with a flat schedule (about one-half the time it
takes to transmit the entire database) is far from optimal.

1.2 Goals and Outline of the Paper

The work presented in this paper attempts to bridge the gap between broadcast
research that optimizes bandwidth usage and that which designs predictable
schedules. To this end, we propose a top-down design based on broadcast disks
[6]. Broadcast disks are logical partitions of the database. The average frequency
that a data item is broadcast is inversely proportional to the size of the partition
to which it belongs. We can use this property to skew the amount of bandwidth
toward more popular data items. Furthermore, using broadcast disks allows us
to generate predictable schedules in a straightforward manner. See Figure 1.

We start by modeling our problem and formalizing our problem statement
in Section 2. We then show how broadcast disks can be optimally generated
in Section 3. Since the optimal solution is computationally expensive, we also
propose a cheap approximation that yields near-optimal results. We then show
how our schedule can be applied to handle the case of different-sized data items
(Section 3.4) and indexing (Section 3.5). We discuss related work in Section 4,
and conclude the paper and describe future work in Section 5.
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Fig. 1. An Example Broadcast Disk System. Clients listen for data items broadcast
from each partition in a round-robin manner. In this example, the database consisting
of 5 data items is partitioned into 2 broadcast disks, consisting of 2 and 3 data items,
respectively.

2 Model and Problem Statement

In this paper, we assume that a server transmits the contents of a database
containing N data items. Time is divided into units called ticks, and each unit
of data requires a single tick to be transmitted. Clients request single data items.
Each data item di (1 ≤ i ≤ N) has a probability pi of being requested. Requests
are assumed to be exponentially distributed–the probability that a data item is
requested at each time interval is fixed. A broadcast schedule is a sequence of L
data items, where L ≥ N–all data items must be transmitted at least once, and
some may be transmitted multiple times during a schedule.

Our goal is to generate a broadcast schedule that minimizes the expected
delay of a data request subject to the following constraints:

1. There is a fixed interarrival time between all successive transmissions of a
given data item in a schedule.

2. There is a notion of a cycle – i.e., the schedule has a beginning and an end.

As in [1], we assume that all interarrival times wi of a data item di that occurs
multiple times in a schedule are equal. This assumption stems from a basic result
in probability theory which states that fixed interarrival times minimize expected
delay given exponentially distributed requests and a known arrival rate. For a
given schedule, the average expected delay over all data items is therefore

average expected delay =
1
2

N∑
i=1

piwi. (1)

By minimizing Equation 1 subject to constraints 1 and 2, we satisfy the goal
of this paper, which is to bridge the work done in bandwidth allocation with
other work done in the area of broadcast.

3 Heuristic

In this section, we describe a top-down technique for generating broadcast sched-
ules. Bottom-up formulations of the broadcast bandwidth allocation problem
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have typically yielded intractable optimization problems [1]. Although heuris-
tics that are near-optimal in terms of average expected delay (Equation 1) are
available [3,4,5], none satisfies Constraints 1 and 2. (See Section 2.) In contrast,
we show how to compute an optimal top-down solution subject to Constraints
1 and 2, and offer an inexpensive but effective approximation.

We borrow the concept of broadcast disks from [6]. A broadcast server picks
a broadcast disk in a round-robin manner and transmits the least recently broad-
cast unit of data from it. Given K broadcast disks, the beginning of the broadcast
schedule is defined as the transmission of the first data item of the first disk given
that it is followed by the first data item of each of the next K − 1 disks. The
end is typically defined as the end of the last data item of the last disk, given
that it is preceeded by the last data item of each of the previous K − 1 disks.

Clearly, broadcast disk scheduling satisfies Constraints 1 and 2. Our goal is
therefore to generate a set of broadcast disks that minimize average expected
delay (Equation 1). Consider an arbitrary partitioning of N data items over K

disks. The number of data items in each disk Ci is Ni,
∑K

i=1 Ni = N . We can
reframe Equation 1 in terms of broadcast disks:

broadcast disk average expected delay =
K

2


 K∑

i=1

Ni

∑
dj∈Ci

pj


 . (2)

In minimizing Equation 2, we first try to minimize the summation on the
right-hand side. In other words, given K, how do we minimize

∑K
i=1Ni

∑
dj∈Ci

pj?
(We call this subproblem the partitioning problem.)

