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Abstract. We consider the application of high volume information dissemination in broadcast based mobile environments.

Since currentmobile units accessing broadcast information have limited battery capacity, the problem of quick and energy-efficient

access to data becomes particularly relevant as the number and sizes of information units increases.We propose several randomized

and Huffman-encoding based indexing schemes that are sensitive to data popularity patterns to structure data transmission on the

wireless medium, so that the average energy consumption of mobile units and data access time are minimized while trying to access

desired data. We then propose an algorithm for PCS units to tune into desired data independent of the actual transmission scheme

being used. We also empirically study the proposed schemes and propose different transmission modes for the base station to

dynamically adapt to changes in the number of data files to be broadcasted, the available bandwidth and the accuracy of data popu-

larity patterns.

1. Introduction

In a Personal Communications System (PCS), users

send and receive data through a wireless medium.

Information may be voice, data, text, facsimile, or video

information [11]. PCS users are located in system-

defined cells, which are bounded geographical areas. In

current systems, PCS users communicate with base sta-

tions located in their cell on private channels to access

desired data. This scheme requires significant amounts

of wireless bandwidth, and the base stations become bot-

tlenecks since they service queries on a request-by-

request basis. To avoid multiple transmissions of com-

monly requested data, there have been recent proposals

[2,9] to broadcast popular data items such as stock infor-

mation, sports updates and multi-media newsfeeds on a

known set of channels. An unlimited number of PCS

users can then tune into these common channels, and

extract their desired data without tying up the limited

number of wireless channels. Also, the base stations will

not be overloadedwith service requests.

We consider the problem of how to organize broad-

cast information so that PCS users can access desired

data without wasting battery power on their power-

starved PCS units in sifting through undesired data. This

problem becomes particularly relevant in a high volume

information dissemination system with several large

information units such as multi-media data being trans-

mitted constantly on thewireless link.

In this paper, we make the following assumptions

about the structure of the system. All data items have

unique keys known by PCS users, and all data items are

indexed by their key. The base station transmits index

information of broadcast data items that function as

pointers to the data items. The PCS units sift through

these small sized indices, spending less energy (and time)

than in sifting through the large data items. The wireless

bandwidth is split into two bands: the data band that

transmits the actual data items, and the index band that

transmits the index information along with the hCNUM,

TIMEi pointers, indicating the channel number and the

offset in time when the relevant data item will be trans-

mitted. We assume there is some ``well known'' channel

called ROOTCNUM on the index band that every PCS

unit will first tune into if it requires a data item. We also

assume each base station has some knowledge of popu-

larity patterns of data items in terms of how many PCS

users are interested in the various data items within the

cell. The base station may use this information in struc-

turing the broadcasted data so that index information of

more popular data items is transmitted more often, and

PCS users can download popular data items while con-

suming minimal power. In this paper, we primarily con-

sider the problem of how to construct such an efficient

index structure, and how to transmit it on the index

band. Since the popularity information may vary from

time to time and from cell to cell, we also consider the

problem of how to dynamically update our transmitted

index structure. We do not consider the related problem

of scheduling the transmissions of data items on the data

band. We expect to use a scheduler used in Video-On-

Demand (VOD) systems such as Pyramid [16], or the

disk-striping scheduler in [1] to schedule the actual trans-

mission of data, while our indexer uses the generated

transmission schedule to fill in the hCNUM, TIMEi

pointers in our index structure.

Since there may be several ways of organizing indices

on air, we evaluate the different schemes by comparing

the (1) tuning time, which is the time spent by the PCS

unit in listening to wireless transmissions before it down-

loads desired information, (2) index access time, which is

the time elapsed from the point a PCS unit starts sifting

through the broadcasted data for desired data to the time

the PCS unit gets a hCNUM, TIMEi pointer to the

desired data, and (3) the number of index channels used

to transmit the index. Tuning time is a particularly
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important measure since PCS units consume valuable

energy receiving wireless packets for that period of time,

while at other times they consumeminimal power by lap-

sing into the doze mode [15]. Since the amount of power

consumed while receiving packets is about 5000 times

the power consumed while in the doze mode [15], it is

important to try and minimize the tuning time of the

power-starved PCS. From now, we will refer to the time

spent downloading index information as tuning time,

since the tuning time to download the data file (once an

index pointer is obtained) is constant and independent of

the indexing scheme, and hence does not contribute in

evaluating the different indexing schemes. The index

access time is also important since it indicates the

Quality of Service (QOS) provided by the system in

terms of how long a user will have to wait from the time

he desires a data item to when he obtains the index poin-

ter to the data item; index access time is equal to the tun-

ing time in addition to the time spent dozing while

waiting for a desired index pointer.

In this paper, we propose an indexing scheme based

on binary Alphabetic Huffman trees [7,13] so that the

average tuning time of PCS units is minimized. The over-

all idea is that the index information for broadcast data

is organized in a tree at different levels (based on popu-

larity patterns), and we transmit the nodes of the tree

(with the index information) on the index band. We also

present some alternate indexing schemes that are sensi-

tive to popularity patterns, to evaluate our proposed

index structure. Since popularity patterns change with

time, we show how to dynamically update our index

structures while they are being transmitted on air. We

empirically study the performance of all proposed

schemes and see that the Huffman based indexing leads

to upto 13.5 times less energy than the energy consumed

in the other schemes when the number of broadcasted

files is large, while the other schemes tend to do better

when there are very few files to be transmitted. Finally,

we propose a hybrid index transmission mode for the

base station incorporating the best features of the differ-

ent indexing schemes to dynamically adapt to changes in

the number of data items to be broadcasted, the number

of available index channels, and the accuracy of popular-

ity patterns.

