
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Adaptive Data Broadcast in Hybrid Networks

by K. Stathatos, N. Roussopoulos, J.S. Baras

CSHCN T.R. 97-11
(ISR T.R. 97-40)

Adaptive Data Broadcast in Hybrid Networks�

Konstantinos Stathatosy Nick Roussopoulosy John S. Barasz

kostas@cs.umd.edu nick@cs.umd.edu baras@isr.umd.edu

Center for Satellite and Hybrid Communication Networks

Institute for Systems Research

University of Maryland, College Park, MD, 20742

April 8, 1997

Abstract

Hybrid networks combine multiple communication modes and are fast emerging as the

most viable solution for the ever increasing demand for bandwidth and data services. Taking

advantage of this new technology, we are proposing a hybrid scheme which e�ectively combines

broadcast for massive data dissemination and unicast for individual data delivery. The goal

is to build highly scalable systems with small response time. In this paper, we describe

a technique that continuously adapts the broadcast content to match the hot-spot of the

workload. We show that the hot-spot can be accurately obtained by monitoring the \broadcast

misses" observed through direct requests. This is a major departure from all other broadcast

optimization schemes which are handicapped by their total reliance on complete knowledge

of both \hits" and \misses". We also show that the proposed adaptive scheme performs

e�ectively even under very dynamic and rapidly changing workloads. Extensive simulation

results demonstrate both the scalability and versatility of the technique. Another basic result

obtained in this paper is that the overall system's throughput depends only on the size of the

hot-spot and not on the volume of the workload. This has far reaching implications for very

large scale and high volume wide area information systems.

�This material is based upon work supported by the Center for Satellite and Hybrid Communication Networks

under NASA grant NAGW{2777, by the National Science Foundation under Grants No. NSF EEC 94{02384 and

No. ASC 9318183, and by ARPA under Grant No. F30602{93{C{0177

yAlso with the Dept. of Computer Science

zAlso with the Dept. of Electrical Engineering

1

1 Introduction

The world is witnessing an unprecedented demand for data services. The immense popularity

of the Web has generated exponential demand workloads that cannot be satis�ed with existing

Internet capacity and traditional data services in which scalability grows at best linearly with

network bandwidth and server capacity. Such workloads are observed in the course of special

events such as the Atlanta Olympics, the presidential elections, etc. when several million requests

per minute are made during peak periods.

Traditional unicast (point-to-point) and connection-oriented data services are uneconomical

because even if the infrastructure were developed to meet the demand in both network band-

width and server capacity, most of this infrastructure would be underutilized and wasted during

non-peak periods. Data broadcast, on the other hand, exploits hybrid network architectures to

asynchronously deliver data in a connection-less mode and has the advantage of meeting such

workloads provided that the \hot-set" can be identi�ed and delivered through the broadcast

channels. The data is delivered to all clients simultaneously and, therefore, the number of clients

is unlimited while the quality of service (i.e. response time) remains the same. In fact, the more

the simultaneous clients, the more economical the cost of such data services.

Clearly, the key issue is the identi�cation of the \hot-set" for connection-less delivery through

broadcast while serving only \broadcast misses" in the usual connection-oriented way. However,

there are two major obstacles. First, data needs can be neither characterized nor predicted a-

priori because of the dynamic nature of the demand. Special events which produce explosive

access workloads such as emergency or weather related situations cannot be precompiled into

optimal schedules. Thus, techniques based on precompiled schedules [AAFZ95, ST97] are not

applicable in this case. Second, passive broadcast systems are limited because clients have no

means of communicating neither their data needs, which can dynamically change, nor how useful

the content of the broadcast is. In other words, neither hits nor misses on the content are reported.

In [SRB96] we introduced the idea of a hybrid scheme which e�ectively combines broadcast for

massive data dissemination and unicast for upon-request data delivery. The goal is to build highly

scalable systems with small response time. In this paper, we propose a technique that achieves

that by continuously adapting the broadcast content to match the hot-spot of the workload. We

show that the hot-spot can be accurately obtained by monitoring the \broadcast misses" observed

through direct requests. This is a major departure from all other broadcast optimization schemes

2

which are handicapped by their total reliance on complete knowledge of both \hits" and \misses".

We develop an adaptive algorithm which relies on \marginal gains" and \probing" to identify

the more intensively requested data. We show that the overall performance of this hybrid system

can surpass the capacity of the data servers by several orders of magnitude under the following

two assumptions: a) the size of hot spot and the network bandwidth are such that the hot-spot

can be broadcast with acceptable response time, and b) the remaining cold set is sustained below

the data server's capacity. If these two assumptions hold, the performance of the hybrid system

proposed herein is independent of the total volume of the workload and, thus, the system exhibits

unlimited scalability.

Section 2 presents a basic analytical model for hybrid data delivery and discusses the type of

workloads that can bene�t from it. Then, in section 3 we describe the adaptive algorithm and

its re�nements. Section 4 describes the simulation model we implemented to evaluate our system

as well as the experiments we performed. Finally, we refer to related work, in section 5, and

conclude with a summary of our results in section 6.

2 Balancing Data Delivery

2.1 The Hybrid Model

In this section, we develop a simpli�ed analytical model for the hybrid delivery scheme which will

provide the some intuition behind our work and illustrate the involved trade-o�s. Let us consider

a system that broadcasts data with period T over a channel of bandwidth B. Often, this periodic

broadcast is perceived as a special memory space (data store) of the server of size B � T . Its

major advantage is that it can be accessed by any number of clients concurrently (i.e. no access

contention) with no overhead for the server. Its only limitation is that it can be accessed only

sequentially since clients need to wait for the data of their interest to appear on the channel. A

direct consequence is that the average access time depends on the size of that memory which in

turn is determined by the period T .

In modern hybrid/overlay communication environments, we can exploit multiple data deliv-

ery paths. Broadcast and unicast, possibly through di�erent communication channels, can be

combined to work synergistically and yield higher data delivery rates. For exploiting the charac-

teristics of each of the data paths, we should be looking for solutions that range between:

3

Broadcast everything (pure data push): This scheme includes the case when clients are

completely passive listeners who make no explicit requests. Such a scheme can accom-

modate an arbitrary large number of clients (unlimited scalability). But, the average data

access time grows with the size of the database which has to be fairly small to keep the

response time acceptable.

Broadcast nothing (pure data pull): All requests are explicitly made to the server, and thus

this becomes just a standard client server architecture. Such a scheme cannot scale beyond

the server's and the network's maximum capacity. The average data access time depends

on the aggregate server workload as well as the network load, but not on the size of the

database.

