
An Evaluation of Cache Invalidation Strategies
in Wireless Environments

Kian-Lee Tan, Member, IEEE Computer Society, Jun Cai, and

Beng Chin Ooi, Member, IEEE Computer Society

AbstractÐCaching can reduce the bandwidth requirement in a wireless computing environment as well as minimize the energy

consumption of wireless portable computers. To facilitate mobile clients in ascertaining the validity of their cache content, servers

periodically broadcast cache invalidation reports that contain information of data that has been updated. However, as mobile clients

may operate in a doze or even totally disconnected mode (to conserve energy), it is possible that some reports may be missed and the

clients are forced to discard the entire cache content. In this paper, we reexamine the issue of designing cache invalidation strategies.

We identify the basic issues in designing cache invalidation strategies. From the solutions to these issues, a large set of cache

invalidation schemes can be constructed. We evaluate the performance of four representative algorithmsÐtwo of which are known

algorithms (i.e., Dual-Report Cache Invalidation and Bit-Sequences) while the other two are their counterparts that exploit selective

tuning (namely, Selective Dual-Report Cache Invalidation and Bit-Sequences with Bit Count). Our study shows that the two proposed

schemes are not only effective in salvaging the cache content but consume significantly less energy than their counterparts. While the

Selective Dual-Report Cache Invalidation scheme performs best in most cases, it is inferior to the Bit-Sequences with the Bit-Count

scheme under high update rates.

Index TermsÐMobile computing, disconnection, doze mode, bit-sequences, cache invalidation, access time, energy consumption.

æ

1 INTRODUCTION

IN today's increasingly mobile world, mobile users with
battery-operated palmtops can access data stored at

information servers located at the static portion of the
network without space and time restriction [7], [8], [11],
[14]. However, there are two obstacles to the wide-spread
adoption of this technology: the limited bandwidth of
wireless communication channels and the short battery
lifespan of portable computers. Caching of frequently
accessed data at the mobile clients has been considered to
be a very effective mechanism in reducing wireless
bandwidth requirements as well as energy consumption
(since no energy is expended to transmit and receive data)
[1], [2]. For caching to be effective, the cache content must
be consistent with those stored in the server. This is,
unfortunately, difficult to enforce due to the frequent
disconnection and mobility of clients.

In the literature, the basic approach adopted is for the
server to periodically broadcast invalidation reports that
contain information about objects that have been updated
recently. Based on the report, clients can invalidate objects
that have been updated and salvage their cache content that
are still valid. Most of the existing algorithms address three
issues. The first issue deals with the content of the
invalidation reports. The second issue concerns how
invalidation is performed. The last issue looks at the
support the server provides.

In this paper, we revisit the problem of designing cache
invalidation strategies in wireless environments. This work
is different from previous work in two ways. First, based on
our understanding of the problem and the schemes
proposed in the literature, we develop a framework for
designing cache invalidation schemes from which a large
class of energy efficient cache invalidation schemes can be
constructed. Second, as case studies, we design two cache
invalidation schemes that organize the invalidation reports
to facilitate selective tuning. The performance of the new
schemes is studied and compared with that of two existing
algorithms. Our results show that the proposed schemes are
not only effective in salvaging as much of the valid cache
content as possible, but are also more energy efficient than
existing schemes. To our knowledge, this is the first
reported work that evaluates comprehensively several
cache invalidation schemes.

Several observations motivated this work. First, while
existing cache invalidation schemes proposed in the
literature are different, most of them can be seen as variants
of one another. We would like to develop a framework
where we may identify the similarities and differences. We
believe that one way to do so is to identify the issues that
are involved in the development of a cache invalidation
scheme. Second, most of the work has largely been
evaluated against the basic cache invalidation scheme
proposed by Barbara and Imielinski [2]; comparative
evaluation against other algorithms is lacking. We believe
a comprehensive comparative study of these algorithms
will provide insights into the strengths and weaknesses of
these schemes. In particular, the schemes should be
compared on their ability to salvage the cache content as
well as their energy utilization. Third, most of the existing

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001 789

. The authors are with the Department of Computer Science, National
University of Singapore, 3 Science Drive 2, Singapore 117543.
E-mail: {tankl, caijun, ooibc}@comp.nus.edu.sg.

Manuscript received 15 Aug. 1999; revised 1 Sept. 2000; accepted 8 Mar.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 110443.

1045-9219/01/$10.00 ß 2001 IEEE

work focuses on the effectiveness of the proposed schemes
in salvaging the cache content; the issue of minimizing
energy consumption is largely ignored. We would like to
study how cache invalidation can be made to be more
energy efficient.

The rest of this paper is organized as follows: In the next
section, we provide some preliminaries. In Section 3, the
issues and solutions related to cache invalidation schemes
are discussed. As a result, a large set of cache invalidation
schemes may be derived. Section 4 presents four represen-
tative algorithms obtained from the taxonomy in Section 3.
In particular, two of the schemes are existing techniques
while the other two are newly proposed. In Section 5, we
study the relative performance of the four strategies in
terms of their effectiveness in salvaging the cache content
and their energy efficiency. Finally, we conclude and
discuss some promising future work in Section 6.

2 THE CONTEXT

The model for a mobile data access system adopted in this
paper, as shown in Fig. 1, is similar to that specified in [2].
The mobile environment consists of two distinct sets of
entities: a larger number of mobile clients (MC) and
relatively fewer, but more powerful, fixed hosts (or
database servers) (DS). The fixed hosts are connected
through a wired network and may also be serving local
terminals. Some of the fixed hosts, called mobile support
stations (MSS), are equipped with wireless communication
capability. An MC can connect to a server through a

wireless communication channel. It can disconnect from the
server by operating in a doze mode or a power-off mode.
(To conserve energy, hardware vendors have come up with
dual-mode processors. One example is the Hobbit Chip,
from AT&T, that consumes 250 mW in the full operational
active mode but only 50 �W in the doze mode [13].) Each
MSS can communicate with MCs that are within its radio
coverage area called a wireless cell. A wireless cell can
either be a cellular connection or a wireless local area
network. At any time, an MC can be associated with only
one MSS and is considered to be local to that MSS. An MC
can directly communicate with an MSS if the mobile client
is physically located within the cell serviced by the MSS. An
MC can move from one cell to another. The servers manage
and service on-demand requests from mobile clients. Based
on the requests, the objects are retrieved and sent via the
wireless channel to the mobile clients. The wireless channel
is logically separated into two subchannels: an uplink
channel which is used by clients to submit queries to the
server via MSS, and a downlink channel which is used by
MSS to pass the answers from the server to the intended
clients. We assume that updates only occur at the server
and mobile clients only read the data.

To conserve energy and minimize channel contention,
each MC caches its frequently accessed objects in its
nonvolatile memory such as a hard disk. Thus, after a long
disconnection, the content of the cache can still be retrieved.
To ensure cache coherency, each server periodically broad-
casts invalidation reports. All active mobile clients listen to

790 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 1. The wireless computing environment.

the reports and invalidate their cache content accordingly.
As in [10], [18], we assume that all queries are batched in a
query list and are not processed until the MC has
invalidated its cache with the most recent invalidation
report. We assume that each server stores a copy of the
database and broadcasts the same invalidation reports. In
this way, clients moving from one cell to another will not be
affected. Thus, it suffices for us to restrict our discussion to
just one server and one cell.

There are two metrics that are used to characterize
information retrieval in wireless computing environment.
The first is the access time which is the time elapsed from the
moment the client submits a request to the point when all
the resultant objects are downloaded by the client. The
second deals with the energy efficiency of the retrieval
mechanisms. There are two measures for this: 1) The tuning
time is the amount of time the client spent on listening to the
channel and 2) the number of uplink bits transmitted reflects
the amount of energy consumed in transmitting data.
Traditionally, once a client submits a query, it listens to
the channel until all the resultant objects are received. This
leads to the tuning time being equal to the access time. Since
listening/transmitting operations requires the CPU to be in
full operation (active mode), they should be minimized to cut
down on power consumption.