1.1. Relatedwork

Current broadcast based multi-media and VOD sys-

tems such as Pyramid [16] address a related problem in

transmitting movies by assuming a ``TV Guide'' cached

locally at the receiving unit. Since the TV Guide indi-

cates the transmission time and channel number of var-

ious movies, finding the data item is straightforward.

Such caching schemes are not useful in mobile environ-

ments when mobiles may visit different cells and the

broadcasts may be time-varying and may be different

across cells [9].

The notion of ``indexing on air'' was introduced in

[9] and two different indexing schemes were proposed.

However, these schemes assume uniform popularity pat-

terns for all data, while our schemes are sensitive to

popularity patterns. Disk-Striping on air was introduced

in [1] where data items are classified into three tiers of

data (for example: very popular, popular, not popular),

and the items in the highest tier are transmitted more

often than the others. We believe that finding thresholds

dividing data items into these tiers is subjective, andmay

not lead to the best solution. Ref. [3] proposes a wind-

owed randomized algorithm that is sensitive to data

popularity patterns. We use a simplifed version of this

scheme as an experimental comparison to ourmethod.

2. Broadcast architecture

In Fig. 1, we present the architecture of our proposed

broadcast based dissemination mechanism. Files (data)

are to be broadcasted to PCS users who are listening for

their desired file. Files may be text files, multi-media

data, stock information or any other piece of discrete

information.

We propose the bandwidth available to the base-sta-

tion be split into the index band and data band. The index

band and the data band are further split into several

channels. These channels may be physical channels

(frequency multiplexed), or may be virtual channels that

are essentially several channels that are timemultiplexed

onto the same physical channel. The Scheduler and the

Indexer at the base-station control the transmissions on

the data band and the index band respectively.

The Scheduler receives the files to be transmitted,

and possibly more information such as access patterns,

priority and size of the file. It then computes a ``good''

schedule for the file transmissions: for every file, the

scheduler computes the hCNUM, TIMEi vector that

indicates the channel and time the file will be trans-

mitted. In this paper, we do not address the problem of

scheduling the files. We assume there is an abstract

Scheduler (as in [16,1]) functioning orthogonally to our

Fig. 1. Architecture of a broadcast system.
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Indexer, providing our indexer with the file broadcast

time and channel numbers.

Our Indexer receives the access patterns of the files,

and the scheduling information from the Scheduler.

Based on the popularity patterns of the files, the indexer

computes an index structure that provides fast access

links to the files being transmitted in the data band.

Intuitively, we would like the Indexer to provide faster

access links to the more popular files, so that the average

tuning energy consumed by the PCS units in ``searching''

for the desired file is minimized. In the classical database

sense, the scheduler decides ``where to store the data''

(channel number, time on air), and some amount of

``memory'' (bandwidth) is wasted by using the index to

obtain fast and energy-efficient access to files. In Fig. 1,

we see Index Packets (IPs) being broadcasted in the

index channels containing time, channel pointers hi; ji to

the file with key � k indicating that the corresponding

file (data packets DPs) will be available on the ith data

channel, j time units later.

To illustrate the various indexing schemes we will

subsequently develop, we use a running example of files

to be broadcasted and their popularity patterns (in

expected number of PCS units desiring a file) as shown in

Table 1. Although the files in this example have single

character keys, our indexing schemes (outlined later)

work whenever keys have any form of ordered label-

ling.

2.1. Structure of index packets

In this section, we present the schema of the index

packets. Let the wireless packet be of size s (in bits). Each

packet stores k instances of hKEY ;TYPE; CNUM;

TIMEi (Fig. 2) whichmean one of the following.

1. If TYPE � DATA, file with key equal to KEY will

be transmitted in channel CNUM, TIME time units

later.

2. If TYPE � INDEX, files with keys lesser or equal in

value to KEY , have more index pointers in the next

index packet on channel CNUM, TIME time units

away (useful for multi-level indices).

Since we need one bit to encode the TYPE ( DATA

or INDEX), k can be determined by

k �

s

y� c� t� 1

� �

;

where y, c, and t refer to the number of bits required to

represent themaximumnumber of data files to be broad-

casted, the maximum number of channels, and the maxi-

mumoffset in time.

2.2. Some simple broadcasting schemes

In this section, we outline some simple indexing

schemes that could be used to broadcast indexing infor-

mation for a given set of files, and show why such

schemes may not be efficient for a large-scale dissemina-

tion system. Let n refer to the number of files to be broad-

casted. We present examples to illustrate each of the

schemes assuming that the fanout (k) of the wireless

packet is three.

Round Robin index: The simplest way of broadcasting

index information is to send index information for each

file one by one cyclically (Fig. 3). The PCS unit then has

to be constantly tuned in until its desired file pointer is

transmitted, all the while consuming valuable power.

This scheme will require the PCS unit to download an

average of

n

2�k
index packets, which is energy-inefficient

for n� k. Note that this scheme treats all files identi-

cally, ignoring popularity patterns. This scheme does

not require any ordering of keys.

Random index: In this scheme, we transmit index entries

for a file with a probability proportional to the popular-

ity of that file (Fig. 4). The intuition is that popular files

are transmitted more often probabilistically, and hence

can be located quickly. However, the downside is that

users tuning for unpopular files may have to wait a long

time, possibly forever (starvation) for the index informa-

tion of a file to be transmitted. The PCS unit has to be lis-

tening constantly until its required file pointer is

available: the average tuning time in this case is still

Table 1

Files and their popularity patterns.

Key Frequency Key Frequency

A 23 B 4

C 12 D 10

E 17 F 31

G 15 H 21

I 29 J 19

K 7 L 12

M 16 N 14

O 20

Fig. 2. Structure of a packet. Fig. 3. RoundRobin index.
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O�n�. This scheme does not require ordering of keys

either.

