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Abstract—Recently, data broadcasting has been considered as a
promising way of disseminating information to a massive number
of users in a wireless communication environment. In a broadcast
data delivery system, there is a server which is broadcasting
data to a user community. Due to the lack of communication
from users to the server, the server cannot know what a user
needs. In order to access a certain item, a user has to wait
until the item appears in the broadcast. The waiting time will
be considerably long if the server’s broadcast schedule does not
match the user’s access needs. If a user has a local memory,
it can alleviate its access latency by selectively prefetching the
items from the broadcast and storing them in the memory. A good
memory management strategy can substantially reduce the user’s
access latency, which is a major concern in a broadcast data
delivery system. In this paper, an optimal memory management
policy is identified that minimizes the expected aggregate latency.
We present optimal memory update strategies with limited look-
ahead as implementable approximations of the optimal policy.
Some interesting special cases are given for which the limited
look-ahead policies are optimal. We also show that the same
formulation can be used to find the optimal memory management
policy which minimizes the number of deadline misses when users
generate information requests which have to be satisfied within
some given deadlines.

Index Terms—Broadcast data delivery, client prefetching, in-
formation distribution systems, local memory management, mo-
bile computing.

I. INTRODUCTION

DATA broadcasting is a candidate to play a leading role for
data delivery in a wireless asymmetric communication

environment since it reduces the relatively expensive client-
to-sever communication, and it is scalable in such a way
that it is independent of the number of users the server is
serving. It has been proposed for both wireline and wireless
environment. The Direct Broadcast Satellite (DBS) system
is a good example to which broadcast data delivery can be
effectively applied. Some application examples include the
distribution of time-sensitive information such as stock prices,
traffic and weather information, and mail-order catalog and
mutual fund information for information retrieval services. In
the Data-cycleprojects at Bellcore [1], a database circulates
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Fig. 1. Broadcast data delivery system in a wireless communication envi-
ronment.

on a high-bandwidth network (140 Mbit/s), and users query
these data by filtering relevant information using a special
massively parallel transceiver. Wireless data broadcasting was
also considered as an efficient way, in terms of energy and
bandwidth, for disseminating information to a massive number
of users in [2]–[5].

Under the broadcasting approach shown in Fig. 1, a server
continuously and repeatedly broadcasts data to a user com-
munity without any feedback about the user’s needs due to
the limited uplink communication capability from the user to
the server. Data broadcast by the server are organized into
units calledinformation items. When a user needs a certain
information item, it monitors the broadcast channel until the
desired item is detected and captures it for use. There is some
latency from the time the need of an information item arises
until the time the item is actually broadcast by the server.
This latency depends on the broadcast schedule of the server,
as well as the user access pattern.

There has been much work in the past on the problem of
designing a broadcast schedule such that the average latency
is minimized [6]–[11]. The approach is to determine the
broadcast frequency of each information item in accordance
with the user access frequency of the item, and then to
distribute the broadcast slots of each item as uniformly as
possible. If there is more than one class of users with different
access distributions of information items, then it is unavoidable
that some classes will suffer large latency. An approach to
reduce the latency to a desirable level for each user is to make
use of local user storage.

If a user has local storage, it can retrieve information items
from the broadcast and store them in its memory prior to
the items being requested. If the user makes a request for
one of the “prefetched” stored items, the response time for
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this request will be instantaneous. By selectively prefetching
information items from the broadcast, the user is effectively
able to minimize the mismatch between its access needs and
server’s broadcast schedule, and the average latency of its
information requests is reduced. Therefore, user’s memory
management becomes an important issue to consider in order
to minimize the average response time of user’s requests. As
information items pass by in the broadcast, the user has to
decide whether an item will be prefetched, and if it will, which
item residing in the memory will be replaced with the newly
prefetched item.