3 A TAXONOMY OF CACHE INVALIDATION SCHEMES

Two basic categories of cache invalidation strategies have
been proposed in the literature [2]. In the first category, the
stateful-based approach, the server knows the objects that are
cached by the mobile clients. As such, whenever there is
any update to the database, the server will send invalida-
tion messages to the affected clients. The other category, the
stateless-based approach, does not require the server to be
aware of the state of the clients' cache. Instead, the server
broadcasts information on objects that are most recently
updated and the clients will listen for and use the reports to
invalidate their caches. Because the stateful-based approach
is apparently more complex (for example, the server must
locate the clients and the clients need to inform the server
when they relocate), all reported work in the literature fall
into the stateless-based category [2], [4], [3], [10], [15], [18].

For the stateless-based approaches, we can further
categorize invalidation methods into either asynchronous or
synchronous methods [2]. Under the asynchronous method,
once a record is updated, the server broadcasts updated
value immediately. The asynchronous method is effective
for connected clients, and allows them to be notified
immediately of updates. However, for a client who
reconnects after a period of disconnection, the client has
no idea of what has been updated and so the entirety of its
cache content has to be invalidated. To salvage the cache
content, Barbara and Imielinski [2] have proposed that an
invalidation report can be piggybacked with each invalida-
tion notice. In this case, upon reconnection, clients will have
to wait for the first asynchronous invalidation report.
However, since the report is sent asynchronously, there is
no guarantee on how long the client must wait.

On the contrary, the synchronous method is based on the
periodic broadcasting of invalidation reports. The server

keeps track of the records that are recently updated and
broadcasts this information to clients periodically. Based on
the report, a client determines whether its cache is valid for
the query; if it is, it can be used to answer the query,
otherwise, the query may have to be submitted to the
server. Because of its periodic broadcast nature, synchro-
nous methods provide a bound on the waiting time of the
next report.

In this paper, we focus on synchronous stateless-based
approaches. From existing work, we have identified some
common issues that have been addressed in designing
cache invalidation schemes. These are the content of the
report, the invalidation process, and the information (log)
that the server must maintain. Fig. 2 summarizes these
issues and the possible solutions.

3.1 On the Content of the Invalidation Report

Ideally, the server should keep track of all updates and
broadcast them to the mobile clients. But, this is costly and
impractical in view of the limited bandwidth and short
battery life of mobile clients. Instead, the server maintains a
short (of reasonable length) history of updates and broad-
casts an update report (UR) that reflects the most recent
changes. Several issues need to be addressed with regards
to the content of the report.

3.1.1 Granularity

The granularity of the report refers to the level of details of
information each record of the report captures. A record in
the report can be an (id, TS) pair, where id is the identifier
of the object that is updated and TS is the timestamp at
which this object is updated. Alternatively, the report can
reflect the full detail of the object that is updated at time TS,
i.e., the record is the pair (object, TS). The former is
commonly known as update invalidation as clients can only
invalidate their cache content. The latter, on the other hand,
allows clients to immediately update their invalid copy
with the object that is broadcast. It is thus referred to as an
update propagation mechanism. Clearly, there is a tradeoff
between the two mechanisms. Under update propagation,
when the disconnection time is short, clients can update its
cache immediately. Under update invalidation, clients must
still submit requests to retrieve the updated records even if
the disconnection time is short. However, under update
propagation, since the entire record is broadcast, the report
is much larger and can take up a significant portion of the
downlink channel capacity, which is a scarce resource in
wireless environment. Moreover, given the same report
size, update invalidation can afford to reflect a longer
history of updates. Thus, existing works are largely based
on update invalidation [2], [4], [3], [15], [18]. Works on
update propagation can be found in [4].

Instead of associating each object (or its id) with a
timestamp in the report, an alternative is to associate a list
of ids/objects with a timestamp. The report would then
comprise multiple (list of ids, TS) pairs (or (list of objects,
TS) pairs). Each (list of ids/objects, TS) pair means that the
list of ids/objects have been updated since TS. For example,
if objects O1, O2, and O3 are updated at TS1, TS2, and TS3,
respectively, where (TS1 < TS2 < TS3), then we may have
the record (O1; eO2; eO3, TS1) in the report. This approach
can reduce the number of timestamps needed. However, it

TAN ET AL.: AN EVALUATION OF CACHE INVALIDATION STRATEGIES IN WIRELESS ENVIRONMENTS 791

may lead to false invalidation. For example, if a client
accesses the three objects at time TSd, TS2 < TSd < TS3,
and reconnects at time TSr, TSr > TS3, then even though
O1 and O2 are still valid, they would be invalidated. This
approach has been studied in [10].

Another alternative that can minimize the usage of
bandwidth for the invalidation report is to disseminate
only group-based information. In other words, the
database objects are organized into groups. The update
report contains (group-id, TS) pairs to reflect the most
recent timestamp TS at which an object in the group
(identified by group-id) has been updated. Using such a
report, the client will invalidate all objects in the group if
the group has recently been updated. The main problem
with the group-based approach is that of false invalida-
tion, i.e., objects belonging to a group that are valid will
still have to be invalidated. Group-based schemes have
been studied in [3], [15], [18].

3.1.2 Size and Update History

The size of the invalidation report can be fixed or varied.
The update history refers to the history of the updates that
are reflected in the report and can be fixed or varied too.
These two factors are interrelated in the sense that one
typically affects the other. For example, the report size can
be fixed by the amount of bandwidth allocated for the
report. It can also be fixed by the number of objects/groups
to be included in the report. Obviously, under these cases,
the update history cannot be predetermined (i.e., it has to be
variable) since the number of updates varies over a fixed
period of time. On the other hand, the report size can vary
from broadcast to broadcast by fixing the update history
being reflected. As an example, an update report broadcast,
at time T, may reflect all updates during the interval
�T-wL;T� for some w > 0 and L; w is referred to as the
broadcast window and L is the fixed interval at which the
report is periodically broadcast. Works that employ fixed

792 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 2. Issues and solutions in designing cache invalidation schemes.

report size with variable update history have been reported
in [3], [10] while works on variable report sizes that fix the
update histories have appeared in [2], [3], [15], [18].

3.1.3 Organization for Selective Tuning

To conserve energy, it may be necessary to organize the
invalidation report to facilitate selective tuning. This can be

done by interleaving the content of the report with
ªindexesº that can provide ªdirectº access to the targeted
portion of the report. Thus, only the desired portion of the

report needs to be examined. Organization of the report to
facilitate tuning has been explored in [3]. While there is
some work done on indexing broadcast data [12], [9], [16],

these schemes cannot be readily applied to our context as
invalidation information cannot be predetermined and it
varies from report to report. Moreover, these schemes are

more complex (e.g., B�-tree).

3.2 On Invalidation Mechanism

There are two issues to address here. The first concerns the

scale of the invalidation, whether it is cache-level or query-
level. The second concerns the participants that are
involved, whether the invalidation is performed by the

client only, by the server only, or by a collaboration between
the two.