Windowed randomization: Ref. [3] proposes a compro-

mise on the previous scheme so that PCS units listening

for unpopular information do not suffer too much. In

their scheme, a fixed window size W is defined. Index

entries are sent multiple times within one epoch of size

W
1

. The problem is now to minimise the average tuning

time for a packet, given the constraints on the number of

packets per epoch. One way of approximating this is to

allow each entry to occur a number of times proportional

to its frequency within each epoch. The order of the

entries is random. For example, in Fig. 5 we see an exam-

ple using keysB,D andK fromTable 1. Thewindow size

is 21. The windowed randomization scheme ensures that

the worst case tuning time is bounded by W . However,

sinceW must be at least

2

1=pn, where pn is the probabil-

ity of access of the least popular file, the size of a window

should be at least n=k. Hence the average tuning time is

!�n� (i.e. lower bounded by c � n for some constant

c > 0). Notice that this scheme does not require ordering

of keys.

Since each of the above schemes have tuning times

that vary linearly with the number of files to be broad-

cast, these schemes do not scale very well for a large-

scale information dissemination system (also empiri-

cally shown in the Experimental section) since PCS units

will waste too much energy in sifting through undesired

data. In the next section, we present a multi-level index-

ing scheme that is sensitive to popularity patterns and

provides tuning times logarithmic in the number of

broadcast files.

3.Huffman based indexing

In this section, we present our primary index organi-

zation scheme based on Alphabetic Huffman Trees. We

first draw a parallel between our problem and the well-

known Huffman [8] compression scheme. Since

Huffman trees cannot function as search trees (we show

an example indicating why), and thereby are impractical

as indexing structures, we present a k-ary generalization

of Alphabetic Huffman trees [7,13], a sub class of

Huffman trees that can function as search structures.

3.1. GenericHuffman trees

In this section we develop a formal model for mini-

mizing tuning time, which is the time spent listening for

the desired index entry (proportional to the tuning

energy), in an abstract search structure. In the next sec-

tion, we will show how to use this model in a practical

broadcast scheme.

Let n be the number of files to be broadcasted. Let us

consider a model of transmission where the popularity

patterns of files, which indicate the expected number of

PCS accesses to the files, is known prior to the broadcast.

Let the popularity distribution

3

of the files be

F � �f
1
; f

2
; . . . ; fn�. We need to minimize the average tun-

ing time for a PCS unit to locate the index entry for a file

it desires. If the tuning time to locate index entry for file i

is T�i�, we have to minimise the following expression by

choosingT�i� for all i � 1; 2; . . . ; n:

P
n

i�1
fi � T�i�

P
n

i�1
fi

: �1�

This problem is analogous to the data compression

problem [14] where codes are computed for different

ASCII characters in a given text depending on the fre-

quency of occurence of the characters so that the result-

ing encoded text is of minimum length. That is, the goal

in compression is to compute an encoding E�i� for all

characters i � 1; 2; . . . ; n so that the total encoded

length

Xn

i�1

fi � E�i� �2�

is minimized. This problem was optimally solved using

binary trees by Huffman [8]. Since the denominator in

(1) is a constant, we can minimize the average tuning

time by considering our problem as a Huffman encoding

problem in which we want to ``encode'' the index entries

to be broadcasted. Intuitively, we organize the index

pointers along the nodes of the Huffman tree so that

index pointers of more popular data items are higher up

in the tree than others. The Huffman tree can then be

Fig. 4. Random index broadcast.

Fig. 5. Randomized index broadcast with boundedwait.

1

Their scheme is not an indexing scheme, but a data broadcast

scheme.

2

This ensures that each packet occurs atleast once in an epoch.

3

We will show in a subsequent section how to compute and maintain

popularity patterns.
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transmitted as our index structure, with the tree depth

of the index pointer of a file denoting the number of

packets that will be examined by a PCS unit before the

corresponding file is reached (proportional to tuning

time). For a Zipfian distribution [17] on the frequencies,

the average number of packets examined isO�log n�.

However, the Huffman tree thus constructed is not a

search tree since users will need to know the encoding of

a file before they can traverse the tree for the given file.

To illustrate, we show in Fig. 6 a regular 3-ary Huffman

tree constructed from Table 1. As we can see, even

though the index pointers are at different levels of the

tree based on the popularity information, there is no way

of traversing the tree to find a desired pointer by know-

ing only its key. Hence the only way we can access a spe-

cific leaf is to know its Huffman code. For example, to

access leaf B (index pointer to file B), PCS units must

knowB's code to be 100 for them to be able to choose the

right pointers from the root of the tree. This is not a

problem in data compression, because both the compres-

sor and the uncompressor have access to the tree used to

construct the codes, or can compute the codes given the

frequency counts of the different ASCII characters.

However, this will pose a problem for PCS units since

they only have the key of the file they are looking for.

PCS units cannot know the Huffman code of their

desired file beforehand since the code depends on the

popularity patterns of other files being broadcasted at

that time, and may change over time and between cells.

One approach would have PCS units request codes from

the base station for its file, but this will again require pri-

vate channels for communication thereby fragmenting

bandwidth and rendering base stations as the bottle-

neck. Another approach would be to broadcast the key

to code mapping on another set of index channels, but

this is again a meta-search problem since data will now

have to be structured on those channels leading us back

to the same index organization problem.

3.2. AlphabeticHuffman trees

In this section, we present a Huffman-based indexing

scheme that is sensitive to data popularity patterns, but

requires PCS units to know only the key of their desired

file.

