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Abstract—Energy saving is one of the most important issues in wireless mobile computing. Among others, one viable approach to

achieving energy saving is to use an indexed data organization to broadcast data over wireless channels to mobile units. Using

indexed broadcasting, mobile units can be guided to the data of interest efficiently and only need to be actively listening to the

broadcasting channel when the relevant information is present. In this paper, we explore the issue of indexing data with skewed access

for sequential broadcasting in wireless mobile computing. We first propose methods to build index trees based on access frequencies

of data records. To minimize the average cost of index probes, we consider two cases: one for fixed index fanouts and the other for

variant index fanouts, and devise algorithms to construct index trees for both cases. We show that the cost of index probes can be

minimized not only by employing an imbalanced index tree that is designed in accordance with data access skew, but also by exploiting

variant fanouts for index nodes. Note that, even for the same index tree, different broadcasting orders of data records will lead to

different average data access times. To address this issue, we develop an algorithm to determine the optimal order for sequential data

broadcasting to minimize the average data access time. Performance evaluation on the algorithms proposed is conducted. Examples

and remarks are given to illustrate our results.

Index Terms—Wireless mobile computing, energy saving, indexing, sequential broadcasting.
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1 INTRODUCTION

RECENTLY, there has been an increasing interest to equip
the data networks with mobility [4], [10], [28]. Mobile

computing, referring to the activity of using personal digital
assistances such as palmtops and notebook computers to
access a large number of databases via wireless networks,
has been identified as an area with an emerging market [12],
[18], [20], [27]. A significant amount of research effort has
been elaborated upon exploring several aspects of mobile
computing, including energy saving [17], [21], [25], [28],
[33], cache management [3], [6], query processing [19], [29],
and data allocation and communication [14], [18], [26], [31].
Such applications as using palmtops to access airline
schedules, stock activities, traffic conditions, and weather
information on the road are expected to become increasingly
popular. It is noted, however, that several mobile compu-
ters, such as desktops and palmtops, use batteries of limited
lifetime for their operations and are not directly connected
to any power source. As a result, energy saving is a very
important issue to resolve before we can anticipate an even
wider acceptability for mobile computers [20], [24], [28].

In general, a mobile server is expected to concurrently

serve hundreds or even thousands of clients. Since the

cost of broadcasting is independent of the number of

users, periodic broadcasting is an important method for

information dissemination in a wireless communication
environment [21], [30]. For energy saving, it is important
for a mobile client to be able to operate in two different
modes: doze mode, where it is still connected to the
network but it is not active, and active mode, where it
performs usual activities [30]. Explicitly, when a palmtop
is actively listening to a channel, its CPU must be in an
active mode to examine data packets so as to determine if
they match the predefined patterns. Such CPU operations
for data examination consume a significant amount of
battery power. Therefore, to achieve energy saving it is
highly desirable to let the palmtops stay in the doze mode
most of the time and only come to the active mode when
it is necessary. As a consequence, it is advantageous to
use indexed data organization to broadcast data over
wireless channels so that those mobile units can be
guided to the data of interest efficiently and only need to
be actively listening to the broadcasting channel when the
relevant information (indexes or data) is present. The
structure of an index tree determines the index probing
scenario to switch between the doze and the active modes
for data access under such an indexed broadcasting. More
justifications for indexed broadcasting and some pioneer-
ing results on this aspect can be found in [1], [2], [9], [15],
[16], [21], [23].

A conventional index tree is given in Fig. 1a, and its
corresponding broadcasting sequence is given in Fig. 1b.
Suppose that record R5 is the record to be accessed. Then,
after being routed to the root index I, the request will probe I
and a2 and then reach R5. Clearly, using this index tree, a
request to any record will take two index probes. Note that the
amount of time a mobile unit has to stay in the active mode is
proportional to the number of index probes it has to make.
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Hence, reducing the average number of index probes will
result in a lower power consumption. It is noted that, in most
databases, the access frequencies of different data records are
usually different from one another [7], [8]. This phenomenon
is termed data access skew. In view of the existence of data
skew, an index tree can in fact be judiciously built in
accordance with data access frequencies in such a way that
the average cost of index probes for data access is minimized.
Notice, however, that most of the prior studies do not
consider exploiting the feature of data access skew to
minimize the number of index probes when an index tree is
constructed. Also, there is no attempt reported to utilize
variant index fanouts to minimize the average cost of index
probes. Without dealing with these two features, mostly
employed in prior work is a symmetric balanced index tree
with essentially the same fanouts for all index nodes. The
absence of research effort in this issue can be explained by the
reason that, in the conventional file system, the cost of
executing an index probe for data access is relatively small as
compared to other CPU and I/O operations, thus, rendering
little overall performance improvement by minimizing the
number of index probes. Therefore, a sophisticated method to
reduce the index probe cost, such as employing an imbal-
anced index tree or allowing variant index fanouts, is not
deemed important from a performance perspective. Further-
more, the normal update activities in a file system will make
the maintenance/reconstruction of index trees with variant
fanouts very expensive. However, such a cost model does not
hold in the context of wireless mobile computing. In wireless
mobile computing, because listening to broadcast data is one
of the major sources for power consumption, it is very
important to minimize the cost of index probes to access the
broadcast data, which are mostly for read-only applications.
The importance and feasibility of employing sophisticated
index trees to minimize the cost of index probes is, thus,
justified in wireless mobile computing.