There are basically two different ways of caching:demand-
driven caching, in which users obtain data from the broadcast
only as a result of memory fault, andprefetching, in which
users bring data from the broadcast in advance of any requests.
Acharyaet al.proposed a simple information item replacement
policy, called and a cost-based demand-driven caching
heuristic, called in [9]. is a demand-driven caching
policy which keeps the items with the highest probability of
access in the memory. In the cost of replacement of
an item already in the memory with the newly fetched one
was considered to be the ratio of the access probability of
the information item ( ) and its broadcast frequency ().
The ratio is called the value. The replacement
algorithm ejects the item in the memory which has the lowest

value. Demand-driven caching, however, does not fully
exploit the dissemination-based nature of the broadcast, which
is particularly conducive to user’s prefetching as claimed in
[12]. A simple prefetching heuristic, called was proposed
in [12]. The computes the value of an item by taking the
product of the access probability of the information item ()
and the time ( ) that will elapse before that item appears on the
broadcast again. This is called the item’svalue. finds
the item in the memory with the lowest value, and replaces
it with the currently broadcast item if the latter has a higher
value. In [13], Ammar considered a teletext broadcast delivery
system with correlated user’s requests from user’s perspective,
and proposed aLinked Itemsprefetching scheme. The scheme
requires the availability of space in each information item to
store control information. The control information in item
is a list of linked items, the items that are most likely to be
requested next by a user. After a request for an itemis
satisfied, the user enters a phase to prefetch themost likely
referenced items associated with itemwhere is the size
of the local memory in units of information items. This phase
is terminated when the items are fetched or when the user
submits a new request.

In this paper, optimal memory update strategies are iden-
tified. The broadcast data dissemination model is considered
in Section II. In Section III, we identify an optimal memory
update policy that minimizes the expected aggregate latency
over all information items. A memory state trellis diagram
is identified, and it is shown that the computation of the
optimal memory update policy is equivalent to the computation
of the maximum reward path in the trellis. Computational
issues are also discussed, and the memory update policies with

limited look-ahead are given as implementable alternatives
to the optimal strategy. In Sections IV-A, IV-B, and IV-C,
some interesting special cases are considered for which limited
look-ahead policies are optimal. Some numerical examples
are given in Section IV-D to show the tradeoff between
the performance and implementation complexity. Finally, we
consider in Section V the problem of minimizing deadline
misses when requests for information items need to be satisfied
within some specified time periods.

II. BROADCAST DATA DELIVERY

Time on the broadcast channel is divided into slots of equal
size, and the slot length represents the time to broadcast an
information item. Slot corresponds to the time interval

The server broadcasts the information items ac-
cording to a fixed predetermined schedule where

is the information item broadcast at slot Assume that
there are possible information items. An important class
of schedules for the applications is the periodic schedule
where the transmission sequence is repeated after some period

and the schedule is completely specified by its period
During each period, each information

item is transmitted at least once, and possibly multiple times.
It has already been proved in [7] that optimal schedules which
minimize the user’s expected access latency areperiodic. The
directory of a broadcast schedule (the index of the broadcast
data) can be broadcast to the users ahead of the actual
broadcast data either through the same channel in which the
data are transmitted or through a different one with lower data
transmission rate. In [3], [14], and [15], a number of methods
have been proposed to multiplex the directory information
together with the data on the same channel. Therefore, in the
following, we may assume that all of the users know the whole
broadcast schedulea priori.

A user is generating requests for information items accord-
ing to its needs. When a request for some itemis generated
at some time then it is either satisfied immediately if the
item resides in the local cache of the user or the user has
to wait until the next time the item appears in the broadcast
schedule. After the request is satisfied one way or the other,
the user will generate another request for an information item
after some random time. The latency from the time a request
is generated until the item is transmitted by the server is the
performance measure of interest in broadcast data delivery.

The user has a memory that can holdinformation items
locally. At the end of each slot the user may replace one of
the items in the memory with the item transmitted at slot
We assume that all of the users follow an identical memory
update strategy. Since, in addition, all of them monitor the
same broadcasting server, the contents of the memory of all
users are identical. The set of the K information items residing
in the memory during slot is represented by The
memory update strategy determines the memory contents at
each slot, and is represented by the sequence

We consider a particular group of users with an identical
request generation process. In the finite user population case,
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the rate of request generation is affected by the number of
users who are waiting for an information item broadcast
by the server. Since they will not generate a new request
while they are waiting, the rate of request generation will
drop as the number of pending requests increases. If the
user population, though, is large enough and an individual
user request generation rate is appropriately normalized such
that the aggregate rate is equal to then we may assume
that the aggregate request generation rate remains constant
and is independent of the number of pending requests, while
the process of request generation is stationary. In the case
of a nonhomogeneous user community with more than one
distribution of requests for information items, the results of
the paper hold for each group of users with identical request
distribution.