There exist a special class of Huffman trees termed

Alphabetic Huffman trees [7,13] that can function as

search trees. The principal feature of such trees is that

they preserve leaf ordering on any input sequence used

to construct them (similar to B� Trees [12]); that is a

left-to-right scan of the leaves of each tree will show the

leaves ordered by their keys. In such an ordered struc-

ture, a simple comparison-based tree traversal suffices

to determine the location of a desired leaf. Additionally,

being Huffman trees, they are sensitive to a frequency

distribution on the input.

The Alphabetic Huffman tree constructed in [7] has

binary fanout. In our application, given awireless packet

of any size (section 2.1), we can pack in more tree poin-

ters (as opposed to only 2 in [7]) into one wireless packet.

For example, if the wireless packet size is 128 bytes and

each KEY and index pointer takes 6 bytes, we can pack

as many as 21 KEY, index pointers into one packet. In

Appendix B, we briefly outline the Hu-Tucker [7] algo-

rithm, and our k-ary extension where k is the fanout of

the wireless packet size. Since the details of the construc-

tion are very involved, we have structured the rest of the

paper so that the construction may be skipped at a first

reading. It suffices to know from this point that

Alphabetic Huffman tress are very similar to our earlier

outlined Huffman indexing scheme, except that the

leaves are ordered by their keys and hence can function

as a search structure.

In Fig. 7 we show the 3-ary Alphabetic Huffman tree

for the example in Table 1. Index packets represented by

rectangles, contain keys that are interpreted as specified

in section 2.1. Data packets represented by squares, are

indicated in the figure only by their keys. Since the k-ary

construction produces a variable fanout (between 2 and

k), we use ``-'' to indicate dummy pointers that pad the

residual fanout pointers. Observe that a left-to-right

scan of the leaves of the tree shows the leaves to be

ordered based on their keys. In Fig. 7, we use a darkly

outlined path to indicate how a PCS unit may access file

E by knowing the key of the desired file to be E.

Intuitively, the PCS units download index packets and

compute the next index pointer to follow based on the

Fig. 6. 3-aryHuffman tree.

Fig. 7. AlphabeticHuffman based index.
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values of the keys in the index packet. For instance,

PCS units desiring file E choose the left-most child index

pointer from index packet hI ;N;Oi and access hA;G; Ii

next since E < I and so on. (We specify the exact algo-

rithm to download packets in a subsequent section.)

The Alphabetic Huffman tree is not optimal over all

possible search structures, but the construction outlined

in [7] guarantees optimality over all Alphabetic trees.

From [12] we however see that Alphabetic trees produce

a total encoding length (eq. (2)) no greater than 2 units

more than the entropy of the data, which is a lower

bound on any search tree. Hence our index based on

Alphabetic Huffman trees is close to optimal, and for

Zipfian frequency distributions, will yield tuning times

logarithmic in the number of files (seeAppendixA).

3.3.Mapping index trees to channel-time space

In the last section, we saw how to compute an

energy-efficient index structure based on Alphabetic

Huffman trees. However in a practical implementation,

we will need to broadcast the nodes of the tree as packets

on wireless channels and at certain time slots. We now

present a simple way of computing the transmission

schedule in the channel-time space given a variable fan-

out index tree (such as in an Alphabetic Huffman tree).

In our scheme, we assign one index channel to each level

of the tree, and nodes of a given level are transmitted

cyclically on the corresponding index channel. In Fig. 8

we see an example of how to map the nodes of the index

tree onto the channel-time space. For clarity, we repre-

sent the index packets in Fig. 8 using numbers rather

than the values of the keys as in Fig. 7.

Each index packet needs to know the time offset when

its child index packets are to be transmitted (to fill in the

CNUM, TIME pointers). For instance in Fig. 8, the

index packet corresponding to internal node 1 will need

to know when and where data file A, and index packets 3

and 4 are to be transmitted so that it may store logical

pointers to them. We perform this ``pointer filling'' as

follows.

Initially, we generate a two dimensional gridGwith

G�i; j� � jth internal node (in a left-to-right scan)

at level i in the tree :

Let ni denote the number of index packets at the ith level.

The index packet at position G�i; j� will then be broad-

casted at periodically at times

T � T
i

s
�m � ni � j ; mX0 ; �3�

where T
i

s
is the time at which broadcast begins on chan-

nel i (initially T
i

s
is 0 for all channels). We can compute

the earliest time at which the index packet corresponding

toG�i; j�will be broadcast using the following formula:

T
0

� T
i

s
�

T ÿ T
i

s
ÿ j

ni

� �� �

� ni � j ; �4�

where T is the current time

4

. With this information, all

nodes that point to a next level index for a given key, can

fill in the hCNUM;TIMEi pointers. The leaf nodes of

the index that point to a file obtain the TIME and

CNUM of the file from the Scheduler, and set their poin-

ters to hCNUM;TIMEi.

In Fig. 9, we show the final transmission schedule of

the grid (in Fig. 8) on the Index Band. In this figure, we

assume that ROOTCNUM � C1. We have not shown

any data pointers, and only a few index pointers in the

Fig. 8.Mapping from the tree to the grid. Fig. 9. Channel traversal.

4

IfT ÿ T
i

s
ÿ j is amultiple of ni, wemerely add ni to the final value.
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diagram to retain clarity. The path followed by a PCS

user that wishes to access (say) file I , is shown with a

dark line. Notice that in our diagram, the pointers from

an index packet that points to child packets are time

varying. For instance, note the different pointers in the

index packets transmitted on hC1;T2i versus the poin-

ters in hC1;T5i. This is because in our mapping, we

always find the earliest occurence of a required child

packet while filling index pointers as specified by eq. (4).