Consequently, we explore in this paper, the issue of
indexing data with skewed access for sequential broad-
casting in wireless mobile computing. Specifically, we
first propose methods to build index trees based on

access frequencies of data records. To minimize the
average cost of index probes, we consider two cases:
one for fixed index fanouts and the other for variant
index fanouts. For the case of fixed index fanouts, in light
of the Huffman code [22], we derive an algorithm, CF
(standing for constant fanout), for the optimal index tree
construction that minimizes the average number of index
probes. With CF derived, we then consider a more
sophisticated model in wireless mobile computing that
allows variant index fanouts in an index tree. For the case
of variant index fanouts, due to the NP-Completeness of
the corresponding optimization problem [11], we devise
an efficient greedy algorithm, V F (standing for variant
fanout), for suboptimal solutions. We show that the
average cost of index probes can be significantly reduced
not only by employing an imbalanced index tree that is
designed in accordance with data access skew, but also
by exploiting variant fanouts for index nodes. Explicitly,
by employing the concept of variant index fanouts, one
can obtain an index tree that requires, on the average, a
smaller index probe cost than optimal fixed fanout index
trees. This feature, in our opinion, is particularly im-
portant for indexed broadcasting in a wireless commu-
nication environment. In order to evaluate the
performance of algorithms proposed, we implement a
simulation model for sequential broadcasting. Specifically,
we first examine the benefit of utilizing imbalanced index
trees, and then comparatively evaluate the performance of
algorithms CF and VF. It is shown by the experimental
results that the use of imbalanced index trees will lead to
significant performance improvement over the use of the
balanced index trees, and such an advantage becomes
even more prominent as the skewness of data access
increases.

Note that the structure of an index tree determines the
average index probe cost. However, even for the same index
tree, different broadcasting orders of data records will lead
to different average data access times. The problem of
determining the optimal order for indexed broadcasting is
complicated since not only has the existence of index nodes
to be considered but also the underlining indexing
hierarchy has to be followed. We shall first derive some
properties for index trees and then, in light of these
properties, develop an algorithm ORD to determine, for a
given index tree, the optimal order for sequential data
broadcasting. Performance evaluation on algorithm ORD is
also conducted. Examples and remarks are given to
illustrate our results. It is noted that the three algorithms
proposed, i.e., CF , V F , and ORD, are shown to have
polynomial time complexity.

This paper is organized as follows: Preliminaries are
given in Section 2. Algorithms for building index trees for
both the cases of fixed fanouts and variant fanouts are
derived in Section 3. Section 4 determines the optimal order
of sequential broadcasting for a given index tree. This paper
concludes with Section 5.

2 PRELIMINARIES

In this paper, a mobile client is assumed to use selective
tuning to listen to indexed sequential data broadcasting.
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Fig. 1. Indexed broadcasting: (a) an example index tree and (b) index

probing scenario to data record R5.



Note that, if the data is broadcasted without any index, the

client will have to listen to the channel, on the average, half

of the total broadcasting time for the whole file. As

mentioned earlier, using proper indexing in sequential

broadcasting, selective tuning allows mobile clients to stay

active only when the data of interest is present, thereby

saving a lot of battery resource. As in [21], [30], we use the

following two parameters, tuning time and access time, to

assess the performance of a data broadcasting scheme.

Tuning time means the amount of time spent by a client to

listen to the channel. Listening to a channel requires the

client to be in the active mode [21]. Hence, tuning time

determines the battery consumption. Access time means the

time elapsed from the time a client wants an identified

record to the time that record is downloaded by the client.

Access time further consists of two components: probe wait

and bcast wait. Probe wait is the time from the point a client

tunes in to the point when the first index is reached, and

bcast wait is time duration from the point the first index is

reached to the point the required record is obtained.

Assuming that probe wait is half the length between two

consecutive starting indexes, our interest in this study starts

from the point that the first index is captured for ease of

discussion.