A request is for item with probability
where Hence, requests for itemare generated
according to a stationary process with rate Let
be the total number of requests for itemthat occurred during
slot Let be the number of users requesting item
at the beginning of slot The request backlog for item
evolves as follows:

if or
otherwise.

A request for item generated at time will be satisfied
immediately if If then it will be
satisfied at the end of the first itembroadcast that is initiated
after Let be the amount of time from until the
beginning of the first slot afterat which item is transmitted,
which is illustrated in Fig. 3. The latency of a request for
item generated at time will be

if
if

The objective of a memory update strategy is to alleviate
the impact of the latency on the user by maintaining in the
memory the items which are either more likely to be requested
by the user and/or which will not appear in the broadcast for
a long time. We consider two different performance measures
of a memory update strategy. One is the average aggregate
latency of user’s requests, and the other is the fraction of
user’s requests which are not satisfied within a prespecified
time period.

The sequence of times at which requests for itemare
generated is for each item
Let be the aggregate latency of all requests for item
generated from time 0 to time

and let be its expected value, The
aggregate expected latency over all items is

In several applications, the performance of a memory update
policy is quantified by and the objective is to minimize it.

In certain cases, an information request needs to be satisfied
within a certain time period from the time it is generated. That
time period is the “deadline” of the request. In this case, what
really matters is whether or not the request will be satisfied
within the deadline, while the average latency is not of primary
importance. There is a distinct set of deadlines corresponding
to each item where is the total number
of possible deadlines for item and a request for item is
generated by a user with one of these deadlines. Assume that
we have a stationary stream of requests with ratefor item

with deadline where Let be a
random variable which denotes whether a typeitem request
generated at time misses its deadline or not, and it is
given by

if
otherwise.

Let be the aggregate deadline misses of all typeitem
requests generated from time 0 to time

and let be its expected value, The
aggregate expected deadline misses over all information items
is

and a possible decision criterion of a memory management
strategy is to minimize

In Section III, we consider the problem of designing a
memory management strategy which minimizes the expected
aggregate latency over all items and the case of requests
for information items with deadlines is discussed in Section V.

III. M EMORY UPDATE TO MINIMIZE LATENCY

The key to obtaining the optimal memory update strategy
is the transformation of the cost such that the impact of the
memory update on the total latency becomes disjoint from slot
to slot. The first step for this transformation is the following
lemma. For simplicity, let us assume, in the rest of the section,
that time is an integer.

Lemma 1: The aggregate latency of item requests is
related to the item backlog as follows:

(1)

Proof: The result in the lemma is of the same flavor as
Little’s law, and is better shown using a pictorial argument.
A sample path of the evolution of itemrequest generation
is shown in Fig. 2. The request generation instants correspond
to the jumps of the curve which are of magnitude 1. The
latency of a request for an item is the amount of time from
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Fig. 2. Evolution of the itemi request backlog is depicted as a function of time. At the end of each itemi broadcast, the small shaded rectangle, all of the
requests are granted. The small dotted-line rectangles below the time axis correspond to the slots at which itemi is stored in the memory by the user. All of
the requests arriving during these slots are granted immediately. The latencyli(tk) of a request for itemi generated at timetk is also depicted.

Fig. 3. Illustration of parameters�fi (t); �bi (t); �
c
i (t); and li(t) for a se-

quence of itemi broadcasts.

its generation time instant to the end of the first transmission
of the item. Hence, the aggregate latency equals the total area
under the curve in Fig. 2. Note that the sum on the right side
of (1) is equal to that area where the first term corresponds to
the area from time 0 to and the second term corresponds to
the remaining rectangle, extending from timeto

By taking expectation on both sides of (1), the expected
latency is

where An analytic expression for
is obtained in the following.

Let be the amount of time from the end of the last
slot before at which item was transmitted until time
Let be the amount of time from the end of the last
slot before at which item was residing in the memory of
the user until time If item resides in the memory of the
user at time then by definition. The quantities

and are illustrated in Fig. 3. Note that the pending
requests for item are accumulated starting either from
the end of the last item transmission before or from
the end of the most recent itemresidence in the memory
before whichever happened last. Since information items
are generated by a stationary process with ratewe have

In Fig. 4, we see the evolution of the expected backlog of
item for a certain sequence of itembroadcasts when there
is no use of local memory.