Consider a database containing N data items of equal size S. The demand for each item

i forms a Poisson process of rate �i. Assume that the data items are numbered such that

�1 � �2 � � � � � �N . A server1 can service requests for these items with mean service time 1=�.

In addition, this server can broadcast data over a channel at a rate B. Assume that, for some

reason, the server decides to broadcast (push) the n �rst items and o�er the rest on-demand

(when pulled). If we de�ne �k =
Pk

i=1 �i, the overall expected response time of the system is

T =
�n Tpush + (�N � �n)Tpull

�N

where Tpull =
1

��(�N��n)
is the expected response time for on-demand requests and Tpush = n S

2B

is that of the requests satis�ed by the broadcast (equal to half of the broadcast period). Figure 1

plots a representative example of the response times T , Tpull and Tpush as a function of the number

n of broadcast items. We have assumed that the total workload, represented by �N , is greater

than �, which is a safe assumption for large scale systems with huge client populations.

The �rst thing to note in �gure 1, is that the performance of the data-pull service is exponen-

tially a�ected by the imposed load. It is evident that with too little broadcasting, the volume of

requests at the server may increase beyond its capacity, making service practically impossible (left

side of the graph). Stated more formally, the response time for pulled data|and consequently the

overall response time|grows arbitrarily large, for n < M , whereM is such that �N � �M = �.

On the other hand, the response time for pushed data is a straight line, growing proportionally

1For simplicity we model the server as an M/M/1 system

4

0 N

R
es

po
ns

e
T

im
e

M G

Tpull

Tpush

T

Number of Broadcast Items ()n

Figure 1: Hybrid Delivery Trade-o�

with the size of the broadcast2. The slope of that line is determined by the size of the data S

and the available bandwidth B. As a result, too much broadcasting is not desirable either, and

in order to achieve best performance, we must look for solutions in the area around G, where we

can maintain a proper balance between data push and pull.

2.2 Practical Considerations for Workloads

The discussion of the previous sections suggests that there is a way of balancing data delivery

modes in a way optimal with respect to the overall response time. However, it is not all that

obvious how good that optimal solution is, since in some cases this optimal response time is

unacceptable. In what follows, we explore hybrid delivery from a practical perspective and give a

qualitative answer to when the combination of broadcasting and unicasting can be advantageous.

Intuitively, data broadcasting is helpful when its content is useful to multiple receivers. If

that happens the bene�t is two fold: �rst, for each single broadcast message the server saves

several unicast messages that otherwise would have to send individually, and second, the satis�ed

receivers avoid sending requests that might end up clogging the server. On the other hand,

broadcast data that are useful to one or even no receiver do not yield any bene�t, but instead, they

harm overall performance since they occupy valuable bandwidth. This implies that we can use

data broadcasting more e�ectively when there is some signi�cant commonality of reference among

the client population. Ideally, we would like to be able to detect and exploit that commonality.

Consider, for example, a data set of N items and assume that they get requested according

to the skewed access pattern of �gure 2. For clarity, we assume that items are sorted according

to their respective request rates. From the discussion so far, it is clear that we are looking for the

optimal point G to draw the line between data that should be pushed and data that are left to be

2This is a good approximation, although it may not be always true.

5

≈

Request Rate λi

n
0

N
G

F
ig
u
re

2
:
S
kew

ed
D
ata

A
ccess

P
attern

p
u
lled

.
T
h
e
area

to
th
e
left

of
G
(th

e
h
ead

of
th
e
d
istrib

u
tion

)
rep

resen
ts
th
e
v
olu

m
e
o
f
req

u
ests

sa
tis�

ed
b
y
th
e
b
ro
ad
cast.

N
ote

th
a
t
on
ly
th
e
w
id
th

of
th
is
area

a�
ects

th
e
sy
stem

's
p
erform

an
ce

a
n
d
n
ot

its
h
eig

h
t.

In
fa
ct,

th
e
h
igh

er
th
is
area

gets,
th
e
greater

th
e
b
en
e�
t
of

b
road

castin
g.

T
h
e
sh
ad
ed

area
to

th
e
rig

h
t
of

G
(th

e
tail

of
th
e
d
istrib

u
tion

)
rep

resen
ts

th
e
v
olu

m
e
of

th
e

ex
p
licit

req
u
ests

d
irected

to
th
e
server.

H
av
in
g
th
is
in
m
in
d
,
th
e
selection

of
G
sh
ou
ld
satisfy

tw
o

con
strain

ts:

�
th
e
h
ead

sh
o
u
ld

b
e
w
id
e
en
o
u
g
h
to

accom
m
o
d
ate

th
e
h
ot-set

b
u
t
n
ot

so
w
id
e
th
at

it
cou

ld

y
ield

u
n
a
ccep

tab
le
resp

on
se

tim
e.

�
th
e
ta
il
o
f
th
e
w
o
rk
load

(sh
ad
ed

a
rea)

sh
ou
ld

b
e
m
ain

tain
ed

b
elow

th
e
serv

er's
cap

acity.

In
p
ractice,

th
e
sh
ap
e
of
th
e
tail

is
w
h
at
d
eterm

in
es
th
e
v
iab

ility
of
th
e
h
y
b
rid

sch
em

e.
T
o
m
ak
e

th
is
clea

r,
con

sid
er

a
ca
se

w
h
ere

th
e
tail

is
a
very

lon
g
area

of
v
ery

sm
all

(b
u
t
n
ot

zero)
h
eigh

t.

T
h
a
t
w
ou
ld

corresp
on
d
to

a
v
ery

la
rge

n
u
m
b
er

of
item

s
th
at

get
req

u
ested

v
ery

in
freq

u
en
tly.

If

th
e
total

tail
a
rea

is
larger

th
an

th
e
serv

er's
cap

acity,
th
en

w
e
n
eed

to
m
ove

th
e
p
o
in
t
G

even

m
ore

to
th
e
rig

h
t.

B
u
t,
sin

ce
ea
ch

item
con

trib
u
tes

v
ery

little
to

th
e
total

a
rea,

th
e
op
tim

a
l
G

w
o
u
ld

b
e
fou

n
d
d
eep

in
to

th
is
tail.

T
h
is
m
ean

s
th
at

a
lot

o
f
rarely

req
u
ested

item
s
w
ou
ld

b
e

b
roa

d
cast.

In
e�
ect,

th
at

is
a
lo
se-lose

situ
ation

b
ecau

se
th
e
q
u
ality

a
n
d
th
e
p
erform

an
ce

of
th
e

b
roa

d
cast

is
sign

i�
can

tly
red

u
ced

w
ith

m
in
im
u
m

or
n
o
retu

rn
ed

b
en
e�
t.