3.2.1 Scale

When a client receives an invalidation report, it can

invalidate its cache content in two ways. First, it can
perform cache-level invalidation, i.e., cache validity is
performed for all objects cached. This requires scanning a

large portion of the invalidation report, if not the entirety of
the report. As a result, it is not particularly suited for
selective tuning (unless the number of cached objects is very

small). Under this approach, the cache content is associated
with one timestamp onlyÐthe timestamp of the most recent

invalidation report read.
On the other hand, the client can perform query-level

invalidation, where validation is performed only on the
objects queried. This reduces the number of objects to be

invalidated and, hence, the report can be organized for
selective tuning. However, each cached object has to be
associated with a timestamp (compared to a single time-

stamp for all cached object in cache-level invalidation). The
timestamp of an object represents the timestamp at which
the object is last known to be valid. This is usually the

timestamp of the invalidation report that was last used to
validate the object. Thus, different cached objects will have
different timestamps. The consequence of this is that each

queried object may use a different list of objects for
invalidation (recall that different timestamps are associated

with a different list of objects). When a query is issued, the
query objects' timestamps are checked against that of the
invalidation report received. For each object queried, the

appropriate list of objects is used to (in)validate it.
Examples of query-level invalidation schemes are SCI

and OCI [3], while GCORE [18], Broadcasting Time-
stamps [2], Bit-sequences [10], and BGI [15] are cache-

level oriented.

3.2.2 Participants

Invalidating the cache content can be performed by the

client alone. This requires that the client based its invalida-

tion purely on the invalidation reports. Thus, the effective-

ness of such approaches are dependent on the content of the

report. On the other extreme, we can allow the server to

perform the invalidation alone. This, however, will require

the client to inform the server about its cache content which

can be costly since transmitting this information consumes

energy and bandwidth. Finally, the client and server can

collaborate to identify the cache content that should be

invalidated: The client uses the invalidation report to

invalidate its cache content; for those that remain uncertain,

the client submits their information to the server for

invalidation. Broadcasting Timestamps [2], BGI [15], and

SCI [3] are examples of schemes that employ client-only

invalidation while GCORE [18] adopts a client-server

collaboration approach. To our knowledge, there is no

server-only approach.

3.3 On Update Log Structure

Another important issue in the design of a cache invalida-

tion scheme concerns the information (update logs) main-

tained at the server to reflect the updates on the database.
The update logs may contain update information of each

individual object or its identifier. For the former, the log

record is of the form (object, TS) to reflect that object has

been updated at timestamp TS. For the latter, the server

only needs to maintain (id, TS) pairs, each of which

indicates that the object with identifier id is updated at TS.
Alternatively, each log record may reflect updates on a

collection of objects. In this group-based approach, objects

are organized into groups and the log record reflects the

latest update to the group, i.e., each log record is of the form

(group-id, TS) where TS is the most recent timestamp that

an object in group identified by group-id has been updated.
The second issue concerns the size and log history

(duration that the update logs should be maintained),

which, like the content, are interrelated. The size can be

fixed by restricting updates to be maintained for a fixed

number of objects. In this case, the log history changes

depending on the updates. This approach has been adopted

in Bit-Sequences [10] where updates to half the database

size are maintained.
On the other hand, variable sized logs can be

maintained by fixing the log history to a fixed interval,

say �T-WL;T� for some W > 0; W is the update log

window, L is the fixed interval of broadcasting the

invalidation report, and T is the timestamp at which

the report is broadcast. In other words, only updates

in the interval �T-WL;T� are maintained. Clearly,

keeping all updates is ideal but can be costly in

terms of storage, whereas keeping only very recent

updates may not be effective as it may lead to false

invalidation. The approach of maintaining update

history for the last WL time units has been adopted

in GCORE [18] Broadcasting Timestamps [2], BGI [15],

and SCI [3].

TAN ET AL.: AN EVALUATION OF CACHE INVALIDATION STRATEGIES IN WIRELESS ENVIRONMENTS 793

3.4 Cache Invalidation Schemes

Based on the above discussion, we can derive a large

number of cache invalidation schemes from the product of

the various alternatives in addressing each issue. It should

be pointed out that some of the options may not be

practical/feasible. For example, it is not possible to have a

fixed size report that reflects all updates in a fixed update

history �T-wL;T�. On the other hand, we can design

techniques that combine multiple solutions. For example,

there exists techniques (see Table 1) that reflect both recent

updates for individual items as well as group updates.

Table 1 summarizes some of the existing work based on the
dimensions discussed.

As can be seen from the table, most of the existing
techniques are based on update invalidation rather than
update propagation. This is to conserve the limited wireless
bandwidth. Furthermore, except for the work in [3] (i.e.,
OCI and SCI), most of the work did not address the issue of
selective tuning. In addition, OCI and SCI are the only
query-level schemes. We also note that very little work (e.g.,
GCORE and UI-CS) adopts a client-server collaborative
effort for invalidation. Such techniques incur the additional
uplink overhead, which can be costly in terms of energy
consumption (since transmitting data consumes more

794 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

TABLE 1
Summary of Some of the Existing Cache Coherency Schemes

energy than receiving data). Most of the recent techniques
also maintain a longer log history than the update history
(i.e., W > w) in order to salvage more of the cache content.
Finally, we would like to point out that the work in [4] deals
with relational operations while the rest focused on object
retrievals.

4 SELECTED CACHE INVALIDATION SCHEMES

In this section, we describe four cache invalidation schemes
designed under the framework proposed in the last section.
For all the schemes studied, the client is the one to
invalidate the cache, i.e., they all adopt the client-only
invalidation mechanism. As such, all the schemes broadcast
invalidation reports and clients make use of the reports to
invalidate the cache content. Among the four schemes,
two of themÐDual-Report Cache Invalidation and Bit-
SequencesÐare (variations of) existing schemes and do not
support selective tuning. The other two schemesÐSelective
Dual-Report Cache Invalidation and Bit-Sequences with Bit
CountÐare new algorithms designed to support selective
tuning to minimize energy consumption. Throughout this
section, we will use the following running example in
illustrating the various schemes:

Running Example. We shall use a database of 16 objects as
our running example. Fig. 3 shows the database objects,
and the timestamp at which each object has been
updated. For example, object 5 was updated at time 22
and object 12 was updated at time 30. This example will
be used to illustrate how the various cache invalidation
schemes studied in this paper (in)validate the content of
the client's cache.

4.1 The Dual-Report Cache Invalidation (DRCI)

The Dual-Report Cache Invalidation Scheme (DRCI) is a
variation of the BGI [15] scheme. We note that BGI is a
broadcast-based version of GCORE [18] so that the server
does not need to participate in the invalidation process. BGI
has been shown to be as effective as GCORE in salvaging
the cache content at a lower energy requirement. DRCI is
different from BGI in the way the data is organized into
categories. In BGI, there are only two categories while DRCI
has four categories.

DRCI is based on the following:

. Content. The report consists of a list of (id,TS) pairs
and a list of (group-id,TS) pairs. The size and the
update history varies. There is no selective tuning.

. Invalidation Mechanism. The invalidation is at the
cache-level and is performed by the client only.

. Log. The server maintains logs for objects. The size
of the log varies though the log history is fixed at
�T-WL;T� for objects, where T is the current time, w

and W are update log windows, and L is the fixed
interval at which the reports are broadcast.

Under DRCI, the server broadcasts every L time units a
pair of invalidation reports, an object invalidation report
(OIR), and a group invalidation report (GIR). Let the current
timestamp be T . To generate the reports, the server keeps
track of all the objects updated between interval T ÿ wL
and T and between T ÿWL and T , where w and W are the
update log windows and W > w > 0. Note that the
distinction on the information maintained between the
two time intervals is only a logical one. Clearly, objects
appearing in the interval �T ÿ wL; T � will also appear in the
interval �T ÿWL;T � and in an actual implementation, such
redundancies can be avoided altogether. The most recent
OIR broadcast contains the update history of the past
w broadcast intervals and is obtained from the informa-
tion maintained in the interval �T ÿ wL; T �. The contents of
OIR are the current timestamp T and a list of (oid, tid) pairs,
where oid is an object identifier of an object updated during
the interval �T ÿ wL; T �, tid is the corresponding most recent
update timestamp, and tid > �T ÿ wL�. The GIR, on the
other hand, is a fixed-size report that contains the
update history of the past W broadcast intervals and is
obtained from the information maintained in the interval
�T ÿWL;T �. GIR contains for each group a timestamp
that reflects the most recent timestamp in which the
group is valid. In other words, the contents of the GIR is a
list of (Gid, Tid) pairs, where Gid is a group identifier and Tid
is the most recent timestamp in which the group Gid is
valid.