Fig. 5 shows the evolution of the expected backlog with
caching (solid line) superimposed by the expected backlog
without caching (dotted line) for a given sequence of item

broadcast. The small shaded rectangle corresponds to the
slots at which item is broadcast, and the slots at which item

resides in the memory are represented by the small dotted

Fig. 4. Expected backlog as a function of time when there is no use of local
memory.

rectangles below the time axis. The aggregate expected latency
with caching (without caching) is equal to the total area under
the solid (dotted) curve.

Let us denote by the expected latency when there is
no caching. The reduction of the latency due to caching is
made explicit in the following lemma.

Lemma 2: The expected aggregate latency of itemunder
a caching strategy is as follows:

(2)

Proof: The expected aggregate latency under
is the area under the solid curve as depicted in Fig. 5. This
can be expressed as the latency without caching, which is the
area under the dotted curve, reduced by the area between the
solid and dotted curves. We just need to show that the second
term on the right side of (2) is equal to the area between the
dotted and solid curves in Fig. 5.

The superposition of the dotted and solid curves in Fig. 5
consists of the superposition of triangles, as depicted in Fig. 6,
and the superposition of quadrangles as in Fig. 7. For the
triangles in Fig. 6, the area between the dotted and solid curves
is
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Fig. 5. Expected backlog as a function of time when there is caching (solid line) is depicted. The expected backlog without caching (dotted line) is
superimposed. The reduction in latency due to caching is equal to the area between the solid and the dotted lines.

Fig. 6. Superposition of triangles.

For the quadrangles in Fig. 7(a), the area between the dotted
and solid line is equal to that between the bigger dotted
and solid triangles in Fig. 7(b), and therefore it can also be
expressed as the second term on the right side of (2).

The aggregate latency over all information items up to time
is

The caching strategy that minimizes the aggregate latency is
clearly the one that maximizes the following sum:

(3)

The maximization of the sum in (3) is equivalent to the
computation of a maximum reward path in an appropriately
defined trellis diagram that captures the evolution of the
memory states.

The memory state at time depends on the memory
state at time the information item
broadcast during slot and the action taken by the update
strategy. If the item broadcast at slot is already
residing in the memory, then the item will be just refreshed in
the memory, and the memory state will remain the same. If not,
the memory state will be one of the subsets with cardinality

of the set depending on which item

in the memory will be replaced by the arriving one. Hence,
the set, of possible memory states at slotgiven that
the memory state at slot is is

A feasible memory state evolution sequence is any sequence
with the property The

corresponding memory update strategy is uniquely defined.
Consider a trellis diagram, one dimension of which is the

memory state and the other is the time, as shown in Fig. 8.
Each stage of the trellis corresponds to a certain time instant.
All possible memory states appear in every stage. Since the
total number of information items which are of interest to the
user is and its memory can hold items the
total number of possible memory states is . There are
directed links from certain states in stageto certain states in
stage that represent possible memory state transitions.
Hence, a link is directed from state at stage to state
in stage if

Each memory update strategy from slot 0 to slotcorre-
sponds to a path from stage 0 to stagein the trellis. Associate
with each state a time-dependent “reward”

The total reward, or latency reduction incurred by the strategy,
is equal to the sum of the reward of each state on the path.
The computation of the optimal memory update strategy is
equivalent to the computation of a maximum reward path in
the trellis.

Shortest path problems in a trellis often arise in several
contexts, and can be solved by backward or forward dynamic
programming. One of the notorious instances of this problem
arises in sequential decoding for whichViterbi’s algorithm
was invented.

Let us denote by the length of a maximum reward
path (the cumulative reward gained) from stateat stage

up to stage The lengths of the maximum reward
path satisfy the following recursion:

while By solving the above recursion, the
maximum reward path is computed, and simultaneously, the
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(a) (b)

Fig. 7. Superposition of quadrangles which can be represented by the superposition of triangles.

Fig. 8. Memory state trellis diagram.

optimal policy as well. The cardinality of each set is
either equal to one or equal to Therefore, the complexity
of computing the longest paths in stagegiven the longest
paths in stage is Hence, the computation of
the longest path up to stageand, subsequently, of the optimal
memory update policy is of complexity

Note that the complexity of the optimal memory update
strategy within a time interval is linear with respect to

To compute the reward associated with a state at stage
we need a vector

which is determined by the given broadcast schedule. Since
the broadcast schedule is available ahead of time, the update
strategy computation is indeed feasible. Nevertheless, the
complexity of this approach is still prohibitive for employing
the policy in the real-time operation of a system. Hence, the
value of the policy is mostly theoretical, and it can be used as
a benchmark for performance comparison with other policies.
A class of policies with manageable complexity for real-time
operation is considered next.