In
su
ch

situ
ation

s,
th
e

o
n
ly

solu
tio

n
is
to

in
crea

se
th
e
serv

er's
cap

acity
to

cov
er

th
e
tail.

H
av
in
g
th
is
in

m
in
d
,
w
e
co
n
sid

er
cases

w
h
ere

th
e
op
tim

al
solu

tion
d
o
es

n
ot

req
u
ire

b
road

-

castin
g
of
rarely

req
u
ested

d
ata.

U
n
d
er

th
e
assu

m
p
tion

th
at

th
e
server's

cap
acity

is
at

least
su
ch

th
at

it
can

h
an
d
le
th
e
ag
g
regate

lo
ad

im
p
osed

b
y
req

u
ests

for
su
ch

d
ata,

w
e
p
rop

o
se

an
ad
ap
tiv

e

6

hybrid scheme which, in a near optimal way, exploits broadcasting to take the load of hot data

o� the server which is left with a tolerable load imposed by infrequently requested data.

3 Adaptive Hybrid Delivery

In this section we elaborate on the proposed adaptive hybrid delivery scheme. Our solution is

mainly based on the notion of data caching. Conceptually, we treat the available broadcast ca-

pacity as a global cache memory between the server and the clients. Like typical cache memories,

this \air-cache" should allow clients to get the data they need faster than directly from the server

and at the same time limit contention for the shared resources (i.e. the server and the network).

Similarly to caching in other contexts, the air-cache should be adaptive to the system's workload.

The challenge in making it adaptive lies on the fact that the server cannot have a clear picture

about the actual usage of the broadcast data simply because satis�ed clients do not acknowledge

the usefulness of the received data. Therefore, traditional cache management techniques, such as

LRU, MRU, etc., are not applicable. However, \air-cache misses", indicated by explicit requests

for data not broadcasted, provide the server with tangible statistics on their demand frequency.

This unveils an interesting perplexity of the system: the more misses the better server statistics

to adapt on. But, on the other hand, the more passive the clients are, the more satis�ed they are

with the broadcast.

3.1 Vapor, Liquid and Frigid Data

To facilitate the presentation of our work, we de�ne three possible states for data and borrow

terminology from their analogy to the three physical states of water. More speci�cally, for each

item in the database we de�ne a temperature which corresponds to its request rate �i. Based on

their temperature, data items can be in one of three states:

Vapor (Steamy) Hot: Items for which the server has determined that are currently heavily

requested and therefore should be broadcast, i.e. put in the air-cache.

Liquid Warm: Items currently not broadcast for which the server has recently received a mod-

erate or small (not enough to justify broadcasting) number of requests.

Frigid (Icy) Cold: Items that have not been requested for a while and, therefore, their tem-

perature �i has practically dropped to 0 (degrees centigrade).

7

In the adaptive scheme that we propose, the server dynamically determines the state of the

database items based on the air-cache misses. These can be considered as the \sparks" that

regulate the temperature and state of the data. They operate according to the following rules:

� For vapor data, we assume that clients always retrieve them from the broadcast channel3,

so there is no real feedback to the server about their actual temperature. In other words,

there are no heated by requests and they gradually cool down until eventually they turn

into liquid. The duration of this cooling process depends on the temperature that caused

them to vaporize in the �rst place (the hotter they were, the longer it takes for them to

cool down).

� Liquid data items that continue being requested either turn into vapor or remain liquid,

depending on the intensity of the requests. If they stop being requested they eventually

freeze.

� Frigid data items that start being requested turn into liquid or even vapor depending again

on the intensity of their requests. Obviously, as long as there are no requests they remain

frigid.

The hardest part of this process is in distinguishing vapor from liquid data, which is the focus

of the rest of the paper. The distinction between liquid and frigid data items is, in e�ect, similar

to that implicitly achieved by a bu�er manager of a database system using a standard LRU

replacement policy. Likewise, the server should tend to maintain liquid items in main memory

anticipating new requests in the near future, and can retrieve frigid items from secondary or

tertiary memory only when necessary. However, in practice the distinction of frigid data plays

another important role in terms of overhead, specially in the common case where frigid data

make up the largest part of the database. With a default 0 temperature, the server is o�-loaded

from keeping statistics for frigid data, and can also safely ignore them when looking for candidate

vapor items.

3.2 Repetitive Data Broadcasting

Contrary to typical periodic broadcast schemes that require a �xed schedule, we employ a non{

periodic repetitive broadcast scheme. Vapor data are repeatedly broadcast to achieve the e�ects

3We are also investigating the e�ects of relaxing this constraint

8

of caching in the broadcast channel, but the content of the broadcast is continuously updated to

better match the workload. The heart of this approach is a queue V which the server uses to

maintain all vapor data. The server picks the next item to broadcast from the head of V . After

it gets broadcast, the server removes it from the head and moves it back to the tail of V . At the

same time, its temperature is lowered by some predetermined factor to re
ect the cooling process

of vapor data.

In order to be able to update the contents of the queue, we assign one of the items in V as

a placeholder. Once this placeholder is broadcast, the server re{evaluates the state of data and

modi�es the contents of the queue accordingly. This evaluation process, which is described in

detail in the next section, selects which of the vapor items (if any) should be demoted to liquid

and which of the liquid ones have heated up enough to be vaporized. The vapor items that are to

be demoted are marked so that after their next broadcast they will be removed from the queue.

The new vapor items are placed on the tail of queue so that they will start being broadcast. After

this update, the �nal item on the tail of V is assigned as the new placeholder. The result of this

technique is a repetitive scheme with continuously evolving content and no �xed period.

Another integral part of the hybrid delivery scheme is the indexing of the broadcast channel.

Since the clients are expected to select between the two data delivery paths, the server needs to

have a way of letting them know what to expect from the broadcast. For this, we have adopted

a simple technique that uses the queue's signature (i.e. the list of data identi�ers in the queue)

as an index which is broadcast properly interleaved with the data. The clients examine the index

and decide whether to wait for the required item to arrive or to make an explicit request for it.

The frequency of index inclusion in the broadcast is determined based on the size of the data and

the maximum time clients are willing to wait before making the decision. In the future we are

planning to incorporate additional and more elaborate indexing schemes that take into account

other trade-o�s, such as those proposed in [IVB94b] and [IVB94a].