The timestamps of the groups in GIR are determined
only at the time when the invalidation reports are to be
broadcast and are assigned as follows:

. Step 1. Based on the observation that objects that are
updated during �T ÿ wL; T � would be reflected in
the OIR, we ignore these objects when determining
the timestamp of a group.

. Step 2. For each group, perform the following:
Among the group's remaining objects in the update
history, find the one with the largest timestamp that
is less than T ÿ wL. Let this timestamp be t. If
no such objects exists (i.e., no updates during
�T ÿWL;T � or the updates are already included
in OIR), then t � 0. The timestamp for the group is
max�T ÿWL; t�.

The DRCI scheme facilitates invalidation in two ways.
First, for those clients with a small disconnection time, a
direct cache checking is performed using the OIR. Second,
for those disconnected before the time T ÿ wL, OIR and GIR
can work together so that the clients need not discard the
entirety of its cacheÐthe OIR is used to invalidate
individual objects in the cache first, the GIR is then used
to invalidate the remaining objects whose groups have been
updated. Since the GIR exclude objects in OIR, the OIR

TAN ET AL.: AN EVALUATION OF CACHE INVALIDATION STRATEGIES IN WIRELESS ENVIRONMENTS 795

Fig. 3. A running example; Database objects and update timestamps.

effectively helps to minimize false invalidation. The GIR can

further minimize invalidation of the entire cache for long

disconnection time. The algorithmic description of the

protocol is shown in Fig. 4. Note that the entire cache

content will be discarded if the client disconnection time is

longer than T ÿWL.
Although the basic DRCI scheme is independent of the

way the database objects are grouped, its performance can

be influenced by the grouping scheme. We observe that

very often only a small set of data objects are hot in demand

and, likewise, only a small set of data objects are hot in

terms of frequency of update. As such, we can divide the

whole database into four data sets: hot update-hot

demand (HH), hot update-cold demand (HC), cold

update-hot demand (CH), and cold update-cold demand

(CC). Clearly, it makes no sense to group objects in the

HH category (hot update-hot demand) with objects in the

CC category (cold update-cold demand). Therefore,

groups are formed from objects in the same category.

Example 1. We shall illustrate the DRCI scheme using our

running example. Let T � 34 be the timestamp where the

most recent pair of invalidation reports are broadcast,

L � 4, w � 2, and W � 6. Suppose the objects are initially

split into four groups:

G1 � fo1; o2; o3; o4g;
G2 � fo5; o6; o7; o8g;
G3 � fo9; o10; o11; o12g;
G4 � fo13; o14; o15; o16g:

At time T , the update reports are as follows:

. The contents of OIR are as follows:
f34; �o7; 26�; �o8; 32�; �o12; 30�; �o16; 28�g

. The contents of GIR for groups G1, G2, G3 and G4 at
time 34 are f�G1; 24�; �G2; 22�; �G3; 20�; �G4; 12�g

Suppose a mobile client, MC, disconnects at time 23
(last set of reports received at time 22) and reconnects
at time 34. Suppose MC generates a query that
requests objects o1; o2; o6; o7; o9; o12; o14 that are in its
cache. From the OIR, MC invalidates o7 and o12. Thus,
these objects can be ªremovedº from the cache and the
remaining objects, whose validity are unknown, are
given by the resultant groups:

G1 � fo1; o2g;
G2 � fo6g;
G3 � fo9g;
G4 � fo14g:

Since groups G2, G3, and G4 were updated before time
23, therefore, the remaining objects in these groups are
still valid and, hence, will not be invalidated. However,
all the objects in G1 are considered invalid as there exists
an update after time 23 in the group.

4.2 The Bit-Sequences Scheme (BS)

The Bit-Sequences algorithm [10] adopts the following
framework:

. Content. The report consists of a list of (list of ids,
TS) pairs in a compact form. This allows the report
size to be fixed, though the update history varies.
There is no organization to support selective tuning.

. Invalidation Mechanism. The invalidation is per-
formed by the client at cache-level.

. Log. The logs maintained at the server keeps track of
individual object update information (using (id,TS)
pairs) for up to half the database size, i.e., the size of
the log is fixed but the update history is variable.

Let the number of database objects be N � 2n. In the
BS algorithm, the invalidation report reflects updates for
n different timesÐTn; Tnÿ1; . . . ; T1, where Ti < Tiÿ1 for
1 < i � n. The report comprises n binary bit-sequences,
each of which is associated with a timestamp. Each bit
represents a data object in the database. A ª1º bit in a
sequence means that the data object represented by the bit
has been updated since the time specified by the timestamp
of the sequence. A ª0º bit means that the object has not been
updated since that time. The n bit-sequences are organized
as a hierarchical structure with the highest level (i.e., bit-
sequence Bn) having as many bits as the number of objects
in the database and the lowest level (i.e., bit-sequence B1)
having only two bits. For the sequence Bn, as many as
half of the N bits (i.e., N=2) can be set to ª1º to indicate
the N=2 objects that have been updated (initially, the
number of ª1º bits may be less than N=2). The timestamp
of the sequence Bn is Tn. The next sequence in the
structure, Bnÿ1, has N=2 bits. The kth bit in Bnÿ1

corresponds to the kth ª1º bit in Bn, and N=22 bits can
be set to ª1º to indicate that N=22 objects have been
updated since Tnÿ1. In general, for sequence Bnÿi,
0 � i � nÿ 1, there are N=2i bits and the sequence will
reflect that N=2i�1 objects have been updated after the
timestamp Tnÿi. The kth bit in sequence Bnÿi corresponds to
the kth ª1º bit in the preceding sequence (i.e., Bnÿi�1). An

796 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 4. The Dual-Report Cache Invalidation scheme.

additional dummy sequence B0, with timestamp T0, is used
to indicate that no object has been updated after T0.

In general, N does not need to be a power of two and the
number of lists can also be any value other than n.
Furthermore, the list associated with timestamp Ti does
not need to reflect the updates for half the number of objects
in the list associated with Ti�1, 1 � i � nÿ 1. However, for
simplicity, we have chosen to follow the approach proposed
in [10].

The Bit-Sequences structure is broadcast to clients
periodically. The protocol for invalidating the cache is
shown in Fig. 5.

Example 2. Fig. 6 shows the invalidation report represented
by the Bit-Sequences structure for our running example.
As shown, the first level (B4) has 16 bits, eight of which
have been set to ª1º. These eight objects are the most
recently updated objects. The timestamp for B4 is 18.
Similarly, bit sequence B1 has two bits, reflects the most
recently updated object 8, and has a timestamp of 32.

Assume that the client receives this invalidation report
when it submits its query for objects 5 and 8. Suppose the
last invalidation report received by the client before it
disconnects is at time 31. Since the client's cache content
is last valid at time 31, it should use the sequence B2 to
invalidate its cache. To locate those objects denoted by
the two ª1º bits, the client will check the sequences
B2ÐB4. This is accomplished as follows: To locate the
object corresponding to the second bit that is set to ª1º in
B2, the client has to check the second ª1º bit in B3. Since
the second ª1º bit in B3 is in the fifth position, the client
will have to examine the 5th ª1º bit in B4. Because B4 is
the highest bit-sequence and the 5th ª1º bit is in the
eighth position, the client can conclude that object 8 has
been updated since time 31. Similarly, the client can
determine that the 12th object has also been updated
since that time. Therefore, both objects will be invali-
dated by the client. Since the client requests for objects 5
and 8, object 5 remains valid and can be used to answer
the query while the request for the invalid object 8 has to
be submitted to the server.