IV. M EMORY MANAGEMENT WITH LIMITED LOOK-AHEAD

The optimal memory management policy makes the mem-
ory update decision at each slotsuch that the total reward
until time is maximized. Instead of that, alook-aheadwindow

may be considered, and the memory update decision at
slot can be made such that the cumulative average reward
from slot up to slot is maximized. As the window

increases, the complexity increases, and the performance
should be improved.

The simplest policy of the -step look-ahead class is the
one with which is equivalent to the heuristics
proposed in [12]. Let us call it theone-step look-ahead
(OSLA)policy. This policy updates the memory in each slot

such that the reward is maximized for
That is, if then the

quantity is computed for all items,
and for and the item for which is
the smallest, is discarded. This policy turns out to be optimal
in some special cases of interest.

A. Uniform Information Request Generation Rate

The first case is when all of the information items have the
same access probabilities. Therefore, the request generation
rates are The cumulative average
reward from stage 1 to stagethen becomes

(4)

Hence, the policy that maximizes the reward is independent
of the request generation rates, and depends solely on the
broadcast schedule. The OSLA policy maximizes the overall
cumulative average reward in (4) over all policies in this case.
This fact is true in a stronger sense, as is expressed in the
following theorem.

Theorem 1: When the request generation rates are identical,
the OSLA policy maximizes the reward in each slotthat is,
for any policy and at any slot

(5)

where and denote the set of items residing in
the memory at slot under the OSLA policy and policy
respectively.

Proof: See Appendix.

B. Two Information Items

Another case where the OSLA policy maximizes (3) is when
the broadcast includes only two information items, the user has
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Fig. 9. Two possible cases withp � 1 and q � 1 when we look
max(�

f
A(N); �

f
B(N)) slots ahead at time instantN when the arriving item

is different from the one already stored in the memory.

memory space for one item, and the request generation rates
are arbitrary. A cache update decision needs to be made only
if the broadcast item is different from the item in the cache.
In this case, the item that is chosen to be kept in the cache
at slot is

Theorem 2: When the server broadcasts only two items and
user’s memory can hold one item only, the OSLA policy is
optimal in the sense that it maximizes the reward in each slot

that is, for any policy

Proof: See Appendix.

C. A Case Where Limited Look-Ahead Policy Is Optimal

A special case where the optimal update policy is of the
limited look-ahead type is the following. The server broadcasts
multiple information items, while a certain group of users is
only interested in two of those, say itemsand and each
user of that group possesses memory space for only one item.
In this case, the users can make memory updates only at the
slots when either item or item is transmitted. If, at a slot
of this type, the broadcast item is the same as the item in the
cache, then no update decision needs to be made. If the items
are different, assume, without loss of generality, that item
is in the cache and item is broadcast. We distinguish two
cases as depicted in Fig. 9.

In the first case, there are occurrences of item
in the broadcast before the first transmission of item

after and the last of those item ’s is transmitted in
slot In the second case, there are
transmissions of item before the first appearance of item

after in the broadcast, and the last of thoseitem ’s
is transmitted in slot The items other than items

and are transmitted during the remaining unmarked slots
between and

In order to make the update decision, the optimal policy
needs to consider (or slots look-ahead. The optimal
decision, then, is to keep the itemin the memory, where

(6)

and where or as appropriate.
To show the optimality of the policy, we consider a partition

of the joint evolution of the broadcast sequence and the cache

content under the optimal policy as depicted in Fig. 10. Cycle
begins at time instant and ends at with

and
Cycle 0 is defined as the interval from slot 0

until the end of the first slot at which the information item
transmitted by the server in this slot is different from the one
stored in the memory. In addition to cycle 0, there are three
types of cycles: the type 1 cycle which corresponds to the
interval from to as shown in Fig. 9, case (1), the
type 2 cycle which corresponds to the interval from to

as shown in Fig. 9, case (2), and the type 3 cycle
which spans from the end of the type 1 or type 2 cycle up to
the beginning of the type 1 or type 2 cycle. The type 3 cycle
occurs only when the information item stored in the memory
under the -step look-ahead policy is the same as the one
broadcast by the server at the last slot of the type 1 or type 2
cycle. In Fig. 10, cycles 1 and 2 are of type 1, cycles 3 and 5
are of type 3, and cycle 4 is of type 2.