Explicitly, we shall explore in Section 3, the approaches

of using imbalanced index trees as well as employing

variant index fanouts to minimize the average index probe

cost (i.e., tuning time), thus, minimizing the battery

consumption. Moreover, we shall investigate in Section 4,

the optimal order of data records in sequential broadcasting

to minimize the average access time.1 Note that there are

some methods, such as index replications, available to

reduce the probe wait in access time, whose discussion is

beyond the scope of this paper.2 Interested readers are

referred to [5], [21].
Denote the number of data records as n, and a data

record as Ri; 1 � i � n. Let PrðRiÞ be the access probability

of Ri, i.e.,
P

1�i�n PrðRiÞ ¼ 1, IpbðRiÞ be the number of index

probes to reach Ri in an index tree. Also, ai is used to

represent an index node in an index tree and dðaiÞ
represents the fanout of ai. PathðRiÞ is the set of index

nodes from the root to data record Ri. For example, we have

IpbðR3Þ ¼ 2, dða1Þ ¼ 3, and PathðR3Þ ¼ fI; a1g in Fig. 1a.

3 INDEX ALLOCATION FOR SKEWED DATA ACCESS

We first propose algorithm CF to build a fixed fanout index

tree based on access frequencies of data records. Then, we

devise algorithm V F to construct an index tree with variant

fanouts. As will be shown by experimental results, the

average cost of index probes can be minimized not only by

employing an imbalanced index tree that is designed in

accordance with data access frequencies, but also by

exploiting variant fanouts for index nodes.

3.1 Imbalanced Index Tree Construction for
Fixed Fanouts

In essence, the proposed method CF will reduce the

number of index probes for hot (i.e., frequently accessed)

data while allowing more probes for cold (less frequently

accessed) data. CF , which is devised in light of the

Huffman code, is described below, where n is the number

of total data records and d is the fanout of each index.

Algorithm CF : Use access frequencies to build an index tree
with a fixed fanout d.

Step 1: Initially, we have a forest of n subtrees, each of

which is a single node labeled with the corresponding

access frequency.

Step 2: Attach the d subtrees with the smallest labels to a

new node. Label the resulting subtree with the sum of all

labels from its d child subtrees.

Step 3: n ¼ nÿ dþ 1. (Then, n is the number of remaining
subtrees.) If n ¼ 1 stop else goto Step 2.

It can be seen that, when the number of fanouts is equal

to two, i.e., d ¼ 2, algorithm CF becomes the conventional

Huffman code algorithm [22]. To facilitate our presentation,

the index tree in Fig. 1a is denoted by TBd¼3 and the

corresponding imbalanced tree built by algorithm CF is

denoted by TId¼3. The superindexes of TBd¼3 and TId¼3 stand

for “balanced” and “imbalanced,” respectively. For exam-

ple, given the profile in Table 1 and d ¼ 3, algorithm CF

will build an imbalanced index tree in a bottom up manner

and lead to TId¼3 as shown in Fig. 2a. It can be verified from

Table 1 that, by using the imbalanced tree TId¼3, the average

number of index probes for data access, i.e.,
P

1�i�9

PrðRiÞIpbðRiÞ, is reduced from two (i.e., using the index

tree TBd¼3 in Fig. 1a) to 1.5 (i.e., using the index tree TId¼3 in

Fig. 2a), thus, reducing the average power consumption. A

corresponding broadcasting sequence is given in Fig. 2b.

Consequently, we have the following theorem.

Theorem 1. Given a fixed index fanout, the average number of

index probes, i.e.,
P

1�i�n PrðRiÞIpbðRiÞ, is minimized by

using the index tree constructed by algorithm CF .

CHEN ET AL.: OPTIMIZING INDEX ALLOCATION FOR SEQUENTIAL DATA BROADCASTING IN WIRELESS MOBILE COMPUTING 163

1. As mentioned above, access time consists of probe wait and bcast wait.
Since our interest starts from the point that the first index is captured. Our
effort on minimizing access time focuses on minimizing bcast wait.

2. Using the terminology in [21], the index distribution model employed
in this paper is “nonreplicated distribution.”

TABLE 1
The Access Probability for Each Data Record and the Number of Index Probes Required to Reach Each Record by TBd¼3 and TId¼3



Proof. It can be seen that the formula to determine the
number of index probes in an index tree with a fanout d
is the same as the one of determining the weighted path
length of a d-ary tree in [22]. By transforming the
problem of minimizing the number of index probes to
the one of determining the minimal weighted path
length for a d-ary tree, algorithm CF is, in essence, a
generalized version of the Huffman code algorithm
which is proven in [22] to be able to lead to the minimal
weighted path length for a d-ary. This theorem follows.tu
Denote the cost of probing an index ai as fðaiÞ. Then, the

average cost of locating a record by probing indexes can be
expressed as: X

1�i�n
PrðRiÞ

X
aj2PathðRiÞ

fðajÞ;

where PathðRiÞ is the set of index nodes from the root to

data record Ri. Note that, under sequential broadcasting,

the cost of probing an index is proportional to the fanout of

that index, i.e., fðaiÞ ¼ gðdðaiÞÞ, where gð�Þ is a monotoni-

cally increasing function. Without loss of generality, we

shall use fðaiÞ ¼ gðdðaiÞÞ ¼ dðaiÞ in our discussion below for

ease of presentation.3 For example, for the index tree in

Fig. 2a, fða2Þ ¼ dða2Þ ¼ 3 and the index probe cost to reach

data record R5 isX
aj2PathðR5Þ

dðajÞ ¼ dðIÞ þ dða1Þ þ dða2Þ ¼ 3þ 3þ 3 ¼ 9:

Given this cost model, it is important to note that

index trees built by algorithm CF for different fanouts

will lead to different average cost of index probes. For

example, index trees built by algorithm CF for d ¼ 2 and

d ¼ 4 are given in Fig. 3 and Fig. 4, respectively. Let

C(TId¼j) be the average cost of index probes for the index

tree TId¼j, i.e., C(TId¼j)=
P

1�i�n PrðRiÞ
P

aj2PathðRiÞ dðajÞ for

the index tree TId¼j. It can be obtained from Table 2 that

CðTId¼3Þ ¼ 6 � 0:4þ 16 � 0:05þ 54 � 0:02

¼ 4:05 < CðTId¼4Þ ¼ 4:12 < CðTId¼2Þ ¼ 4:28;

showing that there is no monotonic relationship, neither

increasing nor decreasing, for the values of C(TId¼j) along

the fanout j allowed. This fact, together with the hierarch-

ical nature of index construction, implies that, by allowing

variant index fanouts within an index tree, one can further

minimize the average cost of index probes. This important

feature is explored next.

3.2 Employing Variant Index Fanouts to Minimize
Index Probes

Given the remarks on the nature of CF above, we explore in
this section the approach of using variant index fanouts to
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Fig. 3. An index tree TId¼2 built by algorithm CF .

3. This assumption is made for simplicity and is not required for the
algorithms developed. Relaxation on the formulation of fðaiÞ is given in
Section 4.2.

Fig. 2. Illustration of an imbalanced index tree: (a) an index tree TId¼3 built by CF and (b) corresponding data broadcasting sequence.



minimize the average cost of index probes. It is noted that,
unlike the conventional file system where a simple data
structure is usually preferable, the approach of using
variant index fanouts can be easily implemented in the
indexed broadcasting environment to lead to performance
improvement. As can be seen later, by employing the
concept of variant index fanouts, one can obtain an index
tree that requires, on the average, a smaller index probe cost
than optimal fixed fanout index trees. Note that such an
optimal partition problem associated with variant index
fanouts is known to be NP-Complete in nature [11]. In view
of this, we shall develop in the following an efficient
heuristic algorithm V F to build an index tree with variant
fanouts. It is observed that, on one hand, we want data
records to stay as close to the root as possible, which, on its
own, suggests that all data records be attached to the root
node. On the other hand, however, indexes with larger
fanouts are in general more costly to probe and, thus,
undesirable, particularly for those data records with high
access frequencies. In light of these, algorithm V F is so
designed that it strikes a compromise between these
conflicting factors and minimizes the average cost of index
probes.

Basically, algorithm V F is greedy in nature and builds
the index tree in a top down manner. V F starts with
attaching all data records to the root node. Then, after some
evaluation, V F groups nodes with small access frequencies
and moves them to one level lower so as to minimize the
average index probe cost. Fig. 5 shows the scenario of
grouping a set of nodes and moving them to a lower level. It
can be seen from Fig. 5 that, while the cost of index probes is
increased for those nodes moved down to the next level

(i.e., the index probe cost for each node among hiþ1,
hiþ2; . . . , and hm is increased from m to ðiþ 1Þ þ ðmÿ iÞ=
mþ 1), the index probe cost for the other nodes will be
greatly reduced (i.e., the index probe cost for each node
among h1, h2; . . . , and hi is reduced from m to iþ 1),
thereby, resulting in an overall reduction on the average
index probe cost. Formally, the criterion of determining if a
group of nodes should be moved to the next level can be
formulated by the lemma below.

Lemma 1. Suppose that node r has m child nodes, h1, h2, . . . ,

and hm, which are sorted according to descending order of

PrðhjÞ, 1 � j � m, i.e., PrðhjÞ � PrðhkÞ if and only if j � k.