4. Scheme-independent pointer following algorithm

We now specify the algorithm

5

the PCS unit uses to

reach its desired file. This algorithm is executed as soon

as a desired file is chosen. RecallROOTCNUM to be the

well-known root channel. We use two variables

NEXTTIME and NEXTCNUM to keep track of when

and from which channel should the next packet (data or

index packet) be down loaded. Until then, the PCS unit

will power down to its dozemode [9] and consume mini-

mal power. Let doze(TIME) make the PCS unit power

down to minimal power until a timer wakes up the PCS

unit after timeTIME has elapsed.

1. NEXTCNUM =ROOTCNUM,NEXTTIME = 0

2. Loop forever

(a)Download Index Packet from channel

NEXTCNUM

(b) For i � 1To k

i. If (KEY �i� � KEY ) and (TYPE�i�� DATA)

==Data file pointer

� NEXTCNUM=CNUM[i]

� NEXTTIME= TIME[i]

� doze(NEXTTIME)

� GOTO Step 3

ii. If (KEY �i� � KEY ) and (TYPE�i�

� INDEX ) == Index packet pointer

� NEXTCNUM=CNUM[i]

� NEXTTIME= TIME[i]

� doze(NEXTTIME)

� GOTO Step 2.a

3. Download file atNEXTCNUM,NEXTTIME

5.Maintaining the indexing schemes

In the previous section, we showed how to compute

index transmissions for data assuming that we are given

popularity patterns of files. In this section, we first pro-

pose how to obtain popularity patterns of files. Also in

any dynamic system, since the base station will need to

adapt to changes in popularity patterns of files, we show

how the indexing schemes can be updated on air.

5.1.Maintaining popularity information

One way of maintaining the expected popularity pat-

terns of files, is to have profiles associatedwith PCS users

that specify files the users are interested in. When a PCS

user enters a zone or a service-area [10], he registerswith

the base station [11]. The base station can then access the

PCS user's profile from some known database through

the wireline network and update its local popularity

information. This model may be useful in the case of uni-

versal PCS units that will need to have registration and

deregistration capabilities [11] to send and receive perso-

nal data.

An alternate approach that we explore in some of

our experiments is to avoid having to maintain precise

information by way of interaction with the PCS unit

through the regular registration/deregistration process.

We assume the existence of a relative popularity ordering

specifying only which file is most popular, next most

popular and so on rather than precise numbers of how

many PCS users in a given zone are interested in the

broadcasted files. Such information may be obtained

through other sources (say through wireline information

dissemination sources), and may be used to model local

patterns. Such a scheme would function even for PCS

units that have only receivers but no transmitters. Since

transmitters comprise the largest area and consume the

largest chunk of power and make PCS units large [4],

such a scheme that avoids using a transmitter may be

useful.

5.2.Dynamically updating indices

In a dynamic system where the popularities of files

may change, we need to periodically update the broad-

casted index structure. The new index can be computed

off-line at the base station, but will have to be introduced

with care so that the correctness of the system is main-

tained. For instance, if a PCS unit is following pointers

in the various index channels, we should ensure that the

PCS unit follows the correct pointers belonging to the

original index structure, and does not follow incorrect

index pointers in the new structure and end up accessing

the wrong file. This problem is similar to the reader-wri-

ter problem in Databases [5] since we should ensure that

while a PCS unit that is waiting to read the next index

pointer on air at a certain time slot and channel, the

Indexer should not modify that part of the index.

Normally, databases have locks associated with items so

that a writer cannot write to a location that is currently

being read. In our application, we cannot perform lock-

ing on air. Also, since the base station has no interaction

with the PCS units, it is not aware which PCS units are at

which levels in the index structure. Dynamic updating is

5

This algorithm can clearly be optimized by restructuring the If state-

ments, but we present the algorithm in this form since it is easier to

understand the flow.
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not a problem for single-level index structures (as in the

first three schemes) since the base station can merely

lapse into the new index structure at any point in time,

and the PCS unit will see no loss in continuity. Similarly,

dynamic updating is not a problemwhen the index struc-

ture changes from a single-level to a multi-level index

structure, or vice versa. We will now look into some pos-

sible schemes for dynamically evolving from one multi-

level tree index structure to another.

5.2.1.Dual index bands

One approach would be to have two sets of index

bands, with the base station alternating between the two

index bands when it wants to transmit an index. That is,

when an index transmission is going on in one index

band, the base station starts using the second index band

for the new index structure and keeps alternating

between the two bandswhen it needs to change the index.

The problem now is that PCS units will need to know

which band to tune into. Also, this scheme will require

twice the number of index channels whichmay be expen-

sive.

5.2.2. Flushing indices after timeout period

Another possibility that uses a single index band,

would have the base station stop transmitting index

packets in the root channel and continue index trans-

missions on the other channels when it chooses to

change the index. In such a scenario, PCS units that

are in the lower levels of the tree will eventually get

access to their desired file and will ``exit'' the index

structure. Also, the index structure is effectively

``locked'' when the base station stops transmitting the

root level index packets, and no new PCS unit can

enter the lower levels of the index tree. The base sta-

tion can start transmitting the root channel packets,

and the lower levels of the new tree like before after

some minimum time-out period which will guarantee

that all PCS units have exited the index tree. If there

are l number of levels in the index tree, the minimum

time-out period required will be k
l
since there can be at

most k children per index packet (at each level). This

simple scheme has the disadvantage that the average

access time of the PCS units will increase, since the

PCS units that are trying to enter the ``locked'' root

channel will need to wait until the root channel trans-

mits the new index structure. (We assume that the root

channel will have packets indicating the residual time-

out period so that PCS units can tune in again after

the indicated time period for the new root level packets

thereby not wasting energy.) In Fig. 10, we show the

case when the index tree in Fig. 8 has to be flushed at

T
1
to transmit some new index tree (with nodes num-

bered greater than 10). Since k � 3 and l � 4, the base

station will need to wait for 81 (3

4

) time units before it

can be sure that all PCS units have exited the old index

structure.