Let be the average reward gained due to caching during
the cycle

Theorem 3: The policy with -step look-ahead, where
or as defined above, maximizes

the reward in each cycle That is, for any policy and at
any cycle

where and are the average reward gained during cycle
under the policy with -step look-ahead and under policy
respectively.

Proof: See Appendix.

D. Numerical Examples

In this section, in order to gain some insight on the tradeoff
between the performance improvement and the computational
complexity, we present some numerical examples with dif-
ferent numbers of look-ahead steps, different cache sizes, and
different broadcast schedules for both the latency and deadline
cases (refer to Section V for the case with deadlines). Although
we can provide examples only for a small number of items
due to the combinatorial explosion even for a few tens, the
examples reflect the fact that the performance gain due to the
increase in the number of look-ahead steps is dependent on
the type of server’s broadcast schedule and the set of user’s
access statistics parameters we consider.

For the first case in which the expected latency is the
performance criterion, an example is presented with

and Zipf distribution version I [16] where
where is a normalizing constant given by
For the case with deadlines, an example is

given with and Zipf distribution [17] where
where The deadlines are

assumed to be uniformly distributed between one and ten. As
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Fig. 10. Decomposition of the given broadcast schedule under the optimal memory update policy into cycles.

TABLE I
EXPECTED LATENCY REDUCTION DUE TO CACHING FOR DIFFERENT

CACHE SIZES AND DIFFERENT NUMBER OF LOOK-AHEAD STEPS

WHERE L DENOTES THE NUMBER OF LOOK-AHEAD STEPS

(a)

(b)

increases, the access pattern becomes increasingly skewed.
The value of used in this experiment is
The Zipf distribution is typically used to model nonuniform
access patterns. Two types of broadcast schedules are used
in the experiment. One is generated by Ammar’s algorithm
[6] which produces near-optimal schedules, namely,Ammar’s,
and the other is a schedule which isnot constructed according
to the statistical parameters of user’s access pattern, namely,
Mismatched. Tables I(a) and II(a) show the results under the
Ammar’s schedule with period 83 and Tables I(b) and II(b)
show those under the mismatched schedule with period 83.

The results in Tables I and II show that the expected latency
(number of deadline misses) reduced by caching is insensitive
to the number of look-ahead steps for the parameter set we are
considering. It may be due to the small number of information
items in our experiment. However, the number of look-ahead
steps may play a greater role when the number of items is
large, and the group of users we are considering is interested
only in a portion of the set of information items as in the
following example. Our cache management strategy is able

TABLE II
EXPECTED NUMBER OF DEADLINE MISSESREDUCED BY CACHING FOR

DIFFERENT CACHE SIZES AND DIFFERENT NUMBER OF LOOK-AHEAD

STEPS WHERE L DENOTES THENUMBER OF LOOK-AHEAD STEPS

(a)

(b)

Fig. 11. Server schedule with period 25 and information items
fA;B; � � � ; T; Ug:

to reduce more latency (or deadline misses) when the server’s
schedule isnot designed according to user’s access parameters
[compare Tables I(a) and (b) and II(a) and (b)]. The latency
(or the number of deadline misses) we can reduce by the use
of local memory indeed increases with the size of the memory
for all cases.

In the following, we will present an example which shows
that the OSLA policy, in some cases, may perform poorly
compared to the optimal policy.

Consider a case in which the server’s schedule is given as
in Fig. 11 and the access probabilities of a user group are

and for
Without loss of generality, assume that itemis initially

stored in the memory in slot 0. Since
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Fig. 12. Average latency reduction as a function of time slots. The area under
the solid triangle represents the average latency reduction gained by caching
when the optimal policy is followed, and the area under the dashed triangles
corresponds to the latency reduction for the OSLA policy.

for at the
end of slot 0, the OSLA policy (in fact, all of the policies
with look-ahead steps fewer than eight) will not replace item

which is stored in the memory, with the arriving item
However, by keeping item the OSLA policy has no further
opportunity to store item in the memory until the end of
slot 24.