Then, the average cost of index probes can be reduced by

grouping nodes hiþ1, hiþ2, . . . , and hm and attaching them

under a new child node if and only if

ðmÿ iÿ 1Þ
X

1�j�i
PrðhjÞ >

X
iþ1�j�m

PrðhjÞ:

Proof. Consider the average costs of index probes before and
after the referenced operation (i.e., the one grouping
nodes hiþ1, hiþ2, . . . , and hm and attaching them under a
new child node). Use Fig. 5 for illustration and let PT(hj)
be the set of indexes from the root to hj excluding the
parent node of hj, i.e., PT(hjÞ ¼ PathðhjÞ ÿ frg. The
average cost before this operation is

CBE ¼
X

1�j�m
PrðhjÞð

X
ap2PT ðhjÞ

dðapÞ þmÞ

¼
X

1�j�i
PrðhjÞð

X
ap2PT ðhjÞ

dðapÞ þmÞ

þ
X

1þi�j�m
PrðhjÞð

X
ap2PT ðhjÞ

dðapÞ þmÞ;

where m is the degree of the parent node of hj, i.e.,
dðrÞ ¼ m. In contrast, the average cost after that opera-
tion is

CAF ¼
X

1�j�i
PrðhjÞð

X
ap2PT ðhjÞ

dðapÞ þ ðiþ 1ÞÞ

þ
X

1þi�j�m
PrðhjÞð

X
ap2PT ðhjÞ

dðapÞ þ ðiþ 1þmÿ iÞÞ:

We hence, have CAF ÿ CBE = ðiþ 1ÿmÞ
P

1�j�i PrðhjÞ þP
iþ1�j�m PrðhjÞ, thus proving this lemma. tu

In light of Lemma 1, we devise algorithm V F below,
which contains a recursive procedure Partition to identify
the group of nodes to be moved downward in each
execution level.
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Fig. 4. An index tree TId¼4 built by algorithm CF .

TABLE 2
The Index Probe Cost Required to Reach Each Record by Different Index Trees Built by CF



Algorithm V F :

Step 1: Assume that R1, R2, . . . , and Rn have been sorted

according to descending order of PrðRjÞ, 1 � j � n, i.e.,
PrðRjÞ � PrðRkÞ iff. j � k.

Step 2: Partition (R1, R2, . . . , Rn).

Step 3: Report the resulting index tree.

Procedure Partition first starts with a configuration
where all nodes are attached to the root and uses Lemma 1
to determine if the average index probe cost can be reduced
by moving a set of nodes to the next level. If there are many
candidate sets of nodes whose movements are beneficial,
the one with the maximal reduction on the index probe cost
is chosen (i.e., operation (1) in Partition). When such a set of
nodes is identified and moved to the next level, those nodes
will be evaluated by themselves to see if any further
downward movement for some of them is necessary (i.e.,
operation (4) in Partition). In addition, in the original level,
by replacing those nodes moved downward with a new
index node (e.g., hx in Fig. 5) and assigning that node with
an access frequency equal to the aggregate frequency of its
child nodes, procedure Partition is called for again to see if
any further downward movement for some nodes in the
new list is necessary (i.e., operation (6) in Partition).
Procedure Partition partitions the nodes recursively with
the objective of minimizing the average index probe cost.
The index tree is then constructed in a top down manner.

Procedure Partition ðh1; h2; . . . ; hmÞ:
1. Let yðiÞ ¼ ðmÿ iÿ 1Þ

P
1�j�iPrðhjÞ ÿ

P
iþ1�j�mPrðhjÞ.

Determine i� such that yði�Þ ¼ max8i2f1;mÿ2g fyðiÞg.
2. If yði�Þ � 0, then return.

3. Attach nodes hi�þ1, hi�þ2, . . . , hm under a new index node

hx in the index tree.

4. Partition (hi�þ1, hi�þ2, . . . , hm).

5. Insert hx into the ordered list (h1, h2, . . . , hi� ) and relabel

them as (h1, h2, . . . , hi�þ1) according to descending order
of PrðhjÞ, 1 � j � i� þ 1.

6. Partition (h1, h2, . . . , hi�þ1).

7. Return.

For example, consider the profile in Table 3. The initial
index tree configuration in shown in Fig. 6a, where all data
records are attached to the root. Procedure Partition then
determines the optimal group of nodes to be moved to the
next level. From the calculations shown in Table 4, we
obtain i� ¼ 4 and, therefore, group nodes R5, R6; . . . , and
R11 together, and move them to the next level, resulting in
the configuration shown in Fig. 6b. Nodes R5, R6; . . . , and
R11 under the index node a1 are then partitioned recursively
as shown in Fig. 7. Also, in the original level, nodes R5,
R6; . . . , and R11 are now replaced with a1 which is assigned
with an access frequency of 0.12. We next determine if a
further partition for the new list of child nodes under the
root (i.e., R1, R2, R3, R4, and a1) is necessary. Following the
calculations shown in Table 5, we obtain Fig. 6c, which in
turn leads to Fig. 6d. Consequently, by combining Fig. 6 and
Fig. 7, we obtain the resulting index tree TIV in Fig. 8. For
comparison purposes, we obtain from algorithm CF the
optimal index trees with fixed fanouts TId¼2 and TId¼3, shown
in Fig. 9, for the same data profile. It can be verified from
Fig. 9 and Table 3 that

CðTId¼2Þ ¼
X

1�i�11
PrðRiÞ

X
aj2PathðRiÞ

dðajÞ ¼ 5:2

and CðTId¼3Þ ¼ 5:625, both larger than CðTIV Þ ¼ 5:08, show-
ing that the index tree with variant fanouts obtained by V F
requires a smaller average index probe cost than optimal
fixed fanout index trees.