4.3 Selective Dual-Report Cache Invalidation (SDCI)

Schemes DRCI and BS have been separately shown to be
effective in salvaging the cache content (though a compara-
tive study has not been performed). However, they are both
not energy efficient as there is no mechanism to support
selective tuning of the invalidation report and the invalida-
tion is cache-based. In other words, the entirety of the report
has to be downloaded by the clients and every object in the
report examined. The next two algorithms that we shall see
will address this shortcoming.

The first scheme, the Selective Dual-Report Cache
Invalidation scheme (SDCI), is essentially the same as DRSI
except that the report is organized to facilitate selective
tuning and the invalidation is query-level-based. Unlike
DRCI, SDCI organizes the pair of invalidation reports (the

TAN ET AL.: AN EVALUATION OF CACHE INVALIDATION STRATEGIES IN WIRELESS ENVIRONMENTS 797

Fig. 5. The Bit-Sequences scheme.

Fig. 6. The Bit-Sequences structure.

OIR and GIR) as follows: First, the GIR is broadcast before
the OIR. Second, the entries in the OIR are ordered and
broadcast based on the groups, i.e., updates in the same
group will appear together. A partition symbol will
separate continuous groups. Third, an additional ªpointerº
is added to each element of the GIR and this pointer reflects
the starting position of the objects within this group in the
OIR. Thus, the GIR consists of triplets of the form (group-id,
TS, ptr) where group-id represents the group identifier, TS
is the timestamp of the most recent update (excluding those
in the OIR) of the group, and ptr is an offset to the starting
position of the objects in OIR corresponding to the group
identified by group-id. Fig. 7 shows the organization of the
invalidation reports.

As noted, the invalidation process is query-level-based.
Thus, at the client, it operates as follows: For each group
queried, it first selectively tunes to the GIR and keeps the
pointers of interested groups (i.e., those in query) in
memory. Once all the desired groups are determined, it
selectively tunes to the respective position in the OIR using
the pointers. Thus, only the desired groups and objects are
examined. The functionality of the improved algorithm
SDCI is as shown in Fig. 8.

4.4 Bit-Sequences with Bit Count

The second energy efficient scheme that we will look at is
the Bit-Sequences with Bit Count (BB) method. Like the Bit-
Sequences approach, it comprises a set of bit sequences
organized in a hierarchical manner. However, only the
relevant bits need to be examined. This is achieved by
associating each bit sequence with a bit count array.

Let N be the number of objects in the database.
Furthermore, let bt denote the size of a timestamp. We
also assume that a query Q returns the set of objects
fO1; O2; . . . ; Oqg as answers. Furthermore, we assume that
the objects are already ordered in the same manner as the
information reflected in the invalidation report, i.e.,
information for O1 will be received before information for
O2 and so on. If the objects are not ordered accordingly,
then they can be sorted. For simplicity, we ignore this
sorting phase in our discussion. We also denote the
corresponding timestamps when these objects are last valid
(in the client cache) as t1; t2; . . . ; tq, respectively.

As in the BS scheme, the BB structure comprises a set
of n bit sequences: Sequence Bn has a timestamp Tn that
indicates that updates after Tn are reflected and comprises
N bits, half of which are set to ª1º; sequence Bnÿ1 has
timestamp Tnÿ1 and N=2 bits, of which N=22 bits are set to
ª1º and so on. In fact, the content of the bit sequences are
exactly the same as those of the BS scheme. Like the
BS scheme, if the bit sequence Bnÿi is to be used to

invalidate the cache, then the sequences Bnÿi; Bnÿi�1; . . . ; Bn

may have to be examined. However, the proposed BB
strategy adopts a top-down examination of the sequences,
i.e., from Bn to Bnÿi, rather than the bottom-up approach
(i.e., Bnÿi to Bn) of BS scheme. Moreover, for some valid
objects, it may not be necessary to examine all the sequences
from Bn to Bnÿi as it may be possible to determine their
validity and terminate the search before sequence Bnÿi.
Furthermore, the proposed scheme only examines the
relevant bits in each sequence. As the kth ª1º bit in Bnÿi
corresponds to the kth bit in Bnÿiÿ1, we need a mechanism
that can count the number of ª1º bits in a sequence, say
Bnÿi, without examining the entire sequence. Before we
discuss this mechanism, let us illustrate how selective
tuning can be facilitated with such a mechanism. To
validate an object O, the client first identifies the bit

798 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 7. Organization of the invalidation reports in SDCI.

Fig. 8. The Selective Dual-Report Cache Invalidation scheme.

sequence that should be used. This is accomplished by
examining the set of timestamps. Suppose this is sequence
Bnÿi. This means that we need to examine sequence Bn,
followed by Bnÿ1, and so on until Bnÿi. From object O, the
client can selectively tune to the corresponding bit in Bn

(without scanning the entire Bn). If the bit is set to ª0º, then
the object is valid (since object O will not be found in any
subsequent sequences Bnÿ1, Bnÿ2, . . .); otherwise, the client
determines (we shall discuss shortly how this can be done)
the number of ª1º bits from the beginning of Bn to the bit
corresponding to O. From this number, it can again
selectively tune to Bnÿ1 and examine the corresponding
bit of O in Bnÿ1. Again, if the bit is ª0º, then the object O is
valid and the search terminates; otherwise, its position in
the Bnÿ2 is determined and this process is repeated until
sequence Bnÿi. We can terminate when we encounter
ª0º bit at any of the sequences from Bn to Bnÿi. If the
relevant bit at Bnÿi is ª1º, then the object is invalid;
otherwise, it is valid.

Now, the mechanism to facilitate selective tuning is
simple. We associate with each bit sequence a bit count

array, all of which have entries that are j bits. For bit
sequence Bnÿi, 0 � i � nÿ 1, the sequence is partitioned
into packets of 2j bits. In other words, there are d�N=2i�=2je
packets. In general, for sequence Bnÿi, the number of array
entries is d�N=2i�=2je. (We note that sequences with fewer
than j bits do not need to be associated with a bit count
array as all bits have to be examined anyway.) Essentially,
the kth entry in the bit count array of sequence Bnÿi
represents the number of ª1º bits that have been set for the
kth packet in the sequence. Selective tuning is achieved as
follows: We know for which bit/position in a sequence we
should be looking. Let packet i contain the bit in which we
are interested. From the bit array count, we can determine
the number of ª1º bits that have been set for packets 1 to
iÿ 1. The client can then tune into the ith packet and scan
the ith packet until the relevant bit. In this way, we will be
able to compute the number of ª1º bits!

To check the validity of the answer objects to query Q,
the client employs the protocol shown in Fig. 9.

The invalidation report is organized as follows: The
counter is broadcast first, the timestamps are broadcast

TAN ET AL.: AN EVALUATION OF CACHE INVALIDATION STRATEGIES IN WIRELESS ENVIRONMENTS 799

Fig. 9. The Bit-Sequences with Bit Count scheme.

next, followed by the bit count arrays for sequences
Bn;Bnÿ1; . . . , a n d , f i n a l l y , t h e b i t s e q u e n c e s
Bn;Bnÿ1; . . . ; B1.