5.2.3. Flushing indices using frontiers

We now present an optimization of the approach in

section 5.2.2 based on computing the frontier of each

level, so that the new index transmissions may com-

mence much earlier. The intuition is that the base station

can compute the maximum amount of time a PCS unit

can possibly spend in a given level (channel) assuming

the worst-case scenario when a PCS unit is looking for

the last index pointer on a given channel before the pack-

ets start to cycle again. For example in Fig. 11 we show

how the index transmission will evolve from one index

tree to another using the frontier scheme (outlined in the

next paragraph). Dark lines indicate the frontiers of the

different channels.

After the base station decides to flush the current

index tree and start transmitting a new index tree, the

two principal questions that need to be answered are:

1. When can the base station flush a given channel,

and start transmitting index packets of the new tree?

2. How can pointers in the index packets be filled for

the new index tree since the index packets in the dif-

ferent levels are offset depending on the size of each

level frontier in the old index tree?

We first extend the pointer computation algorithm

as follows. Consider channel i at time t. Each pointer

emanating from a packet on this channel points to a

packet on channel i � 1 at time t
0

> t. Let F
t

i
be themaxi-

mum of all such t
0

. We shall refer to F
t

i
as the frontier of

channel i at time t. We also define F
t

0

to be 0 for all t. We

now specify how the TIME pointers of parent index

packets to children index packets should be initialized.

Given a grid G which represents the index tree, the time

Fig. 10.Modifying an index tree after timeout period.

Fig. 11.Modifying an index tree by computing frontiers.
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T
0

at which the node in G�i; j� is broadcast was specified

by Equation 4. Now, let the time at which the new index

is created beTn. Define a	 b to be themonus operator:

a	 b �

0 if a < b ,

aÿ b otherwise .

�

Nowwe can rewrite eq. (4) as

T
0

�

�T 	 T
i

n
� 	 j

ni

� �

� ni � j � T
i

n
; �5�

whereT
i

n
� max�Tn;F

t

i
�; t � Tn.

We now specify the algorithm to be followed by the

base station in flushing the various index channels once

it decides to flush an index tree. The intuition is that no

index packets of the old tree will be used once the frontier

for each level is past. The algorithm is activated when

t � Tn, and runs at each level of the tree until all channel

frontiers have been crossed. Whenever a level of the tree

crosses its frontier, we know that all preceding levels

have already crossed their frontiers, therefore by keep-

ing a count of the number of channels (starting from the

root) that have crossed their frontier, we can determine

exactly when the old index has been completely flushed

from the broadcast.

Assume that the current channel is i, and the counter

is level-count:

1. T
i

n
�max�Tn;F

t

i
�

2. If t < T
i

n

(a)Use eq. (4) to compute T
0

(b) F
t

i�1
� max�T

0

;F
t

i�1
�

3 Else If t � T
i

n

(a)T
i

s
� T

i

n

(b) level-count � level-count�1

(c) If t <max�Tn;F
t

i�1
�

� Use eq. (5) to compute T
0

(d) else use eq. (4) to compute T
0

The above algorithm may be used by the base station

to compute the index tree to grid mapping even when

indices are not being updated by settingTn to 0 and F
0

i
to

1 for all i > 0. Observe now that the conditional in Step 2

is always true, and eq. 4will be used.

6. Experiments

The experiments reported in this section were

designed to answer the following questions: (1) How do

the different indexing schemes presented scale as we

increase the number of files broadcasted; (2) Are the

schemes ``stable'' as we vary the fanout of the data pack-

ets; (3) Do popularity patterns really help as opposed to

assuming uniform distribution? (4) How do the schemes

perform in the case of imprecise knowledge of access pat-

terns?

We simulated a broadcast based file dissemination

system with 1000 PCS units tuning for a set of files for a

period of two hours. Each PCS unit is active 20% of the

time and chooses its next desired file while active. Once a

file is chosen, the PCS unit listens to the root channel and

follows pointers that lead to its desired file. After the

desired file is found, the PCS unit goes back to sleep for

some time, before it becomes active again. In this simula-

tion model, each PCS unit may access several files over

its lifetime, with the restriction that only one file is tuned

for by a PCS unit at any point in time.

In our initial experiments, we assume that the popu-

larity distribution of files is Zipfian [17] as suggested

6

in

[12]. If the files are relatively ranked in non-increasing

order of popularity, then the base station expects the

probability that a file f of rank rwill be accessed by some

PCS is

P�f � �

1

r �

P
N

v�1
1=v

:

We also assume that the PCSs follow a memoryless

Zipfian access pattern so that PCSs make their choice of

the next required file independent of their previous

choices. We ran each of the simulations 20 times and

report the following graphs that are averaged over the

simulations (each data point in the plots corresponds to

the average of the corresponding point in 20 different

executions of the simulation). In our graphs, we also

report the results of U-Alpha for comparison, where U-

Alpha is a Alphabetic Huffman tree that assumes a uni-

form distribution of access patterns.We report U-Alpha

since it has logarithmic access properties as in traditional

B+ Tree kinds of search structures, and helps us under-

stand how useful popularity patterns are (Question 3).