If, at time 0, though, we look ahead more than eight slots
(note that

we will see that we can further reduce the latency
by replacing item with item at the beginning of slot
1 and keeping it up to the end of slot 22. This is what the
optimal policy will choose to do. This example belongs to the
third special case we consider in Section IV-C for which the

-step look-ahead policy is optimal. Here, at slot 1,
at slot 15, at slot 17, at slot 20, and
at slot 23 in (6) for the optimal policy.

By using (3) in Section III for the interval from slot 1 to slot
22, the optimal policy reduces the average latency by 95.33
slots, whereas the OSLA policy (all of the policies with look-
ahead steps fewer than eight) reduces the latency by 72.67
slots. The policy with more than eight slot look-ahead can
reduce the average latency 22.66 slots more. This difference
of latency reduction is approximately equal to the shaded area
in Fig. 12. In fact, the shaded area may be arbitrarily large for
a certain broadcast schedule so that the OSLA policy will
perform even worse compared to the optimal policy. This
shows that the OSLA policy may be inadequate in terms of
performance in certain cases, and policies which look ahead
more than one slot may need to be considered.

V. INFORMATION REQUESTS WITHDEADLINES

In this section, we will consider the case in which users
generate information requests which have to be satisfied within
some specified deadlines, and show that the problem can be
formulated in the same way as the case without deadlines in
Section III. The type item requests which are generated
during the interval will miss the
deadlines if the user does not make use of its local memory,
as depicted in Fig. 13.

Fig. 13. Deadline misses of typej item i requests without the use of local
memory.

Fig. 14. Deadline misses of typej item i requests reduced by caching item
i in the local memory.

However, if the user has a local memory and itemis stored
in the memory, the type item requests which occur during
the slots in which item is residing in the memory will be
satisfied immediately, and will no longer miss deadlines, as
shown in Fig. 14.

Let be the expected number of deadlinemissesof
item requests with deadline up to time which can be
reducedby caching, and it is given by

where is the indicator function. The overall reduction of
deadline misses for all information items with all deadlines up
to slot due to caching is

Therefore, minimizing the total number of requests that miss
deadlines with caching is equivalent to maximizing the re-
duction of deadline misses by caching. Moreover, the optimal
memory update strategy that minimizes the deadline misses
of user’s requests is equivalent to the computation of the
maximum reward path in the memory state trellis diagram
where the time-dependent reward associated with memory
state at instant is now given by

VI. CONCLUDING REMARKS

A strategy for a mobile user’s local memory management
is identified such that the data access needs of the user are
matched optimally to the broadcast schedule of the server.
The strategy relies on the computation of the maximum
reward path in the appropriately defined memory state trellis
diagram. Limited look-ahead policies are also presented as
low implementation complexity alternatives to the optimal
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Fig. 15. Four possible cases.

policy. The simplest of them is the OSLA strategy. This policy
is found to be optimal when all of the information request
generation rates are the same. When the request generation rate
distribution, though, is skewed, the performance of the OSLA
policy may get considerably degraded compared to the optimal
policy, as was demonstrated by a counterexample. The choice
of look-ahead steps is a tradeoff between implementation
complexity and good performance.

User’s memory management is just one of two important
issues to be addressed in data broadcasting. The other com-
plementary problem is the organization of data in a broadcast
schedule in order to minimize user’s access latency or the
number of deadline misses, depending on the performance
objective we consider. Both problems have been addressed
separately in the literature. What remains to be done is
to obtain an integrated approach that produces broadcast
schedules and user’s memory management strategies simul-
taneously, based on the mix of data access patterns of the user
population.

APPENDIX

Proof of Theorem 1:Let
be the vector with elements, the times ’s for all items
in the memory at slot under the OSLA policy, arranged in
decreasing order, i.e., for
Let be the corresponding vector for policy We will
show that

(7)

for where the inequality holds elementwise.
Inequality (7) clearly implies inequality (5). Therefore, the
theorem will be proved if the inequality (7) is shown. The
proof is by induction.

For (7) holds with equality. We will show that if (7)
holds for then it will hold for as well.

Note that, according to the definition of if
then and while if

then and assumes a new
positive value which is equal to the number of slots from
the beginning of slot until the beginning of first item
broadcast.