Example 3. We illustrate scheme BB with the same running
example in Fig. 3. The organization of the invalidation
report for BB is shown in Fig. 10. In this example, each bit
count array entry keeps track of the number of ª1º bits
set for four objects. Since there are 16 objects in the
database, there are four entries in the bit count array
corresponding to B4, two entries in B3's bit count array,
and one entry in B2's bit count array. We note that B1 is
not associated with a bit count array. As before, assume
that a query requests for objects 5 and 8 whose cached
timestamps are, respectively, 31 and 27. From the
timestamps in the invalidation report, the client knows
that it needs to check B2 for the validity of object 5, and
B3 for the validity of object 8. The client first determines
which two bits in B3 correspond to the two queried
objects. This is done as follows: As both objects 5 and 8
are in the same packet, from the first bit count array
entry (of B4), the client knows that there is only one ª1º
bit among the first four objects in the bit-sequence B4.
Thus, it will tune to the beginning of the second packet of
B4 and examine the first bit (in the second packet) till the
fourth bit. Since the first bit corresponds to object 5 and it
is set to ª1º, the client knows that object 5 is the second
bit in B3. Similarly, the client can determine that object 8
is the fifth bit in B3. For object 5, the client examines the
corresponding bit in B3 which has been set to ª0º
indicating that the object is valid. For object 8, the client
first examines the bit count array for B3 and knows that
the first entry contains a value of 1. By examining the
first bit of the second packet of B3, it determines that the
bit corresponding to object 8 is set to ª1º. This also means
that object 8 can be found in the second bit of B2. It then
examines the second bit of B2 and notes that object 8 is
invalid.

5 A PERFORMANCE STUDY

We conducted extensive studies based on a simulation
model. Four schemes are studied in this simulation: Dual-
Report Cache Invalidation (DRCI) and Bit-Sequences (BS)

and their energy-efficient counterparts Selective Dual-
Report Cache Invalidation (SDCI) and Bit-Sequences with
Bit-Count (BB). Earlier work has shown that BGI, a variation
of DRCI, is more energy efficient than GCORE without
sacrificing the access time performance, so we did not
evaluate the performance of GCORE here [15]. The schemes
are evaluated based on two metrics, the access time and
energy consumption. The access time also serves to indicate
the utilization of wireless bandwidth. The energy consump-
tion contains three components: The energy consumed on
cache invalidation, the energy consumed on uplink requests
and the energy consumed to download the desired data. In
our study, these three components are measured by the
energy expended to examine the invalidation report, the
energy consumed to transmit queries on objects that are not
valid or in the cache, and the energy to receive the objects.
Furthermore, the energy expended on these components is
expected to be proportional to the amount of data received/
transmitted. Thus, for simplicity, we use the amount of data
received/transmitted as an indication of the energy
consumption. The access time is calculated in seconds
while energy is measured in units of data received/
transmitted. A unit is defined as the energy consumed on
receiving 1K-bits of information and, based on the findings
in [5], transmitting data is assumed to be 10 times more
power consuming than receiving data.

5.1 The Simulation Model

Fig. 11 shows our simulation model. The model comprises
several modules: clients, uplink channel, downlink channel,
and server. Clients submit requests to the server via the
uplink channel and receive results from the server via the
downlink channel. When a client reconnects, it employs an
invalidation scheme to invalidate its cache content and
submits query objects accordingly. In order to focus on the
cache invalidation effect, we assume that a cache miss is
only resulted from invalidation. In other words, we assume
that all the queries in a mobile computer reference a fixed
subset of objects that are initially cached in its local storage.
The model has been implemented using a C-based simula-
tion package [17].

Table 2 shows the notations and default parameter
settings used in the simulation. The database has a total of

800 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 10. The Bit-Sequences with Bit Count method.

D objects. The size of each object is O bits, with Oid bits

being used for the object id. Each timestamp is Tid bits.

�1 percent of the data objects are in the hot update set

while (100ÿ �1) percent of them belong to the cold update

set. �2 percent of the data objects are in the hot demand set

while (100ÿ �2) percent of them belong to the cold demand

set. Data in the hot update and hot demand sets are

randomly chosen from the D objects. �1 percent of the

updates are focused on the hot update set while the

remaining (100ÿ �1) percent are on the cold update set. The

number of objects requested per query is uniformly

distributed in the interval �Q=2; 3Q=2�. The objects are

picked such that �2 percent of them are from the hot

demand set and the rest are from the cold demand set. The

query arrival rate follows a Poisson distribution with a

mean of �q while the update arrival rate follows a Poisson

distribution with a mean of �u. Clients disconnection time is

assumed to follow a negative exponential distribution

TAN ET AL.: AN EVALUATION OF CACHE INVALIDATION STRATEGIES IN WIRELESS ENVIRONMENTS 801

Fig. 11. Mobile communication model.

TABLE 2
System and Workload Parameters

with a mean of �. The update reports are broadcast
every L seconds. Finally, the bandwidth for the down-
link and uplink channels are given by Cdown and Cup,
respectively. For schemes that support selective tuning,
there is an additional link information of P bits. Most of
the settings used are similar to those used in previous
work [3], [15], [18].

For the dual-report-based approaches, the database is
further organized into N groups, each with G objects. Each
group has an additional group id information that takes
Gid bits. The update broadcast window is given by w. For
scheme SDCI, the separators between groups are each s bits.

For the bit-sequences approaches, each object is also
assigned a unique number (while the unique value can be
used as the object id, we opt to treat them as two separate
attributes) that corresponds to its position in the bit
sequence. The unique number is Uid bits.

5.2 Effect of Query Interarrival Time

In this experiment, we study the number of concurrent
users that can be supported (i.e., the scalability). This is
important as the larger the number of queries the environ-
ment can support, the better the scheme is. We vary the
query arrival time from 0.1 to 20 seconds. As reference, we
also modeled a simple straightforward server-only invalida-
tion strategy where the clients query the server for the
validity of all objects touched by the query. We shall refer to
this scheme as the server invalidation scheme (denoted SI).
The results of this study is shown in Fig. 12.

We shall first look at the results of the four schemes: BB,
BS, DRCI, and SDCI. For the four schemes, the access time
decreases with increasing query arrival time. This follows
from the fact that with larger arrival time, the number of
concurrent queries in the system is smaller and the
bandwidth is sufficient to handle these queries. However,
when the query arrival time is small, the downlink channel
becomes congested as more queries are issued. The
contention for the limited bandwidth leads to the higher

access time. We also note that the energy-efficient schemes
are slightly worse than their counterparts that do not
facilitate selective tuning, i.e., BB is worse than BS and SDCI
is worse than DRCI. As BB and BS reflects the same update
information in the invalidation reports, this result is
expected by virtue of the fact that the report size of the
BB scheme is larger. The same reason applies to schemes
SDCI and DRCI. We also observe that the Bit-Sequences
methods are worse than the Dual-Report approaches. This
is because the report size of the Bit-Sequences methods is
larger than that of the Dual-Report approaches, thus
consuming more bandwidth (for this experiment, the
report size of the Bit-Sequences methods is more than
twice as large).

In terms of energy consumption, we note that all the
schemes are largely unaffected by query arrival time. This is
so since the energy consumption comes from examining the
invalidation report, submitting the queries and receiving
the results of invalidated objects, and all these components
are independent of the query arrival time. As expected, the
energy efficient schemes outperform their counterparts by a
wide margin (more than 10 times more energy efficient).
Since the BB scheme has to examine the bit count arrays, it
consumes more energy than the SDCI scheme.

From the access time result, we note that scheme SI
performs best when the interarrival time is large. This is
because the system load is light. More importantly, all the
other four approaches have a smaller effective downlink
bandwidth (part of the bandwidth is used to broadcast the
invalidation reports) compared to scheme SI. However,
when the interarrival time becomes small, scheme SI's need
to submit the requested objects' information results in the
server and the uplink channel becoming a bottleneck very
quickly. The other approaches, on the other hand, only
submit invalid objects' information. In terms of energy
consumption, we note that scheme SI's energy consumption
is fairly good. In fact, it is the best among all the schemes.
While it incurs more energy in transmitting objects'

802 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 12. Effect of query arrival time. (a) Access time. (b) Energy consumption.

information, it does not need to examine invalidation
reports. The net effect in this experiment is an overall
better performance.