3.3 Experimental Results on Index Allocation

In order to evaluate the performance of algorithms CF and
VF proposed, we have implemented a simulation model for
sequential broadcasting. Specifically, we examine the
benefit of utilizing imbalanced index trees first, and then
comparatively evaluate the performance of algorithms CF
and VF.

Table 6 summarizes the meanings for some simulation
parameters. The number of data records to be broadcasted
is denoted by n and the number of fanouts allowed in each
index node is d. The access frequencies of data items are
modelled by the Zipf distribution [13]. Let PrðRhiÞ ¼ ðnÿin Þ

�,
where � is the skew factor and Rhi , 1 � i � n, are data items
sorted in descending order of access frequencies. Clearly,
the access frequencies become increasingly skewed as the
value of � increases. For comparison purposes, a scheme
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Fig. 5. Group a set of nodes and move them to a lower level to reduce

the average index probe cost.

TABLE 3
The Index Probe Cost Required to Reach Each Record by Different Index Trees



that randomly selects data items to construct a balanced

index tree, referred to as BAL, is implemented.
From Fig. 10, where y-axis corresponds to the average

index probe cost and x-axis corresponds to the skew factor
�, it can be seen that algorithm CF significantly outperforms
BAL for various values of �. The advantage of CF over BAL

increases as the value of � increases. This agrees with our
intuition since algorithm CF is designed to take the
skewness of data access into consideration. Performance
of algorithms CF and VF is comparatively evaluated in
Fig. 11. It is shown that, by exploring the feature of variant
fanouts, algorithm VF consistently outperforms algorithm
CF for various values of �. It is seen that the advantage of
VF over CF becomes even more prominent when the value
of d increases.

In addition, the performance of algorithms CF and VF is
comparatively evaluated with the value of n varied. Without
loss of generality, the value of � is set to two in this

experiment. The corresponding results are shown in Fig. 12,
where the y-axis corresponds to the average index probe cost
and x-axis corresponds to the number of data items n. Again,

it is shown in Fig. 12 that algorithm VF consistently outper-
forms algorithm CF for various values of n, showing the
stability of the performance of algorithms proposed.
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Fig. 6. Illustration of algorithm V F .

TABLE 4
Determining the Set of Nodes to be Grouped Together in Fig. 6a, where m ¼ 11

Fig. 7. Further partitions of nodes under index a1.

TABLE 5
Determining the Set of Nodes to be Grouped Together

in Fig. 6b, where m ¼ 5



4 OPTIMAL ORDER FOR SEQUENTIAL DATA

BROADCASTING

As mentioned earlier, the structure of an index tree

determines the average index probe cost. However, even

for the same index tree, different broadcasting orders will

lead to different average data access times. In Section 4.1,

we derive the optimal order of sequential data broadcasting

that minimizes the average data access time. Performance

studies are conducted in Section 4.2. Remarks are made in

Section 4.3.

4.1 Ordering Broadcasting Data to Minimize Data
Access Time

Clearly, if there were no index node employed in the
sequential broadcasting, we would simply broadcast data
records in descending order of their access frequencies so as
to minimize the average access time, assuming that mobile
units start listening from the beginning of the broadcasting.
Given an index tree, the optimal broadcasting sequence in
this paper, refers to the one to minimize the average access
time (or precisely, the one to minimize the bcast wait as
explained in Section 2). This optimization however becomes
very complicated in indexed broadcasting where not only
does the existence of index nodes have to be considered but
also the underlining indexing hierarchy has to be followed.
To address this issue, we shall first derive some properties
for index trees and then, in light of these properties,
develop an algorithm ORD to determine for a given index
tree the optimal order for sequential data broadcasting.
Recall that PathðRiÞ is the set of index nodes from the root
to data record Ri. Using this notation, we have the
following property for an index tree.

Property H: An index tree is said to possess Property H if and

only if, for any two data records Ri and Rj in the index tree,

PathðRiÞ � PathðRjÞ implies PrðRjÞ � PrðRiÞ.

Property H then leads to the following lemma.

Lemma 2. Suppose Ri and Rj are two data records in an index

tree with Property H. Then, in the optimal broadcasting

sequence, data record Ri is broadcasted before Rj if
PathðRiÞ � PathðRjÞ.

Proof: We shall prove this lemma by contradiction. Suppose
PathðRiÞ � PathðRjÞ in the index tree and Rj is broad-
casted before Ri in the optimal broadcasting sequence s.
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Fig. 8. The resulting index tree TIV (with variant fanouts) from
algorithm V F .