Assume that item is transmitted in slot Then,
There are two cases to consider: and

For the case with since we have
assumed as well. Therefore,

it still holds that

For the following cases are distinguished.
For the OSLA policy does not

replace any of the items in the memory with the arriving item
and the set of items in the memory remains the same, i.e.,

Therefore

for (8)

For the OSLA policy replaces
the information item corresponding to index in the vector

with the arriving item and then item will
correspond to some indexin the vector such
that and
for and for The
elements of the vector under the OSLA policy
are now given by

for and

for (9)

The set of information items stored in the memory at slot
under policy will be

with

Due to the assumption of and (8) and (9),
irrespective of whether item is stored in the memory under
policy at slot it is apparent that

Therefore, by induction

and the theorem is proved.
Proof of Theorem 2:We will prove the theorem by in-

duction.
Clearly,
Assume that We will show

that the inequality still holds for too.
There are four cases to consider, depending on the sequence

of broadcasts and the item stored in the memory at slot
under the OSLA policy, as shown in Fig. 15. Assume

that items and are the two items broadcast by the
server.
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Fig. 16. Two possible subcases for case (c) in which itemB is transmitted, the last time before slotN � 1; in slot N � q � 1:

First, consider cases (a) and (d) in Fig. 15 in which the
information item broadcast by the server at slotis different
from the one stored in the memory at slotunder the OSLA
policy. For case (a), if

the OSLA policy replaces item currently
stored in the memory, with the arriving item Other-
wise, item will be kept intact in the memory at slot

under the OSLA policy. In any case,
The same holds for

case (d).
For cases (b) and (c) in which the item stored in the memory

at slot under the OSLA policy is the same as the one
transmitted at slot the policy cannot replace the
item in the memory with the arriving one, except for refreshing
the item currently stored in the memory. Therefore, for the
inequality to hold for slot we need to show that we
can obtain a greater reward by keeping the same item in the
memory as the arriving item in slot

Consider case (b). According to the OSLA policy which
chooses to keep item in the cache at slot

But since in fact ,
Therefore

because and
Consequently

For case (c), there are two subcases to consider, as shown
in Fig. 16. Assume that, at slot where item

is broadcast by the server the last time before slot In
case (c.1), the optimal policy replaces itemby the arriving
item in slot where whereas item

is already residing in the cache in slot under the
optimal policy in case (c.2).

In case (c.1), according to the OSLA policy

In addition, since and
Therefore, since and

Fig. 17. Three possible cases for cycleJ + 1 when cycleJ is of type 1.

Hence

In case (c.2), according to the OSLA policy

and the same argument as in case (c.1) can be applied.
Therefore, by induction, the theorem is proved.

Proof of Theorem 3:We are going to prove this theorem
by induction.

For since no memory update is required
for any policy.

Assume that We will show that the inequality
still holds for Both cycle and cycle can
be of type 1 or type 2 or type 3.

Figs. 17 and 18 show the possible sequence of cycle types
when the first cycle is of either type 1 or type 2.

Case 1: Cycle is of either type 1 or type 2, and cycle
is of type 1 as in Figs. 17(i) and 18(iii). Consider the

case in Fig. 17(i) where item arrives in the broadcast and
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Fig. 18. Three possible cases for cycleJ + 1 when cycleJ is of type 2.

item is stored in the memory at the end of cycleIf

then item will remain in the memory in cycle under the
-step look-ahead policy. Otherwise, the W-step look-ahead

policy will replace item currently stored in the memory with
the arriving item and will keep it until the end of slot at
which item arrives in the broadcast and

If no such slot exists, item is kept in the memory until the
end of the cycle under the -step look-ahead policy.
In any case,

Case 2: Cycle is of type 3, and cycle is of either
type 1 or type 2. In this case, the inequality still holds for
cycle for the same reason as in Case 1.

Case 3: Cycle is of type 3 as in Figs. 17(ii) and (iii)
and 18(i) and (ii). For this case, since the information item
broadcast by the server is the same as the one stored in the
memory under the -step look-ahead policy, we cannot make
the replacement of the information item, but can just refresh
the item in the memory. Hence, we need to show that it is
better to keep the same item in the memory as the arriving
one in the broadcast for cycle

Consider the case in Fig. 17(ii) where itemstored in the
memory is replaced by the arriving itemat slot where

According to the -step look-ahead policy

Therefore, because for

Then, since for

and therefore

Similarly, it can be proved for the cases in Figs. 17(iii) and
18(i) and (ii).

Hence, by induction
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