This paper focuses on the broadcast-based schemes and,
since scheme SI is not expected to scale well, we shall not
study it further here. However, we would add that both
methods may be deployed in practiceÐbroadcast-based
approaches to be used for less frequently updated objects
while the method SI is used for the remaining objects.

5.3 Effect of Update Arrival Time

In this experiment, we study the effect of update
arrival time by varying the update arrival time from
0.1 to 20 seconds. Fig. 13 shows the effect of update
time on access time and energy consumption. First, we
observe that the relative performance between BS and BB
and DRCI and SDCI, is similar to those results presented
earlier, i.e., BS and DRCI are respectively slightly better
than BB and SDCI in terms of access time, but are
respectively less energy efficient than their counterparts in
terms of energy consumption.

Second, for the Bit-Sequences-based approaches, we note
that as the update time increases, the access time and
energy consumption also reduce. A shorter update time
means more objects being updated in a shorter timespan.
As a result, the difference between timestamps in the
invalidation report is small. This implies that updated
objects associated with a smaller timestamp value (those
further away from the current time) are the ones that the
client is likely to be looking out for. Recall that in the
invalidation report, a smaller timestamp would be asso-
ciated with a larger number of updated objects. Thus, more
objects are being invalidated and the client needs to refresh
more objects. This explains why both the access time and
energy consumption are higher. On the other hand, a longer
update time means that the difference between timestamps
in the report is large and, so, fewer objects are likely to be
invalidated. Thus, the access time and energy consumption
are smaller compared to that of shorter update time.

Third, for the Dual-Report-based approaches, we see a
slightly different picture. There exists a certain update rate
at which the system performs best, i.e., too low or too high
an update rate can degenerate the system performance. A
high update rate implies a high probability of cache
invalidation and, also, a larger update history for a fixed
w. This results in a large OIR that consumes the downlink
bandwidth and, hence, the poor performance. On the other
hand, when the update rate is low, the probability of false
invalidation increases as the updated object may no longer
appear in the OIR but reflected in the GIR.

Finally, in terms of energy consumption, we note that the
relative performance between the four schemes remains
largely the same. For the Dual-Report schemes, we note that
there is also an ªoptimalº point. This follows from the same
reasons as the case of the access time performance.

5.4 Effect of Disconnection Time

A user's behavior is difficult to predict especially in a
mobile environment. A mobile client may or may not
disconnect from the wireless network and, if it should, it
may disconnect with a different duration each time. As we
mentioned before, disconnection is one of the most
important factors that complicates the problem of cache
invalidation. Thus, for a scheme to be practical and useful, it
should be robust to the clients' disconnection behaviors. In
this experiment, we study how disconnection time will
affect the performance of the four schemes. Fig. 14 shows
the results.

As shown in Fig. 14a, all the schemes are largely
unaffected by disconnection time of less than 1,000 seconds.
Even for disconnection time of 10,000 seconds, the schemes
degrade no more than 30 percent. The degradation is
expected since a longer disconnection time implies more
objects being invalidated. As in earlier experiments, BB is
inferior to BS and SDCI is worse than DRCI. Besides the
larger report size of the Bit-Sequences methods compared to
the Dual-Report approaches, there is another reason: When
the disconnection time is small, the OIR of the Dual-Report

TAN ET AL.: AN EVALUATION OF CACHE INVALIDATION STRATEGIES IN WIRELESS ENVIRONMENTS 803

Fig. 13. Effect of update arrival time. (a) Access time. (b) Energy consumption.

methods can be used to invalidate stale records and false

invalidations are minimal; when the disconnection time is

high, all methods have about the same amount of

invalidations.
Fig. 14b shows the energy consumption of the various

schemes. As shown, all the schemes' energy consumption

increases with disconnection time. This is because as the

disconnection time lengthens, the number of invalidated

objects increases, which means that more energy has to be

expended to refresh these objects. As expected, the energy

efficient schemes outperform their counterparts by a wide

margin and the BB scheme is less energy efficient than the

SDCI scheme.

5.5 Effect of Update Skew

Another factor that can affect the effectiveness of the
caching schemes is the update skew, i.e., how the updates
are directed at the database objects. In the previous
experiments, we have used the default of 90 percent of
the updates directed at 10 percent of the database objects. In
this experiment, we shall see the effect of update skew on
our schemes. For simplicity, we shall restrict our study to
update skew of the form �ÿ �, where � percent of the
updates are directed at � percent of the database and
�� � � 100%. We experimented with � values from
50 percent to 95 percent. Intuitively, as � increases, a
cache invalidation scheme should improve in performance
since fewer data are being invalidated. This is confirmed in

804 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Fig. 14. Effect of disconnection time. (a) Access time. (b) Energy consumption.

Fig. 15. Effect of update skew. (a) Access time. (b) Energy consumption.

our results shown in Fig. 15. We note that for all the

schemes, the access time and energy consumption increase

as � decreases. The relative performance remains largely

the same.

5.6 Effect of Demand Skew

Another factor that can affect the effectiveness of the

caching schemes is the demand skew, i.e., the set of objects

that are being queried. In the previous experiments, we

have used the default of 90 percent of the query objects are

directed at 10 percent of the database objects. In this

experiment, we shall see the effect of demand skew on our

schemes. As in the experiments on update skew, we

experimented with demand skew of the form �ÿ �, where

� percent of the queries are directed at � percent of the

database and �� � � 100%. We experimented with the

demand skew with � values from 50 percent to 95 percent.

Fig. 16 shows the results. Like the update skew scenario, as

� increases, a cache invalidation scheme should improve in

performance. This is because the ªworking setº (objects

queried) is small and, therefore, the updates reflected in the

invalidation report are largely from objects not in the

working set. In other words, the invalidation rate is

expected to be low. Thus, both the access time and energy

consumption for all schemes increase (slightly) as the

demand skew decreases. The relative performance between

TAN ET AL.: AN EVALUATION OF CACHE INVALIDATION STRATEGIES IN WIRELESS ENVIRONMENTS 805

Fig. 16. Effect of demand skew. (a) Access time. (b) Energy consumption.

Fig. 17. Effect of channel bandwidth. (a) Uplink channel. (b) Downlink channel.

the algorithms are largely the same as that in previous
experiments.

5.7 Effect of Channel Bandwidth

In this set of experiments, we study the effect of the channel
bandwidth on the caching schemes. Since the energy
consumption is not affected by the channel bandwidth,
we shall only present the result for the access time. We first
study how the uplink channel bandwidth may affect the
performance of the caching schemes. We vary the uplink
channel bandwidth from 8 kbps to 20 kbps. The access time
result, as shown in Fig. 17a, indicates that the various
schemes are largely unaffected by the uplink channel
capability (at least not in the range we used in the study).
Upon investigation, we note that this is because in our
experiments, the uplink channel bandwidth is not a bottle-
neck. Moreover, since the schemes studied are largely
broadcast-based schemes, the uplink cost to submit requests
are very small. As such, increasing the uplink channel
bandwidth did not reap much gain.

Next, we vary the downlink channel bandwidth from
100 kbps to 2 Mbps to study its effect on the performance of
the various schemes. The result of this study is shown in
Fig. 17b. As expected, increasing the downlink channel
bandwidth can reduce the access cost significantly. It is also
clear that the Bit-Sequences-based strategies benefit more
from a larger channel downlink bandwidth.