3.3 Adaptation Based on Marginal Gains

As mentioned in the previous sections, the server needs to dynamically determine the state of

the various data items. The separation of liquid and frigid items is simply determined by the age

of the last request for each item. The characterization of an item either as vapor or liquid is a

lot more intricate. Every time the server has to re-evaluate the state of data, it actually needs

9

to make two kinds of decisions: (a) which (if any) of the vapor data have cooled-down enough

to be demoted to liquid, and (b) which of the liquid data became hot enough to be promoted to

vapor. A straightforward approach of establishing absolute temperature thresholds for vapor and

liquid data does not work because the state of the data depends also on the aggregate workload4

which is dynamic and, in many cases, very bursty. In order to take into account the aggregate

workload, we developed an algorithm that relies on the expected marginal gain or loss resulting

from each possible decision.

T : average overall response time
Tpush : average access time for pushed data
Tpull : average access time for pulled data
�L : aggregate request rate for liquid data
�V : aggregate request rate for vapor data
NV : number of vapor items
Si : size of the item i
�i : request rate (temperature) of the item i
� : mean service rate of the server
I : size of each index entry
B : broadcast data rate

Table 1: Marginal Gain Parameters

Let us �rst present how the marginal gain for an item i is computed when promoting it to

vapor or demoting it to liquid. The parameters are shown in table 1. Note, that the marginal

gain in both cases is computed similarly except for the sign of the involved quantities. Therefore,

to avoid duplication in the presentation of the algorithm we introduce the variable A which takes

the value �1 if the item i is vapor and considered for demotion to liquid and +1 if it is liquid

and considered for promotion to vapor. The computations are based on the model described in

section 2.1. The only di�erence is that now we also take into account the overhead of broadcasting

the index. For simplicity, we assume that a copy of the index is broadcast with every item.

We compute the expected overall marginal gain dT as a weighted average of the marginal

gains dTpush and dTpull. If we de�ne d�V = A�i we have:

dT =
�V dTpush +�L dTpull

�V + �L

4Similarly to the vaporization temperature of water which depends on the atmospheric pressure.

10

w
h
ere

d
T
p
u
s
h
=
A
S
i
+
(2
N
V
+
A
)
I

2
B

a
n
d

d
T
p
u
ll
=
T
p
u
ll

d
�
V

�
�
�
L
+
d
�
V

Response Time

d
T

d
T

p
u

sh
{{{

{Λ
V

θ

d
T

p
u

ll

TT
p

u
sh

T
p

u
ll

Λ
V

d

F
ig
u
re

3:
M
argin

al
gain

s

F
ig
u
re

3
d
ep
icts

th
ese

co
m
p
u
ta
tion

s
grap

h
ically.

Id
eally,

b
y
u
sin

g
th
e
m
argin

al
gain

s
th
e

sy
stem

s
sh
o
u
ld

try
to

reach
an
d
op
era

te
at

th
e
m
in
im
u
m

p
oin

t
o
f
th
e
cu
rv
e
T
.
H
ow

ever,
it
tu
rn
s

o
u
t
th
a
t
in

p
ractice

th
is
is
n
ot

th
e
b
est

th
in
g
to

d
o.

T
h
is
is
ex
p
lain

ed
b
y
th
e
fact

th
at

to
th
e
left

o
f
th
is
m
in
im
u
m

p
oin

t
th
e
resp

on
se

tim
e
grow

s
very

fast.
A
s
a
resu

lt,
u
n
d
er

a
d
y
n
am

ic
w
ork

load

it
is
very

p
rob

a
b
le
th
at

even
a
sm

a
ll
ch
an
ge

can
h
ave

a
very

b
ad

e�
ect

on
th
e
sy
stem

.
T
h
erefore,

o
p
eratin

g
at

or
to
o
close

to
th
e
m
in
im
u
m

can
m
ak
e
th
e
sy
stem

v
ery

u
n
stab

le.
L
ater

in
th
e
p
a
p
er,

th
is
is
in
d
eed

v
eri�

ed
b
y
o
u
r
ex
p
erim

en
ts.

S
o,
in
stead

,
w
e
h
ave

to
force

th
e
sy
stem

to
op
erate

in

a
su
b
o
p
tim

al
area

to
th
e
rig

h
t
of

th
e
m
in
im
u
m
,
safely

avoid
in
g
in
stab

ility.
W
e
a
ch
iev

e
th
is
b
y

esta
b
lish

in
g
so
m
e
sm

all
(b
u
t
n
ot

zero
)
th
resh

old
�
0
for

th
e
an
gle

�
=

ta
n
�
1
d
T

d
�
V
.

In
�
gu
re

4
w
e
o
u
tlin

e
th
e
actu

al
algorith

m
th
at

u
ses

th
ese

m
argin

al
gain

s
to

u
p
d
ate

th
e

co
n
ten

ts
of

th
e
va
p
o
r
q
u
eu
e
V
.
In
tu
itively,

th
e
algorith

m
p
erform

s
th
ree

sim
p
le
step

s:
F
irst,

it

d
em

o
tes

to
liq
u
id

a
ll
va
p
or

d
a
ta

w
h
ose

tem
p
eratu

re
is
sm

aller
th
an

th
at

of
th
e
h
ottest

liq
u
id

item
.
T
h
en
,
u
sin

g
th
e
resp

ective
m
a
rg
in
al
gain

s,
it
con

tin
u
es

d
em

otin
g
vap

or
item

s
in

in
creasin

g

o
rd
er

of
tem

p
era

tu
res

w
h
ile

�
>
�
0 .

L
ast,

it
tak

es
th
e
op
p
osite

d
irection

an
d
as

lon
g
a
s
�
<
�
0
it

p
ro
m
otes

liq
u
id

d
a
ta

to
vap

or
in

d
ecreasin

g
ord

er
o
f
tem

p
eratu

re.
N
ote

th
at

if
at

least
on
e
vap

or

11

l = hottest liquid item
v = coldest vapor item
while (�v < �l)

demote v
v = coldest vapor item

end

while (�dT=�v > tan�0)
demote v
v = coldest vapor item

end

l = hottest liquid item
while (dT=�l < tan�0)

promote l
l = hottest liquid item

end

Figure 4: Adaptive algorithm based on marginal gains

item is demoted in the second step, then no liquid item will be promoted in the third step. Also,

it is possible that vapor items that get demoted in the �rst step will be re-promoted in the third.

Figure 5 illustrates an example of how the algorithm works. We assume that initially items

A, B, C, D, E, F, and G are vapor, items H and I are liquid, and that �A � �B � �C � �D �

�E � �F � �I � �G � �H . In this case, the algorithm �rsts demotes A, B, C, D, E, F, and

G since their temperature is smaller than that of the liquid H. Then it detects that there is no

further gain by demoting more items so it skips the second step. At the third step it promotes

three items, H, G, and I (G was temporarily demoted in the �rst step).