Fig. 9. (a) TId¼2 and (b) TId¼3 for the profile in Table 3.



Since PathðRiÞ � PathðRjÞ, implying that Ri only needs
a proper subset of indexes required by Rj, we can obtain
another broadcasting sequence s � by interchanging Ri

and Rj. From Property H, we have PrðRjÞ � PrðRiÞ,
meaning that the average access time of s � is less than
that of s. This leads to a contradiction. This lemma
follows. tu
It is important to note that Property H is essential for the

validity of Lemma 2. Explicitly, for an index tree without
Property H, it is not always beneficial to broadcast a data
record requiring fewer index nodes first. Neither is it true
that a data record with higher access frequency should
always precede the one with a lower access frequency. An
illustrative example for these phenomena can be found in
Fig. 13, where, by letting PrðR1Þ > PrðR2Þ, the index tree in
Fig. 13a does not possess Property H. Assuming that the
size of an index node is one-tenth of that of an data record,
it can be verified that, when

fPrðR1Þ; PrðR2Þ; PrðR3Þ; PrðR4Þg ¼ f0:26; 0:25; 0:25; 0:24g;

the broadcasting sequence in Fig. 13b is favorable in terms
of minimizing the average access time, where R2 precedes
R1 despite the latter has a higher access frequency. On the
other hand, when

fPrðR1Þ; PrðR2Þ; PrðR3Þ; PrðR4Þg ¼ f0:97; 0:01; 0:01; 0:01g;

the one in Fig. 13c is favorable, where R1 precedes R2 even
the latter requires fewer index nodes. The intrinsic complex-
ity of this problem is the very reason that we shall focus on
index trees with Property H for deriving an algorithm to
determine the data broadcasting order. It can be seen from
the index tree construction by CF (i.e., bottom up
operations) and V F (i.e., top down operations) that the
index trees constructed by both algorithms possess
Property H. In light of Property H and Lemma 2, we
develop algorithm ORD below to determine the optimal
order for sequential data broadcasting.

Algorithm ORD: To determine the optimal order for

sequential data broadcasting with a given index tree.

Step 1: Denote the given index tree as T . Form the initial
broadcasting sequence SEQ by data records which are

sorted in descending order of their access probabilities,

i.e., SEQ ¼ ðR1, R2, . . . , RnÞ, i.e., PrðRjÞ � PrðRkÞ if and

only if j � k.

Step 2: Select an index node, say ai, from the lowest level of

the index tree T (i.e., all child nodes of ai are leaves in T ).

Remove the child nodes of ai from T (i.e., ai thus

becomes a leaf node).
Step 3: Insert ai into SEQ and place it immediately in front

of its child node with the largest access frequency.

Step 4: Goto Step 2 until T becomes a single node.

For example, it can be obtained that, given the index tree
in Fig. 8, algorithm ORD interleaves the sorted data records
with index nodes as shown in Fig. 14a, leading to the
resulting broadcasting in Fig. 14b. With data items preced-
ing index nodes, ORD can be viewed as a pr-order search
along the corresponding index tree. Note that, in ORD,
every index node is always broadcasted immediately before
its child nodes so that the extra access time of other nodes,
which is incurred due to the presence of this index node, is
minimized. Also, although Property H only characterizes
the relationship among nodes within one tree branch, it can
be verified that, when two branches are merged (e.g.,
branches under a2 and a3 in Fig. 8), the average access time
is minimized provided that a sort-merge is performed
based on the access frequencies of data records. These facts
and Lemma 2 guarantee the optimality of ORD, which is
formally stated below.

Theorem 2. Given index trees built by algorithms CF and V F ,
the average access time is minimized by using the broadcasting
order determined by algorithm ORD.

Proof. It is noted that, in algorithm CF, the index tree is built
from data records with smaller access frequencies first in
a bottom up manner. Also, in algorithm VF, the index
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TABLE 6
The Meanings of Some Parameters Used in the Simulation

Fig. 10. Performance comparison between BAL and CF for various skew

factors when d ¼ 2.



tree is expanded by moving data records with smaller

access frequencies to one level lower in a top down

manner. It thus follows from both scenarios that the

index trees built by algorithms CF and VF are of

Property H. Then, from Lemma 2, we know that the

relative order of data items in the broadcasting sequence

resulted by algorithm ORD is the same as the one in the

optimal broadcasting sequence. (Otherwise, an inter-

change of positions for a pair of out-of-order data records

will render a broadcasting sequence of smaller average

access time.) This theorem, hence, follows from the fact

that each index node is placed immediately before its

child node with the largest access frequency. tu
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Fig. 11. Performance comparison between CF and VF for various skew factors.

Fig. 12. Performance comparison between CF and VF for various numbers of data items.

Fig. 13. An example index tree which does not possess Property H.

Fig. 14. Interleaving the broadcasting sequence with index nodes to

minimize the average access time.