In [10], we show how to optimally solve the partitioning problem using dy-
namic programming (DP ). DP has O(KN2) computational complexity and
consumes O(KN) space to keep track of partial solutions.

3.1 A Cheaper Approximation for Partitioning

Although DP yields an optimal partitioning, its time and space complexity
may preclude it from practical use. For example, depending on the application,
redesign may occur frequently, or, as in the DATACY CLE case, the size of
the problem may be large [14], i.e., data sets may be orders of magnitude larger
than those of wireless applications. We therefore offer an alternative, significantly
cheaper algorithm.

Assuming that each data item is equally sized, define Cij as the average
expected delay of a request for a data item in a partition containing data items
i through j [15]:

Cij =
(
j − i + 1

2

) j∑
q=i

pq, j ≥ i, 1 ≤ i, j ≤ N. (3)

Our partitioning algorithm, called GREEDY , finds the split point among
all the partitions that minimizes cost. Cost change by splitting a partition (i, j)
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at point s is computed in constant time by:

Cs
ij = Cis + Cs+1,j − Cij , i ≤ s < j (4)

The split process performed a total of K − 1 times. This algorithm is similar
to the ones used in [16,17], but is differs in its assumptions about the data and
applications.

Algorithm 1

GREEDY
input: set of N unit sized data items ordered by popularity, K partitions
begin

numPartitions := 1;
while numPartitions < K

do for each partition k with data items i through j
do comment: Find the best point to split in partition k
for s := i to j

comment: Initialize the best split point for this partition
as the first data item. If we find a better one
subsequently, update the best split point.

do if s := i ∨ localChange > Cs
ij

do
localS = s; localChange = Cs

ij ;
od fi od

comment: Initialize the best solution as the one for the first
partition. If we find a better one subsequently,
update the best solution.

if k := 1 ∨ globalChange > localChange
do

globalChange := localChange; globalS := localS;
bestpart := k;

od fi od
split partition bestpart at point globalP
numPartitions := numPartitions + 1;

od
end

Example 1. Consider the problem of allocating the set of N = 6 data items to
K = 3 partitions. Using the GREEDY algorithm, the first split occurs between
data items 2 and 3. This is the point at which Cs

ij , (i = 1, j = 6, s = 2) is
minimized. The second split occurs between data items 1 and 2 for the same
reason. These two splits reduce the average expected delay from 3 ticks to 0.95
ticks. See Figure 2.

Theorem 1. The complexity of GREEDY is O((N + K) logK).
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Num Partitions

K = 1

K = 2

K = 3
Best split is at data item 4.

By Equation 2, initial cost is 3 ticks.

New cost is .7 + .6 = 1.3 ticks.

New cost is .2 + .15 + .6 = .95 ticks.

Best split is at data item 2.

Data Items 1 through 6

Fig. 2. Example of application of GREEDY , to generate K = 3 partitions. The num-
bers in the boxes are the popularities of the data items.

Since sorting the data items generally has O(N logN) complexity and N ≥
K, by Theorem 1 the asymptotic complexity of GREEDY is minimal. The
implementation details of GREEDY and proof of Theorem 1 can be found in
[10]. In that work, we also present experimental results that prove GREEDY ’s
near-optimal performance over a wide range of parameters.

3.2 Generating Broadcast Disk Schedules

In this section, we apply the partitioning results described above to a technique
for generating broadcast schedules. We first formalize the means of mapping the
broadcast disks onto a broadcast medium first mentioned at the beginning of
this section.

Algorithm 2

MAPPING
input: K disks of data, each containing Ni data items
begin

x := 0;
while TRUE

do
for i := 1 to K

do
broadcast the ((x mod Ni) + 1)th unit of data from disk i

od
x := x + 1;

od
end

One can see that the average expected delay of a schedule generated by
Algorithm 2 is the cost given by Equation 2. Although this algorithm bears
resemblance to one given in [6], it does not generate holes; all ticks contain data,
thereby using bandwidth more efficiently.

Having solved the partitioning problem, our goal now is to find a value of
K that minimizes the entire expression of Equation 2. We propose the simple
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algorithm for optimal K (abbreviated as Safok). This algorithm solves the
partitioning problem for all values of K between 1 and N and returns the solution
that is minimal when multiplied by K.