In the first experiment, we tested the scalability of

the five indexing schemes as the number of files to be

broadcasted increases (Question 1). We fixed the fanout

of the data to 20 (corresponding to 128 bytes/packet as

in [9]). In Fig. 12, we present for each of the five different

schemes the average number of index packets, while

varying the number of files, that were examined by a

PCS unit before it reaches its required file.We see that as

the number of files being broadcasted increases, the k-

ary Alphabetic Huffman scheme and the U-Alpha

indexing scheme dominate the other schemes due to their

logarithmic nature by having the PCS unit tune into sig-

nificantly lesser number of packets. In Fig. 13, we plot

the average access time for the different schemes as the

number of files increase. Here we see that our packing of

the sparse Alphabetic Huffman tree to the time-channel

space dominates the other schemes by having a signifi-

cantly lower response time. The sudden drops in the plot

for U-Alpha show the points where the number of levels

in the tree change, while we do not have such spikes for

6

We also validate this assumption using some ``real'' data in the third

experiment.
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the Alpha-Huffman plot since there are no marked tran-

sitions in the sparse and unbalanced tree. The downside

of the Huffman based schemes are that they require

more index channels than the other schemes as shown in

Fig. 14.

The second experiment was designed to explore the

stability of the indexing schemes as the size (fanout) of

the data packet was varied (Question 2). We varied the

fanout for two different scenarios: when there are a small

number of files, and when there are a large number of

files. We used the same distribution model for the base

station and the PCS units as in the first experiment. In

Figs. 15 and 16, we report the results of the average num-

ber of packets examined and the access time for the file

pointer for the different schemes when the number of

files was 50, as the fanout of the data packet was varied

from 10 through 60. We see that the Alphabetic

Huffman and the U-Alpha perform very poorly when

the number of files is small. This is due to the extra over-

head of the multiple levels of pointers in the tree struc-

ture. We however see in Figs. 17 and 18 that the

Alphabetic Huffman and U-Alpha dominate when the

number of files is high (1000).

Fig. 12. Average number of packets examined with change in number

of files.

Fig. 13. Average time elapsedwith change in number of files.

Fig. 14.Number of index channels with change in number of files.

Fig. 15. Average number of packets examined with change in fanout

for small number of files.

Fig. 16. Average time elapsed with change in fanout for small number

of files.
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In the final experiment, we relaxed the assumption

of the base-station having complete knowledge of the

expected file access patterns (Question 4). For this

phase, we assumed that the files to be transmitted on

the wireless medium were 1000 public files (such as

home pages, gifs and papers) available on our research

group's Web server [6]. We extracted two months of

log information of incoming Web page accesses to

these files, and used them to generate the access pat-

terns of the PCS users. As earlier, the PCS user is

memoryless and tosses a coin to decide which file it

wishes to tune to based on the extracted log informa-

tion. On the other hand, we only gave the relative

popularity ordering of the files to the base station. The

indexer at the base station then generates its index

structure assuming a Zipfian distribution of access pat-

terns. This decoupling of file popularity patterns and

user access patterns allows the base station to maintain

minimal information in generating its index structure,

and also (as discussed in section 5.1) possibly nullifies

the requirement of a transmitter on the PCS.

In Figs. 19, 20 and Table 2, we report the results of

the final experiment with the fanout of the data packet

set to 20 (as earlier). In Figs. 19 and 20, we only report

results for the Round Robin, U-Alpha and the

Alphabetic Huffman scheme since the other schemes

performed very poorly. We also plotted Opt Alpha,

which is Alphabetic Huffman with the actual user access

patterns (as opposed to only the relative ordering of files)

for comparison purposes. In Fig. 19, we report the cumu-

lative distribution of the number of packets examined

before the pointer to the data file was obtained. We see

that the Alphabetic Huffman, U-Alpha and Opt Alpha

rise steeply and all data files are found within 5 packets

(hops) or less, while (as expected) in the Round Robin a

PCS unit may have to wait for an entire cycle of 50 pack-

ets (1000/20) before it finds its desired file pointer. In

Fig. 20, we report the cumulative distribution of the file

pointer access time for the different schemes. Again we

see that Alphabetic Huffman has the best trend in access

time among the Round Robin and U-Alpha indexing

Fig. 17. Average number of packets examined with change in fanout

for large number of files.

Fig. 18. Average time elapsed with change in fanout for large number

of files.

Fig. 19. Cumulative distribution of number of packets examined.

Fig. 20. Cumulative distribution of time elapsed.
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schemes. It is encouraging to note that the Alphabetic

Huffman scheme performs fairly closely to the Opt

Alpha scheme in spite of the incomplete information

available to the base station indicating that (as in

section 5.1) our index structure can tolerate inaccuracies

inmaintaining popularity patterns. In Table 2, we report

the average values for the number of packets examined,

and the access time alongwith the number of index chan-

nels employed for the different indexing schemes. We

can see the relative tradeoffs in the different schemes in

terms of the access time, number of packets examined

and the number of index channels required.

From the experiments, it is interesting to note that

despite the lack of popularity patterns in U-Alpha, it

performs consistently well in terms of the number of

packets examined (equivalent to the height of the tree

which is logarithmic). It does however suffer in terms of

the access time compared to the regular Alphabetic

Huffman tree with popularity patterns, since in the grid

structure files at higher levels (more popular files) have

less chance of getting bumped across multiple index

channels, and hence do not have the time lag at each step

waiting for the next index pointer. However, in U-Alpha

since the leaves are all very close to the bottom of the

tree, they all have to spend time at index channels corre-

sponding to the higher levels waiting for the next index

pointer to arrive in time. We expect that other logarith-

mic index structures (such as B+Trees) that are balanced

in terms of height will have similar problems for the out-

lined reason. Another counter-intuitive result is that

Random andWindowed Randomized schemes do worse

than a naive Round Robin scheme, since we would

expect encoding popularity information into the trans-

mission would help the PCS units. But as we see in

Appendix A, the average tuning time is still linear, and it

seems PCS units accessing unpopular filesmore than off-

set the gain in power obtained by scheduling popular

filesmore often.