R
e

sp
o

n
se

 T
im

e

ΛV

Liquefy

Vaporize

AB
C

D
EF

G

H

G
I

Figure 5: Execution of the adaptive algorithm

12

3.4 Probing for Snappy Re
exes

A potential weakness in what has been described so far could be the arti�cial cooling down of

vapor data. It was introduced for the sole purpose of giving the server a chance to re-evaluate

the temperature of vapor data regularly, and generally it is not expected to re
ect the real-life

evolution of data demand. In that sense, it may very well result in a situation where a very hot

item is demoted to liquid because its arti�cially cooled down temperature has declined. If that

happens, it is very possible that the server will be swamped with requests for that item. Even

though, the adaptive algorithm will eventually correct this by re-promoting the item, the reaction

time lag may be big enough to cause serious degradation. This section introduces \probing" for

achieving snappy re
exes to rapid workload changes.

This is explained better in the left part of �gure 6 where we present the time line of events

after a decision to demote a vapor hot item. At t0, the server decides to demote a vapor item

and sends a message to notify the clients about its decision. This noti�cation is done with the

broadcast of the the next index message which arrives at t1. From that point on, all the requests

for that item are directed to the server. If the item is still hot, the server decides again to make

it vapor at t2 and noti�es the clients again with a message that arrives at t3. The shaded area in

the �gure represents the total request load that such wrong decisions may generate. Considering

data transmission and server inertia delays (i.e. the time it takes the server to re-promote the

item), the interval between t1 and t3 could be substantial. Therefore, the cumulative e�ect of

consecutive improper data demotion can be enough to make the system practically unusable.

Server Clients Server Clients

≈
≈≈

≈

Liquid

Vapor

Vapor

Vapor

Liquidt0

t1

t2

t3

t4

t0

t1t2

t4 t3

t5

t6

t7

Figure 6: Temperature re-evaluation without and with probing

The adaptive algorithm that we propose remedies this potential error by a double clutch

probing approach, which is illustrated on the right hand side of �gure 6. Soon after the decision

13

to convert an item from vapor to liquid at t0, and way before it is actually heated up by misses,

the item is temporarily re-promoted at time t2. This creates a controllably small time window

(from t1 to t3) that limits the expected number of client requests for the demoted item, but still

can provide valuable information to the server. In e�ect, we give the server the opportunity to

\probe" for the actual temperature of the data just before committing to its decision. After the

forced promotion of the item at t2, the server waits for any requests generated during the period

t1{t3 in order to re-evaluate the item's actual temperature. Due to network inertia, we delay this

re-evaluation until some time after t5. At that time (t6), depending on its probed temperature,

the item is either demoted or reinstated to the broadcast queue with accurate temperature.

The power of double-clutch probing is that it can reduce the size of the shaded area, which

corresponds to misses, in a controllable manner. However, the selection of the probing interval

t0{t2 is very critical. If it is too short, hardly any requests will be generated to help the server in

the re-evaluation. If it is too long, the bene�ts of the probing are lost. In addition, the probing

time should be dynamically adjusted to the intensity of the workload. For these reasons, we

found that a very good selection can be based on the average request rate of vapor data. More

speci�cally, we set the probing time to be proportional to the inverse of the average temperature

of vapor data. In this way, we can explicitly control the expected number of requests each probing

window allows, and, consequently, the total probing overhead.

3.5 Monitoring Overhead

The implementation of our hybrid scheme requires some considerable bookkeeping which may

by itself impose a heavy computational load on the server. The server needs to monitor the

temperature of liquid items, keep them sorted so that each time the next candidate for promotion

can be identi�ed instantly, as well as detect those that have not received any attention for a period

long enough to freeze.

To keep this overhead down to a minimum, we chose to organize bookkeeping around the

idea of slotted time, which considers time as divided into slots S0; S1; : : : ; Sn; : : : , each taking

time ts. During each slot, we record the total number of requests for every item that gets

requested. We then compute the request rate of each item using a moving average over time slots

exponentially weighted by a factor �. Formally, the request rate of item i at the end of slot n is

�i;n = � ri;n=ts + (1� �)�i;n�1 where ri;n is the number of requests for item i made during Sn.

14

The computational bene�ts of this approach are two-fold. First, note that for the items that

were not requested during the last slot we have ri;n = 0, and therefore �i;n = (1� �)�i;n�1. In

practice, the server does not even need to update these values, since for an item last requested

during Sn�k it holds that �i;n = (1��)k �i;n�k . This way we avoid many computations which are

performed only when (if ever) needed. The second bene�t is that the relative order of tempera-

tures for items not requested during the last slot does not change. This is exploited to signi�cantly

reduce the overhead of keeping a list of liquid items in decreasing order of temperatures. Only the

items requested in the last slot need to be sorted according to their new computed temperatures

and then quickly merged with the rest.

Last, with the time slots it is straightforward to identify when liquid items become frigid.

Assume that an item freezes if it is not requested for l slots tl = l ts. Then, at the end of slot Sn,

the items that were last requested during Sn�l turn into frigid. As a result, each time we need

to keep information only about the last l time slots.

4 Experiments and Results

4.1 Simulation model and parameters

In order to establish the potential of hybrid data delivery, investigate the involved trade-o�s

and explore the possible alternatives, we have built a simulation model of the proposed system.

We model wide area information systems where a very large number of clients (in the order of

thousands) access an information source. For the simulations, we have assumed that the provided

information is a collection of N self-identifying data items each of equal size. For our purposes,

every client generates requests for data which are satis�ed either by the broadcast program or the

server upon explicit request. Under this assumption, we have modeled this large client population

as a single module that generates the total workload, a stream of independent requests for data

items. The exact number of clients is not speci�ed but instead it is implicitly suggested by the

aggregate request rate.

In all our experiments we used two di�erent workload distributions: HotColdUniform and

Gaussian (see �gure 7. These distributions proved to be very useful for our investigation. The

�rst is only used as an ideal case where there is a clearly de�ned hot-spot in the database. The

second is far more realistic, but at the same time it allows the explicit customization of the

15

N0 C

HS

HotColdUniform

A

NC0

HS

Gaussian

A
2

Figure 7: Workload distributions

hot-spot size and the tail area through parameters. Actually both distributions are de�ned by

the same parameters, namely RR the aggregate request rate, A the aggregate request rate for

cold data (i.e. the tails of the distribution), HS the width of the hot-spot in terms of data

items and C the center of the hot-spot. In order to create the e�ect of dynamic workloads, these

parameters can be variable in the experiments. More speci�cally, we allow RR, HS, and C to

vary periodically within certain ranges. For example, RR changes from RRmin to RRmax within

some selected period �RR. Obviously, by setting RRmin = RRmax we achieve some constant RR.