Algorithm 3

SAFOK
input: set of N unit sized data items ordered by popularity
begin

initial cost := C1N

current cost := initial cost
for i := 1 to N

do
costi = current cost;
kCosti = k

2 ∗ costi;
if i = 1 ∨ kCosti < bestKCost
do

bestKCost = kCosti;
bestK = i;

od
Search all partitions for the best split point, s, between partition
boundaries l and r;
Make a split at s.
current cost = current cost − Cs

lr.
od

end

Corollary 1. Safok has O(N logN) computational complexity and requires
O(N) memory.

Proof: The proof is similar to that of Theorem 1.

3.3 Experimental Results

In this section, we compare the performance of flat (mentioned in Section 1)
against that of Safok. We also report the analytical lower bound1 (denoted opt)
derived in [1]:

1
2

(
N∑

i=1

√
pi

)2

. (5)

We conduct two sets of experiments. In the first set, we vary the skew of
the access probabilities. Assuming a Zipfian distribution, skew varies from low
(θ = 0) to high (θ = 1). In the second set, we vary the number of data items in
the database from 10 to 1000. The control skew is an 80/20 distribution and the
1 Not achievable in general.
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control database size is 500 data items. These values are in the range of those
typically used in broadcast studies [18,11].

As we can see, the performance of Safok is at least as good as that of flat.
When there is no skew (θ = 0), there is no need to transmit any data item
more frequently than others, and therefore Safok does nothing. When skew
increases, the performance difference becomes quite large (Figure 3). Moreover,
the benefits of Safok over flat increase linearly with database size (Figure 4).
Note that the average expected delay of the Safok schedules are near-optimal.

Skew vs. Avg. Exp. Delay
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Fig. 3. Safok Performance. Varying Skew. Database Size = 500
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Fig. 4. Safok Performance. Varying Number of Data Items. Skew = 80/20
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3.4 Different Sized Data Items

In many practical applications, data items span more than a single unit of data.
For example, given multimedia content consisting of images and text, the data
items can vary substantially in size. In this section, we consider the impact of
size on Safok.

Given sizes li ∈ Z+, 1 ≤ i ≤ N , the cost function from Equation 1 becomes

1
2

K∑
i=1


 ∑

dk∈Ci

lk
∑

dj∈Ci

pj


 . (6)

Clearly, the problem of minimizing Equation 6 is a form of the NP -complete
minimum sum of squares problem. We can, however, optimally solve Equation 6
exactly as we did in the unit-sized data item case (see Section 3). But again, be-
cause of the complexity of the optimal solution, we show how to adapt GREEDY
to the varying size case.

GREEDY depends on ordering data items so that data that should be broad-
cast at similar frequencies are adjacent. For example, unit-sized data items are
ordered by their access probabilities, pi, 1 ≤ i ≤ N . To order data items of
varying size, we borrow the square-root rule from [5]. This rule states that, in
an optimal schedule, the number of ticks between consecutive instances of data
item di is proportional to

√
li
pi

. The only modifications we make to Algorithms
2 and 3 are therefore:

– Data items are to be ordered by
√

li
pi
, 1 ≤ i ≤ N .

– Splits may not occur within data items di, where li > 1, 1 ≤ i ≤ N .
– The amount of data broadcast at each tick becomes gcd{l1, l2, ..., lN} units.

The first modification is a way of clustering data items that should be broadcast
at the same frequency. Because data items with similar

√
li
pi

are contiguous, they
can exist in the same partition and have similar broadcast frequencies.

The second and third modifications preserve the broadcast disk “semantics.”
In other words, the idea that multiple disks are simultaneously broadcasting their
contents at different rates is preserved because the interarrival times between
consecutive data items from a given disk are fixed. One practical implication of
this is a simplified search. To find a data item of any size, a client only needs to
listen to a single broadcast disk.

Experimental Results We compare the impact of different ways of ordering
the data items on the average expected delay. We assume a database of 500 data
items, and vary the Zipfian skew (θ) from 0 to 1. The ordering keys are

pi Access probability (denoted p), as done in previous experiments.
li Size (denoted l).
pi

li
Normalized access probability (denoted p/l).√

pi

li
Square root of normalized access probability (denoted root(p/l)).
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Increasing Data Item Sizes
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Fig. 5. Safok Performance With Varying Sized Data Items. p denotes ordering data
by pi. l denotes ordering data by li. p/l denotes ordering data by pi

li
. root(p/l) denotes

ordering data by
√

pi
li
. opt denotes the analytical lower bound. Number of data items

= 500.