It is noted that, in a broadcasting sequence resulting from
ORD, unlike data records, index nodes may not appear in
descending order of their access frequencies. An example
scenario can be found in Fig. 14, where a3 (with access
frequency 0.48) precedes a2 (with access frequency 0.52). In
summary, we perform the following steps to determine the
index allocation for sequential broadcasting. First, the
access frequencies for data records are collected. Then, we
can either use algorithm CF to build an index tree with
fixed fanouts or use algorithm V F to build an index tree
with variant fanouts with the objective of minimizing the
average index probe cost. Finally, for an index tree built, we
employ ORD to determine the optimal data broadcasting
sequence to minimize the average data access time.

4.2 Experimental Results on Order of Broadcasting

In order to evaluate the performance of algorithm ORD, we
conducted simulations to determine the average access time
for index trees obtained by algorithm VF. Again, the
number of data records to be broadcasted is n and the
access frequencies of data items are modelled by the Zipf
distribution. A scheme that randomly orders data items to
broadcast, referred to as RAN, is implemented for compar-
ison purposes.

Performance of algorithms ORD and RAN is compara-

tively evaluated in Fig. 15, where the y-axis corresponds to

the average access time and the x-axis corresponds to the

value of skew factor. It is shown that ORD significantly

outperforms RAN due to the proper order of data records to

broadcast by ORD. It is important to see that the advantage

of ORD over RAN becomes even more prominent when the

value of skew factor increases, showing the proper ordering

is even more beneficial when the data access is more

skewed. In addition, performance of algorithms ORD and

RAN is evaluated for various numbers of data items.

Without loss of generality, the value of � is set to two in this

experiment. The corresponding results are shown in Fig. 16,

where it can be seen that algorithm ORD consistently

outperforms algorithm RAN for various values of n. The

advantage of ORD over RAN increases as the value of n

increases.

4.3 Remarks

It can be verified that the three algorithms devised are of
polynomial time complexity. Specifically, given n data
records to be broadcasted, the complexity of CF is
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Fig. 15. Performance comparison between RAN and ORD for various skew factors.

Fig. 16. Performance comparison between RAN and ORD for various numbers of data items.



O(n logn), that of V F is O(n2 logn), and that of ORD is
O(n logn). While the complexity of CF and ORD is
dominated by sorting, V F requires O(n2 logn) complexity
due to its recursive operations. Note that the determination
of different fanouts required in V F is performed after the
sorting and incurs little computational complexity by itself.
Despite its simplicity, V F usually leads to solutions with
smaller costs of index probes, outperforming those optimal
ones for fixed fanouts obtained by CF . In addition, as
mentioned before, the assumption for fðaiÞ ¼ dðaiÞ we have
used is made for ease of discussion, and by no means
required for the applicability of V F . It can be verified that
V F is valid as long as fðaiÞ is a monotonically increasing
function with d(ai) (i.e., an index with a larger number of
fanouts requires a higher probe cost), which is reasonable in
practice. By denoting fðaiÞ ¼ gðdðaiÞÞ in general, we can re-
formulate yðiÞ in operation (1) of procedure Partition as:

yðiÞ ¼ ðgðmÞ ÿ gðiþ 1ÞÞ
X

1�j�i
PrðhjÞ ÿ ðgðiþ 1Þ

þ gðmÿ iÞ ÿ gðmÞÞ
X

iþ1�j�m
PrðhjÞ:

It is worth mentioning that there are many other
approaches conceivable to further reduce the data access
time. In addition to replicating indexes as pointed out in
[21], one may also replicate data records with high access
frequencies. Note that the replication of a hot data record,
while reducing the access time to that record, will lengthen
the overall broadcasting cycle and, thus, increase the access
time to other records. Clearly, certain criteria are needed to
determine the replicated data placement and to optimize
the trade-off between these conflicting factors [18], [30], [32].

5 CONCLUSION

In this paper, we explored the issue of indexing skewed
data for sequential broadcasting in wireless mobile comput-
ing. We proposed methods to build index trees based on
access frequencies of data records. Two cases, one for fixed
index fanouts and the other for variant index fanouts, were
considered for the minimization of the average cost of index
probes. We devised algorithms CF and V F for constructing
index trees for both cases. We showed, by experimental
results, that the average cost of index probes can be
minimized not only by employing an imbalanced index
tree that is designed in accordance with data access skew,
but also by exploiting variant fanouts for index nodes.
Explicitly, by employing the concept of variant index
fanouts, V F can lead to an index tree that requires a
smaller average cost of index probes than optimal fixed
fanout index trees obtained by CF . In addition, we have
developed algorithm ORD to determine the optimal order
for sequential data broadcasting with a given index tree.
Performance evaluation on the algorithms proposed has
been conducted. Complexity of the three algorithms that
were proposed is analyzed. Examples and remarks were
given to illustrate our results.
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