HS is controlled similarly. For C we de�ne some sort of speed at which it moves in the data set.

Note that the fact that the hot items are continuous in the database does not a�ect our results.

Any permutation of data will yield the same results.

For the server we have used a simple data server model, enhanced with a transmitter capable

of broadcasting and the functionality required to implement our adaptive algorithm. As usually,

we assume a �xed amount of memory cache and explicit requests are serviced in FIFO order

unless blocked for I/O. Although the server is modeled through several parameters (e.g. cache

size, I/O characteristics, e.t.c.), the presentation and interpretation of our results is based only on

one parameter, the server throughput, which corresponds to the maximum rate at which requests

can be serviced. Depending on the experiment setup, this is determined by (a combination of)

the bandwidth of the available network, the size of the data, and the processing power of the

server.

The last part we model is the network on which the system operates. Since we would like to

capture the behavior of asymmetric hybrid environments we need to specify the characteristics of

three communication paths: (1) the broadcast channel, (2) the downlink from the server to the

clients, and (3) the uplink from the clients to the server. For simplicity, we assume that all clients

use similar but independent paths for establishing point-to-point connections with the server (e.g.

regular or cellular phone lines). The downlink on the other hand is a shared resource that is used

16

for all server replies. The broadcast channel, although physically can coexist with the downlink,

logically it is considered a separate channel with a �xed specially allocated bandwidth. For each

of the communication paths, we de�ne a data transmission rate and a propagation delay. We

must also note that in our study so far we have ignored communication errors. Dealing with the

interesting problems that arise in the presence of errors is among the goals of our future work.

In the following subsections we present the most interesting results of our experiments. Al-

though many more experiments were performed, in this paper we present only the most important

characteristics about the system's performance.

4.2 Static Workloads

For the �rst set of experiments we chose to use static workloads, even though static ones do

not demonstrate how quickly the system adapts to these workloads. However, they can provide

a solid base for comparison since for those we can determine the optimal behavior of a hybrid

delivery system. Actually, the graphs in this section include two baselines for comparison. The

�rst, marked \Theory" represents the theoretically optimal policy, based on the the model of

section 2.1. For the second, marked \PerfectServer", we have obtained an exhaustive algorithm

that �nds the optimal broadcast program and used a stripped version of our server which does

not adapt but instead, it broadcasts periodically the optimal program. Essentially, under static

workloads the \PerfectServer" line is the ultimate performance goal of our system.

For the experiments presented in this section we have assumed the parameters of the table 2.

These correspond to a hybrid architecture like the DirecPC [Hug] of Hughes Network Systems.

It can be easily computed that the broadcast and the downlink rates are roughly 30 items per

second. Assuming that enough computing power at the server, this is also the maximum service

throughput.

Broadcast Rate : 12 Mbps
Downlink Rate : 12 Mbps

Uplink Rate : 28.8 Kbps
Data Item Size : 50 KB
Database Size : 10000 Items

Table 2: Simulation Parameters

The basic metric for the system is the average response time for the clients. We intend to

show that under the workload and system assumptions discussed in section 2.2 our system can

17

exhibit very high scalability. In other words, it can accommodate very heavy workloads with no

signi�cant degradation in the clients response time. In the experiments, we vary the workload

from very light (below the server's maximum throughput) to very heavy (100 times the server's

maximum throughput), with a �xed hot-spot size of 100 items (1% of the database).

First, we present the results we obtained under the ideal workload distribution HotColdUni-

form. In �gure 8 we show the average response time for this case as a function of the total request

rate. For completeness, we include the performance of a pure data-pull system (no broadcast).

As expected, such a system cannot accommodate any workload higher than its capacity (approx-

imately 30 requests per second in this case). On the other hand it is clearly shown that the

hybrid delivery approach as implemented in our system can easily scale to workloads 100 times

heavier or even more (note that the horizontal axis is in logarithmic scale). No matter how heavy

the workload gets the response time remains constant, roughly equal to half the time it takes to

broadcast the hot-spot. Obviously, this depends only on the size of the hot-spot. Moreover, under

this ideal separation of hot and cold data our approach performs optimally under heavy work-

loads, matching both the theoretically minimum response time and that of the perfect server. For

lighter workloads, it performs slightly worse since it chooses to broadcast few items even though

it is not necessary. This is a result of the introduction of the threshold �0 (see section 3.3) which

makes our algorithm slightly biased towards broadcasting.

0

0.5

1

1.5

2

2.5

10 30 300 3000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Aggregate Workload (requests/sec)

Adaptive
PefectServer

Theory
Pure Pull

0

20

40

60

80

100

120

140

10 30 300 3000

V
ap

or
 It

em
s

Aggregate Workload (requests/sec)

Adaptive
PerfectServer

Theory

Figure 8: HotColdUniform Workload Distribution

In the second graph of �gure 8 we show the average number of items that our system had

in vapor state. Comparing that to the theoretically optimal number of vapor items, we see that

our system selects the same number of data to broadcast and indeed these are the best ones.

Although, this result is based on the ideal workload distribution, it is expected to hold in every

18

type of workload where the hot items can be clearly distinguished.

However, in many realistic situations this is not true. So, in order to test our system under

\continuous" distributions, where the boundaries of the hot-spot are not clearly de�ned, we

performed another set of experiments using Gaussian workload distribution. All the workload

and system parameters are the same as in the previous experiments. In �gure 9 we show the

response time of the system, together with the average number of vapor items. Again, the most

impressive result is the scalability that the system achieves. For workloads one hundred times

more than the system's capacity the response time remains very small. However, this time, there

is a small yet distinguishable di�erence between the performance our system achieves and the

theoretically optimal. From the right graph we can infer that this di�erence is attributed to

the fact that our algorithm does more broadcasting than the optimal according to the theoretical

model and the perfect server. This again is a result of the small tendency of our algorithm to favor

broadcasting, which now detects, outside the optimal hot-spot, items hot enough to be included

in the broadcast. This was not the case in the previous distribution. A related interesting thing

to note is that the selected hot-spot appears to be improving (leaning towards the optimal) as

the aggregate rate increases. This is attributed to the fact that the tail of the workload in every

case remains below the server's capacity and, as the total workload increases, the distribution

becomes more skewed. As a result, the boundaries of the hot-spot are more accurately identi�ed

by our algorithm.