In the first set of experiments (Figure 5), we linearly increase the size of the
data items with the following formula [5]:

li = lmin + round
(
i × (lmax − lmin)

N

)
, 1 ≤ i ≤ N, (7)

where round is the round-off function.
In the second set of experiments (Figure 6), we uniformly distribute li be-

tween lmin and lmax. Other experiments using different size-assignment functions
yield similar results. As in [5], we set lmin and lmax to 1 and 10, respectively, for
all experiments. All results are compared against the analytical lower bound of
average expected delay2 (denoted opt)[5]:

1
2

(
N∑

i=1

√
pili

)2

. (8)

Ordering by pi

li
and

√
pi

li
yielded identical results, which were better than

those yielded by ordering by either pi or li and are close to optimal. The perfor-
mance improvements are only marginal in the increasing-sizes case (Figure 5),
but are more noticeable in the random-sizes case (Figure 6). Both pi

li
and

√
pi

li

yielded near-optimal results.
In general, however, we expect the results of using pi

li
to be worse than those

of using
√

pi

li
. The key pi

li
has been used in data partitioning algorithms for disk

2 Not achievable in general.
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Random Data Item Sizes
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Fig. 6. Safok Performance With Random Sized Data Items.

arrays [19]. However, these disk arrays are assumed to allow simultaneous access
to multiple disks. In the broadcast case, in contrast, the transmission of a data
item necessarily excludes the transmission of other data. This tradeoff acts as
the intuitive justification for using the square-root.

3.5 Indexing

Indexing and careful data organization are important to any broadcast scheme
since they allow efficient client battery power management. If a client knows
exactly when a desired data item is scheduled to appear, then it need only
tune in when that data item is to be broadcast. Otherwise, it can stay in an
energy-conserving doze mode. When indices are present, the delay in receiving
desired data is broken up into probe wait – the average time it takes to read
the index information – and broadcast wait – the average time it takes to read
the data item once indexing information is known. Note that when indices are
absent, probe wait is zero and broadcast wait is equal to our original formulation
of expected delay. Another parameter is tuning time, which is the amount of
time the client must actively listen to the broadcast channel (for data and/or
index information). Tuning time is therefore one rough measure of client energy
consumption. The goal of indexing is t o minimize tuning time with minimum
impact on delay.

In this section, we argue that Safok schedules are amenable to existing
indexing techniques and demonstrate how a well-known indexing scheme can be
applied. We prove the usefulness of Safok by measuring the resulting average
expected delay and tuning time.

In general, how might an existing indexing method be incorporated into our
framework? We take advantage of the fact that while data items from differ-
ent partitions may be transmitted at different frequencies in a Safok schedule,
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within a partition, each data item is broadcast in a flat manner. We can there-
fore apply existing indexing schemes that assumes flat schedules [12,8,9] to each
partition, and index and organize them independently. These separate partitions
are then interleaved into a single channel.

For example, we consider the simple (1,m) indexing method proposed by
Imielinski, et al [9]. In this method, an index for all of the data items is regularly
broadcast m times over a flat schedule. Say we compute three partitions, having
1, 4, and 20 data items, respectively. To use the (1,m) scheme in combination
with our partitioning, all we need to do is to interleave a (1,m) organization for
each partition into our broadcast schedule, as is shown in Figure 7.

i1.1 d1.1 i1.1 d1.1

i2.1 d2.1 d2.2 d2.3 d2.4

i1.1 d1.1

i2.1

i3.1 i3.2 d3.1 d3.2

i1.1 i2.1 i3.1 d1.1 d2.1 i3.2

partition 1

partition 2

partition 3

broadcast
schedule

i1.1

d2.1

i3.1

i1.1

... d3.10

Fig. 7. Applying (1, m) to a Safok Broadcast Schedule. Triangles denote units of index
information. Squares denote units of data. dm.n and im.n denote the nth data and
index units from partition m, respectively. Each triangle or square requires a single
tick to transmit.