6.1.Dynamically adjusting index transmission

From our observations based on our experimental

results in the previous section, we propose the following

modes of operation for the base station:

1. Alphabetic Huffman mode: If the number of files is

large and popularity information is available (exact

or at least relative ordering), and if there are suffi-

cient number of index channels available

(logarithmic in number of files), transmit the index

using the Alphabetic Huffman scheme.

2. U-Alpha mode: When the number of files is large

and popularity information of files is not available,

and if there are sufficient number of index channels

available (logarithmic in number of files), the base

station should transmit the index using the

Alphabetic Huffman scheme assuming uniform dis-

tribution patterns for files.

3. Round Robin mode: When the number of files to be

broadcast is some small constant c (c � 2) within the

fanout of the data packet, or if no popularity infor-

mation is available, or if the number of available

index channels is limited, the base station should

operate in the Round Robin scheme. This mode can

also be used if the keys of data files are unordered.

One approach would be to assign one of these three

modes of operation to the base station at design time. In

a more dynamic scheme, the base station could actually

switch between these 3 modes of operation without the

user knowing about it (as specified in section 4) depend-

ing on the instantaneous availability of index channels,

popularity patterns, and on the number of files to be

broadcasted.

7. Conclusion

We considered the problem of organizing index infor-

mation in a broadcast oriented information dissemina-

tion mechanism in wireless systems. We proposed

several index organization techniques sensitive to file

popularity patterns to save on battery power and mini-

mize access time to files using Huffman based-encoding

schemes and randomized techniques. We proposed an

algorithm for the PCS to download its desired file inde-

pendent of the indexing technique used by the base sta-

tion. We showed how to dynamically update indices

transmitted on air. We present experimental results of

simulations employing the different indexing schemes,

and observe that energy consumption by a PCS unit, and

Table 2

Average values forminimal knowledge experiment.

Indexing scheme Num. packets Normalized Elapsed time Normalized Num. channels

RoundRobin 30.95 8.84 30.95 1.36 1

Random 44.65 12.76 44.65 1.95 1

W-Random 47.32 13.52 47.32 2.07 1

Alpha-Huffman 3.50 1.00 22.84 1.00 4

U-Alpha 2.96 0.85 31.22 1.37 3

OptAlpha 3.27 0.93 18.62 0.82 4
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the access time for a file can be improved significantly

(upto 13.5 times and 2.07 times respectively) by choosing

the right index structure. Based on the results, we pro-

pose an adaptive index transmission mechanism for the

base station to dynamically adjust to changes in the

number of files, available number of index channels and

the precision of popularity information.
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AppendixA.K-ary construction ofAlphabetic

Huffman trees

A.1. TheHu-Tucker algorithm

We are given an ordered list of index entries where

the ith entry contains a pointer di to a data file, and a fre-

quency count fi. This forms the input to the Hu-Tucker

algorithmwhich proceeds in two stages.

Stage 1. This stage operates in several passes. The input

to each pass is a construction sequence which is an

ordered list of nodes, each of which can be a leaf (one of

the index entries) or a subtree whose leaves are index

entries. The frequency count for a subtree is the sum of

the frequencies of all the index entries present in it. At

each pass, two of the nodes (not necessarily consecutive)

are coalesced and replaced by a single node. This process

repeats till there is only one node (corresponding to a tree

onALL the index entries).

The initial construction sequence is the original list

of entries. At each pass, choose nodes i; j as candidates to

bemerged if the following conditions hold:

1. There are no leaves between i and j.

2. fi � fj is minimum over all such pairs i; j if there exist

several pairs.

3. In case of a tie in (2), i is the leftmost node among

all such pairs.

4. In case of a tie in (3), j is the leftmost node among

all such pairs.

If these four conditions are satisfied, create a new node

i
0

with fi0 equal to fi � fj, and make nodes i and j its chil-

dren. Insert i
0

into the construction sequence at node i's

previous position, and delete nodes i; j from the

sequence. This construction produces a tree structure,

but the left-to-right ordering of the nodes is not yet pre-

served.

Stage 2. The next stage of the algorithm produces the

required ordering of the leaves. This is achieved as fol-

lows. Determine the level of each leaf in the tree (by

doing a tree traversal). Then, at each level of the tree,

starting at the lowest, start from the left most leaf and

rearrange parent pointers such that the two leftmost

leaves have the same parent, and so on. Once this is done

for all levels, we have an alphabetic search tree.

It is not necessary that the rearrangement in the sec-

ond stage of the construction may even be possible.

Using the conditions for combining nodes as described

above, [7] shows that it is always possible to do this rear-

rangement. It should also be noted that this rearrange-

ment does not change the cost of the tree, as the level of a

node does not change.

A.2.Our k-arymodification

In our modification, we allow at most k nodes to

be combined into a single super-node during the passes

in stage 1, instead of two nodes in [7]. We also allow

combining k leaf nodes if they are consecutive in the

construction sequence, while the other conditions

remain the same. The second stage remains the same

except that we allow upto k nodes to be coalesced to

have the same parent. Since the conditions on combin-

ing nodes in the first step are modified minimally, we

can still perform the reordering phase similar to that in

[7].

One interesting feature in our extension for k-ary

trees is that wemay end upwith a tree with smaller depth

than the one we started with, unlike in the binary tree

construction in [7]. It is important to note that in our

construction, it may not be always possible (or optimal)

to combine k nodes together. Therefore, our k-ary

Alphabetic Huffman tree will have a fanout that varies

between 2 and k.
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