0

0.5

1

1.5

2

2.5

10 30 300 3000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Aggregate Workload (requests/sec)

Adaptive
PerfectServer

Theory
Pure Pull

0

20

40

60

80

100

120

140

10 30 300 3000

V
ap

or
 It

em
s

Aggregate Workload (requests/sec)

Adaptive
PerfecrServer

Theory

Figure 9: Gaussian Workload Distribution

19

4.3 Sensitivity Analysis

In this section we present results that demonstrate the e�ects of the major parameters that control

the performance of the system. In the discussion of section 3.3 we talked about the threshold

�0 that we need to establish in order to save the system from instability. We ran a series of

experiments to show the actual e�ects of that threshold. In �gure 10 we show a representative

example from these experiments. Note that the results are presented as a function of tan�0

which corresponds to a threshold for the more intuitive quantity dT=d�V . These graphs verify

that small thresholds bring the system closer to the optimal but lead to instability. As can be

observed from the left graph of �gure 10, the curve breaks sharply for values less than 0.08. Thus

a small perturbation on the threshold has explosive negative consequences on the performance.

Instead, in all the experiments we ran we noticed that a threshold of 0.1 yields suboptimal but

acceptable performance, by making the server broadcast slightly more. Greater values for this

threshold increase the broadcast even more with no extra bene�t. The right graph of the same

�gure shows the extra broadcasting caused by the threshold.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Perfect
Adaptive

tan θ0

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5

V
ap

or
 It

em
s

Perfect
Adaptive

tan θ0
Figure 10: E�ects of �0

An equally important part of our system is the ability to probe the workload. In turns out

that direct demotion of very hot vapor items to a liquid state can be detrimental to the system

performance. As was mentioned earlier, the selection of the probing time is very important. If

it is either too small or too big, it is essentially the same as no probing at all. This is clearly

demonstrated in �gure 11. According to section 3.4 the probing time should be proportional to

the inverse of the average vapor request rate. For our experiments, we de�ne the probe time to

be equal to that quantity multiplied by a \Probe Time Factor". This way, we directly control the

number of expected requests per probe, i.e. for a factor of 4 we get an average of 4 requests per

20

probe. In all the experiments, we noticed that we are getting the best results for values between 3

and 6, which means that on average 3 to 6 requests are enough for estimating data temperatures

and not too many to cause problems.

1

10

100

0 2 4 6 8 10 12 14

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Probe Time Factor

Perfect
Cooling Factor 0.8
Cooling Factor 0.7

Figure 11: E�ects of probing

In �gure 11 we show the e�ect of probing time for two di�erent values of the cooling factor.

The reason for this experiment is that the cooling factor implicitly controls the frequency of

probing and thus a�ects its performance. The trade-o� is that more frequent probing generates

higher overhead in terms of broadcast misses while infrequent probing hinders the adaptiveness

of the system. The larger the factor and the more frequent the probing the greater the overhead,

which explains why for a cooling factor of 0.7 the range of acceptable values for the probe factor

is smaller.

Overall, we can say that the power of our approach is that, with a proper combination of

these two parameters, one can explicitly control fairly accurately the adaptiveness of the system,

the e�ectiveness of the probing as well as the incurred overhead.

4.4 Dynamic Workloads

For the last set of experiments we test the adaptiveness of our system under dynamic workloads.

We simulate dynamic workloads by de�ning a \speed" for the hot{spot of the database. For

example, a hot{spot speed of 1000 items/per hour means that within one hour the hot{spot

shifts gradually 1000 items. For the results presented here we assume that the other parameters

of the workload do not change. In �gure 12 we present the performance results of the system for

speeds varying from 0 (static workload) to 5000 items per hour. As expected, the cooling factor

21

is crucial to the adaptation speed of the system so we give results for three di�erent values.

1

10

100

0 1000 2000 3000 4000 5000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Hotspot Speed (items/hour)

Cooling Factor 0.8
Cooling Factor 0.9

Cooling Factor 0.95

Figure 12: Adaptation under dynamic workload

From the performance graph of �gure 12 we see that the system, when properly tuned, can

adapt even to very fast changing workloads. It can detect shifts in the clients interest for data,

and change the content of the broadcast almost without any noticeable delays. The power of the

approach lies in the ability to probe the workload as often as necessary with small and controllable

overhead. Therefore, any errors in the estimation of the workload can be quickly corrected with

minimum penalty.

A �nal note about our approach is that it is possible to employ a self{tuning strategy for

the system. In other words, the system can monitor the workload behavior and the result of its

previous actions to teach itself as to how it should be operating more e�ciently. As an example,

if after a series of probing the result is always the same, it may be good idea to increase the

cooling factor and sample less frequently. Or on the other hand, if most of the times probing

suggests that vapor items are cooling down very fast, it may advisable to decrease the cooling

factor so even faster adaptation can be achieved.

5 Related Work

The use of asymmetric connectivity in hybrid network architectures has been pioneered by

the Center for Satellite and Hybrid Communication Networks (CSHCN) at the University of

Maryland, since 1990, as the most feasible technologically and economically e�cient means for

the development of a National and Global Information Infrastructure (NII/GII). The CSHCN

22

and Hughes Network Systems (HNS) co-developed hybrid networking products based on satel-

lites [FAS+95] which demonstrated this very concept.

Data broadcasting has been a research area for more than a decade. Early work was done in

the context of teletext systems [AW85] and database machines [HGLW87]. More recently, with

the introduction of mobile computing and extensive wireless communication services, it has gained

much more research [IB94, FZ96] and commercial attention (e.g. [Air]). In terms of research the

focus has been in optimized broadcast schedules [AAFZ95, ST97] based on precompiled knowledge

about access patterns, optimized techniques for data retrieval from a broadcast channel [AAFZ95,

AFZ96], and power e�ciency considerations for mobile environments [IVB94b, IVB94a].

The issue of hybrid data delivery has received less attention. The Boston Community In-

formation System (BCIS) developed by Gi�ord [GBBL85] was a pioneering project in terms of

combining simplex (broadcast) and duplex (interactive) systems to build a scalable and
exible

information system. The systems used an FM channel to periodically broadcast updates (news

articles) to locally maintained user databases. User queries were answered by the local database

whenever possible. If the requested information was not available locally, the system would query

the server through a regular modem connection. The system was implemented and tested by

about 200 users for a period of two years. According to [Gif90], the major conclusions of the

experiment were that users value both components of the hybrid architecture, and that this

approach is a very economic way to building large scale information systems.