The only additional modification we need to make to the (1,m) organization
is that each data item contains an offset to the next in.1 unit (that is, for any
1 ≤ n ≤ K), not just to the next index unit within its own partition.

Using this modified (1,m) scheme, whenever a client wishes to find a data
item, it listens to the broadcast channel, encountering a random data item. The
client uses offsets contained in the data item to determine when the start of the
next index unit will be broadcast. It then sleeps until this index unit comes up,
and follows the pointers in the index, looking for the desired data item. It also
follows the offsets to index units in other partitions. This process continues until
the desired data item (or a pointer to the item) is found.

Note that the searching of the different indices in each partition are done
concurrently, since there is no reason to wait until one index has been totally
searched before we begin searching the others. Likewise, we may stop searching
all indices once a pointer to the desired data item has been found.

An important characteristic of this mapping to our partition-based frame-
work are that many of the desirable performance characteristics of the original
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algorithm are preserved. In the example application of the (1,m) organization
to our partitioned model, the expected delay of a data request from partition i is

probe waiti︷ ︸︸ ︷
K

2

(
Indexi +

Ni

mi

)
+

broadcast waiti︷ ︸︸ ︷
K

2

(
mi × Indexi + Ni

)
. (9)

In this expression, mi refers to the m value (the number of times a complete
set of index information appears in the partition) for partition i, and Indexi is
the number of units required to store the index for partition i. We point out how
closely this analytical formula mirrors that of the original (1,m) scheme [9].

In general, the tuning time is increased at most by a factor of K from the
tuning time required by the original algorithm. However, the tuning time re-
quired will be much less than K for a data item from a smaller partition (which
by definition will be a more popular data item). Why? If the item requested is
from a smaller partition, then we will likely find a pointer to it in some index
before we ever need to turn on and search other indices. Formally, for the (1,m)
algorithm, the expected tuning time to find an item located in partition i is

1 +
K∑

j=1

index lookups(j, probe waiti), (10)

where index lookups(j, t) is the number of index units from partition j that we
expect to actively listen to over a duration of t ticks. In Equation 10, we limit
t to probe waiti because that is the expected amount of time required before
finding the final pointer in partition i to the desired data item. The 1 on the
left-hand side of Equation 10 comes from the fact we must tune in once after
the indices have been searched to actually read the data item.

How might we calculate index lookups? The expected number of index units
for partition j that are broadcast in t ticks is

t

K


 Indexj

Indexj + Nj

mj


 . (11)

Note that for a tree-based index, we only need to read one index entry at
each level in the index. The final formula for index lookups for partition j over
t ticks is therefore3

index lookups(j, t) = 1 +
⌈
logn

(
min

(
Indexj ,

t

K

(
Indexj

Indexj + Nj

mj

)))⌉
, (12)

where the 1 on the left-hand side is roughly the cost of finding an offset to the
next index unit to be broadcast and n is the fanout (the number of (key, pointer)
pairs an index unit may store) of each index unit.
3 When the argument of the log function is at or below 1, we round the right-hand
term.
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The construction would be similar if an indexing scheme other than (1,m)
were used. For example, the Distributed Indexing scheme from [9] could also be
used with a similar modification. In general, the tuning time is increased by at
most a factor of K, but is significantly less for a more popular data item.

Experimental Results In this section, we describe some experimental results
using (1,m) indexing on a database consisting of 500 unit-sized data items. We
assume that at each tick, 4K is transmitted. We assume that an index entry
consists of a 16-byte (key, pointer) pair. The fanout, n, is therefore 4096/16 =
256. Because of the tree-structure of each index, the size of the index information
for each partition j is

Indexj =
logn Nj∑

i=1

Nj

ni
. (13)

We also compute m∗
i (the optimal value of mi, as described in [9]) for partition

i as

m∗
i =

√
Ni

Indexi
. (14)

In the experiments we compare the average expected delay and tuning times
of four scheduling algorithms.

flat A typical flat schedule without indexing information.
flat idx A flat schedule augmented with (1,m) indexing.
safok idx Safok, augmented with (1,m) indexing.
opt The analytically optimal solution without indexing information.