The relative performance of the algorithms remains
largely the same as in earlier experiments: BS is slightly
better than BB, DRCI slightly outperforms SDCI, and the
Dual-Report-based schemes are superior to the Bit-
Sequences schemes.

6 CONCLUSION

In this paper, we have looked at the design of energy
efficient cache invalidation schemes in a wireless comput-
ing environment. We have identified the issues that have to
be considered in designing cache invalidation strategies.
From the existing solutions to these issues, a large set of
cache invalidation schemes can be constructed. We eval-
uated the performance of four representative algorithms.
Two of the schemesÐthe Bit-Sequences (BS) scheme and
the Dual-Report Cache Invalidation (DRCI) schemeÐare
variations of existing schemes. The two proposed
schemesÐthe Bit-Sequences with Bit Count (BB) scheme
and the Selective Dual-Report Cache Invalidation (SDCI)
schemeÐare respectively extensions of BS and DRCI that
employ selective tuning to conserve energy. Our extensive
performance study showed that the two proposed schemes
are not only effective in salvaging the cache content but
consume significantly less energy than their counterparts.
While the Selective Dual-Report Cache Invalidation scheme
performs best in most cases, it is inferior to the Bit-
Sequences with Bit-Count scheme under high update rates.

We plan to extend this work in several directions.
First, all the schemes studied require the clients to wait
for the invalidation reports before their cache content can
be validated. We plan to explore schemes that minimize
this waiting time. Second, wireless channels are error
prone. As such, the reports received may be corrupted.

We are currently looking at how to handle errors in such
an environment. Third, we plan to investigate how
existing indexing schemes on broadcast data can be
adapted for indexing invalidation report. Finally, some
recent work has examined integrated schemes that
combine multiple existing strategies [6] and adaptively
broadcast different invalidation reports according to the
runtime status. We would like to see how our schemes
can be integrated as well.

REFERENCES

[1] B.R. Badrinath and P. Sudame, ªTo Send or Not to Send:
Implementing Deferred Transmissions in a Mobile Host,º
Proc. 16th Int'l Conf. Distributed Computing Systems, pp. 327-
333, May 1996.

[2] D. Barbara and T. Imielinski, ªSleepers and Workaholics: Caching
in Mobile Distributed Environments,º Proc. 1994 ACM-SIGMOD
Int'l Conf. Management of Data, pp. 1-12, June 1994.

[3] J. Cai and K.L. Tan, ªEnergy Efficient Selective Cache Invalida-
tion,º Wireless Networks, vol. 5, no. 6, pp. 489-502, 1999.

[4] J. Cai, K.L. Tan, and B.C Ooi, ªOn Incremental Cache Coherency
Schemes in Mobile Computing Environment,º Proc. 13th Int'l Conf.
Data Eng., pp. 114-123, Apr. 1997.

[5] G.H. Forman and J. Zahorjan, ªThe Challenges of Mobile
Computing,º Computer, vol. 27, no. 6, Apr. 1994.

[6] Q. Hu and D. Lee, ªAdaptive Cache Invalidation Methods in
Mobile Environments,º Proc. Sixth Int'l Symp. High Performance
Distributed Computing, 1997.

[7] T. Imielinski and B.R. Badrinath, ªData Management for Mobile
Computing,º SIGMOD RECORD, vol. 22, no. 1, pp. 34-39,
Mar. 1993.

[8] T. Imielinski and B.R. Badrinath, ªMobile Wireless Computing:
Challenges in Data Management,º Comm. ACM, vol. 37, no. 10,
Oct. 1994.

[9] T. Imielinski, S. Viswanathan, and B.R. Badrinath, ªEnergy
Efficient Indexing on Air,º Proc. 1994 ACM-SIGMOD Int'l Conf.
Management of Data, pp. 25-36, June 1994.

[10] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso, ªBit-Sequences:
An Adaptive Cache Invalidation Method in Mobile Client/Server
Environments,º Mobile Networks and Applications, vol. 2, no. 2,
pp. 115-127, 1997.

[11] J. Jing, A. Helal, and A. Elmagarmid, ªClient-Server Computing in
Mobile Environments,º ACM Computing Surveys, vol. 31, no. 2,
pp. 117-157, June 1999.

[12] W.C. Lee and D. Lee, ªUsing Signature and Caching Techniques
for Information Filtering in Wireless and Mobile Environ-
ments,º J. Distributed and Parallel Databases, vol. 4, no. 3, pp. 205-
227, 1996.

[13] P.V. Argade, S. Aymeloglu, A.D. Berenbaum, M.V. DePaolis Jr.,
R.T. Franzo, R.D. Freeman, D.A. Inglis, G. Komoriya, H. Lee, T.R.
Little, G.A. MacDonald, H.R. Mclellan, E.C. Morgan, H.Q. Pham,
G.D. Ronkin, R.J. Scavuzzo, and T.J. Woch, ªHobbit: A High-
Performance, Low-Power Microprocessor,º Proc. COMPCON
'93, Int'l Computer Conf., pp. 88-95, Feb. 1993.

[14] K.L. Tan and B.C. Ooi, Data Dissemination in Wireless Computing
Environments. Kluwer Academic, 2000.

[15] K.L. Tan and J. Cai, ªBroadcast-Based Group Invalidation: An
Energy Efficient Cache Invalidation Scheme,º Information Sciences,
vol. 100, nos. 1-4, pp. 229-254, Aug. 1997.

[16] K.L. Tan and J.X. Yu, ªEnergy Efficient Filtering of Nonuniform
Broadcast,º Proc. 16th IEEE Int'l Conf. Distributed Computing
Systems, pp. 520-527, May 1996.

[17] K. Watkins, Discrete Event Simulation in C. McGraw-Hill, 1993.
[18] K.L. Wu, P.S. Yu, and M.S. Chen, ªEnergy-Efficient Caching for

Wireless Mobile Computing,º Proc. 12th Int'l Conf. Data Eng.,
pp. 336-343, Feb. 1996.

806 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 8, AUGUST 2001

Kian-Lee Tan received the BSc (Hons) and
PhD degrees in computer science from the
National University of Singapore, in 1989 and
1994, respectively. He is currently an associate
professor in the Department of Computer
Science, National University of Singapore. His
major research interests include multimedia
information retrieval, wireless information retrie-
val, query processing, optimization in multi-
processor and distributed systems, and

database performance. He has published more than 80 conference/
journal papers in international conferences and journals. He has also
coauthored three books. He is a member of the ACM and of the IEEE
Computer Society.

Jun Cai received the BSc and MSc degrees
in computer science from Fu Dan University,
PRC, in 1989 and 1992, respectively, and the
PhD degree in computer science from the
National University of Singapore in 1998. He is
currently a senior engineer with the Philips
Electronics Singapore Pte Ltd.

Beng Chin Ooi received the BSc and
PhD degrees in computer science from
Monash University, Australia, in 1985 and
1989, respectively. He was with the Institute of
Systems Science from 1989 to 1991 before
joining the Department of Information Systems
and Computer Science, National Unviersity of
Singapore. His research interests include data-
base performance issues, multimedia databases
and applications, high-dimensional databases,

and GIS. He is the author of a monograph entitled Efficient Query
Processing in Geographic Information Systems (Springer-Verlag, LCNS
#471, 1990) and a coauthor of three other books. He has published 70
conference/journal papers and served as a program committee member
for a number of international conferences (including ACM SIGMOD,
VLDB, EDBT, DASFAA) and serves as an editor for Geoinformatics,
International Journal of GIS, and Journal on Universal Computer
Science. He is a member of the ACM and of the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

TAN ET AL.: AN EVALUATION OF CACHE INVALIDATION STRATEGIES IN WIRELESS ENVIRONMENTS 807