The work of Wong and Dykeman [WD88] proposes and analyzes a hybrid teletext-videotext

architecture. Their results emphasize the need for an adaptive scheme that can select the appro-

priate delivery mode for the data. In [IV94], Imielinski and Viswanathan propose an adaptive

algorithm for wireless information systems that, similarly to our system, combines broadcast and

unicast data delivery. However, their assumptions and goals are quite di�erent. Based on fairly

static access probabilities, they are proposing a way to assign data and bandwidth to the two

deliver modes that guarantees a maximum expected response time. Last, Acharya, et al. are ex-

ploring a sort of hybrid approach in the context of the Broadcast Disks project. In [AFZ97] they

augment their push-only architecture by allowing clients to explicitly request data for expedite

delivery through the same broadcast channel.

23

6 Conclusions

In this paper, we described an adaptive algorithm for hybrid networks that takes advantage of

broadcast channels for massive data dissemination and unicast channels for data delivery not

satis�ed by the former. The algorithm continuously adapts the broadcast content to match

the hot-spot of the workload. We showed, that the hot-spot can be accurately obtained by

monitoring the \broadcast misses" and, thus, no knowledge on the actual usage of the broadcast

data is necessary. This is one of the major distinctions between the work presented here and all

other broadcast schemes which are totally dependent on accurate but not available statistics on

full workload access patterns.

We have shown that the adaptive scheme performs e�ectively even under very dynamic and

rapidly changing workloads. Probing was introduced to increase the sensitivity of the system and

make its re
exes snappy. We showed that the speed of adapting to the workload's characteristics

can be controlled with probing which adapts the size of sampling for broadcast data. Finally, we

characterized the workloads that would best work in such a hybrid data delivery environment by

showing that the overall system's throughput depends only on the size of the hot-spot and not

on the volume of the workload. This has far reaching implications for very large scale and high

volume wide area information systems.

There is a lot of future work to be done. We are exploiting the use of multiple broadcast and

unicast channels to deal with various sizes of data items,and/or control data, the use of redundant

broadcast programs, overlapping data broadcast, etc. We are also exploiting forecasting for

prefetching and \on-time" data delivery.

Acknowledgments

We would like thank Bj�orn T. J�onsson, Flip Korn, Yannis Kotidis, Alexandros Labrinidis, and

Christos Seretis for their invaluable help. Bj�orn's semi-automatic results compiler proved to be

a great time saver.

References

[AAFZ95] Swarup Acharya, Rafael Alonso, Michael J. Franklin, and Stanley B. Zdonik. Broad-

cast Disks: Data Management for Asymmetric Communications Environment. In

24

Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the 1995 ACM

SIGMOD International Conference on Management of Data, pages 199{210, San Jose,

California, May 1995.

[AFZ96] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Prefetching from Broad-

cast Disks. In Stanley Y. W. Su, editor, Proceedings of the 12th International Confer-

ence on Data Engineering, pages 276{285, New Orleans, Louisiana, February 1996.

[AFZ97] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Balancing Push and

Pull for Data Broadcast. In Proceedings of the 1997 ACM SIGMOD International

Conference on Management of Data, Tucson, Arizona, May 1997. to appear.

[Air] AirMedia. AirMedia Live. http://www.airmedia.com.

[AW85] M. Ammar and J. Wong. The Design of Teletext Broadcast Cycles. Perfomance

Evaluation, 5(4):235{242, December 1985.

[FAS+95] A.D. Falk, Vivek Arora, Narin Suphasindhu, Douglas Dilon, and John S. Baras. Hy-

brid Internet Access. In Conference on NASA Centers for Commercial Development

of Space, number 325 in AIP Conference Proceedings, pages 69{74, New York, 1995.

[FZ96] Michael J. Franklin and Stanley B. Zdonik. Dissemination-Based Information Sys-

tems. IEEE Bulletin of the Technical Committee on Data Engineering, 19(3):20{30,

September 1996.

[GBBL85] David K. Gi�ord, Robert W. Baldwin, Stephen T. Berlin, and John M. Lucassen. An

Architecture for Large Scale Information Systems. In Proceedings of the Tenth ACM

Symposium on Operating System Principles, pages 161{170, Orcas Island, Washing-

ton, December 1985.

[Gif90] David K. Gi�ord. Polychannel Systems for Mass Digital Communications. Commu-

nications of the ACM, 33(2):141{151, February 1990.

[HGLW87] Gary E. Herman, Gita Gopal, K. C. Lee, and Abel Weinrib. The Datacycle Architec-

ture for Very High Throughput Database Systems. In Umeshwar Dayal and Irving L.

Traiger, editors, Proceedings of the 1987 ACM SIGMOD International Conference on

Management of Data, pages 97{103, San Francisco, California, May 1987.

25

[Hug] Hughes Network Systems. DirecPC. http://www.direcpc.com.

[IB94] Tomasz Imielinski and B.R. Badrinath. Wireless Mobile Computing : Challenges in

Data Management. Communications of the ACM, 37(10):18{28, October 1994.

[IV94] Tomasz Imielinski and S. Vishwanathan. Adaptive Wireless Information Systems. In

Proceedings of SIGDBS (Special Interest Group in DataBase Systems) Conference,

Tokyo, Japan, October 1994.

[IVB94a] Tomasz Imielinski, S. Viswanathan, and B. R. Badrinath. Energy E�cient Indexing

on Air. In Richard T. Snodgrass and Marianne Winslett, editors, Proceedings of the

1994 ACM SIGMOD International Conference on Management of Data, pages 25{36,

Minneapolis, Minnesota, May 1994.

[IVB94b] Tomasz Imielinski, S. Viswanathan, and B. R. Badrinath. Power E�cient Filtering

of Data on Air. In Matthias Jarke, Janis A. Bubenko Jr., and Keith G. Je�ery,

editors, 4th International Conference on Extending Database Technology, pages 245{

258, Cambridge, United Kingdom, March 1994.

[SRB96] Konstantinos Stathatos, Nick Roussopoulos, and John S. Baras. Adaptive Data

Broadcasting Using Air{Cache. In Tzi cker Chiueh, editor, First International Work-

shop on Satellite-based Information Services, pages 30{37, Rye, New York, November

1996.

[ST97] C.-J. Su and L. Tassiulas. Broadcast Scheduling for Information Distribution. In

Proceedings of IEEE INFOCOM'97, Kobe, Japan, April 1997. to appear.

[WD88] J.W. Wong and H.D. Dykeman. Architecture and Performance of Large Scale Infor-

mation Delivery Networks. In 12th International Teletra�c Congress, Torino, Italy,

1988.

26