As expected, the time safok idx takes to satisfy an average request decreases
with increasing skew, but is always significantly worse than the optimal solution.
In fact, in terms of average expected delay, Safok idx does not beat flat idx
until medium skew (θ ≈ .4). The performances of both flat schedules is fixed
and are outdone by both safok idx and opt at high skew (Figure 8).

The tuning times of both indexed schedules are significantly lower than those
of the non-indexed schedules, potentially saving lots of energy at the client.
safok idx is slightly worse than flat idx at low skew, but is superior at high
skew. At low skew, both algorithms should produce flat schedules, so should have
similar index organizations. At high skew, using safok idx, index information
for very popular data items is easier to find and is smaller than it is with flat idx
(Figure 9).

4 Related Work

Su et al. studied the impact of various scheduling routines on client-side cache
performance [7]. He uses some statistical information on client interests to parti-
tion data, but then uses a real-time priority-based scheme to pick each data item
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Fig. 8. Effect of Skew on Average Expected Delay using Indexed Schedules. Number
of data items = 500.
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Fig. 9. Effect of Skew on Tuning Time using Indexed Schedules. Number of data items
= 500. Note the log scale.

to transmit. So, although the resultant schedule has some fixed organization, it
is basically bottom-up.

The partitioning problem from Section 3 is discussed in [16,15]. However, the
algorithm in [15] is unnecessarily complex and has unreliable results over some
range of parameters [10]. Furthermore [15] never considers mapping its results
to a single channel and does not go into detail about the benefits of a predictible
schedule. In [16], the partitioning problem was investigated for a query histogram
application using stronger assumptions of the data.
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5 Conclusions and Future Work

In this paper, we make improvements on bandwidth allocation algorithms while
preserving the property of a predictable schedule. Our proposed algorithm,
Safok, yields near-optimal average expected delays, and more importantly,
Safok requires fewer computational resources than typical scheduling algo-
rithms. For example, the scheduling algorithm described in [1] requires O(L)
memory to store a schedule of length L ≥ N , and has O(N3) computational
complexity. The more modern priority-based schemes [3,4,5] require O(N) com-
putations at each tick. Furthermore, none of these algorithms, in contrast to the
one proposed here, generates predictable fixed-length schedules, excluding them
from enhancements such as indexing [9] or consistency control [11]. Our scheme
requires O(N logN) computations and O(N) memory regardless of the length of
the schedule and results in near-optimal average expected delay given both unit-
sized and varying-sized data items. A complete set of our experimental results
is available upon request.

We also generate good tuning time results. Besides having superior average
expected delay, the tuning time with safok idx (Safok using (1,m) indexing)
improves with increasing skew and beats flat idx (flat using (1,m) indexing)
under high skew. We have therefore shown that a repetitive schedule can be
easy to compute, deliver data in near-optimal time, and incorporate previous
work on broadcast requiring flat schedules.

Due to space limitations, we do not discuss some other important results.
One important consideration is related to schedule length and worst-case de-
lay. Shorter schedules are desirable, because they allow schedules to change
with user interests and workload [20] and consistency control is simpler [11].
Bounded worst-case delay is desirable for real-time applications [21]. Although
other schedule-measuring schemes exist, the length of a Safok schedule is typ-
ically O(lcm{Ni, i = 1, ...,K}) ≤ O(ΠK

i=1Ni). There are simple ways to control
schedule-length and worst-case delay. See [1,10] for more details.

Our work is ongoing. We are keenly interested in generating broadcast sched-
ules given requests consisting of sets of data items. Clearly, given two requests, or
multiple non-overlapping requests, a shortest-job-first algorithm is best. In the
general case, however, generating an optimal schedule is a combinatorial prob-
lem. Initial investigations of this problem have already been done in [22] with
pre-emptible transmissions of long data items, and in [8] with multi-attribute
indexing. But reflecting the divide in most of the literature, the former work
focuses on bandwidth allocation while the latter focuses on power conservation.
Our work would again bridge the gap.

We are also working on mapping our results into the multiple broadcast
channel case [10]. The availability of multiple broadcast channels allows im-
proved scalability and adaptability to changing environmental conditions and
equipment configurations. Our partitioning results can be directly mapped to
multiple channels, but we are also considering various indexing strategies as
well. Indexing can have a serious impact as search over multiple channels can be
more time and energy consuming than in a single channel case [23].
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