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ABSTRACT 
Caching can reduce expensive data transfers and improve the 
performance of mobile computing. In order to reuse caches 
after short disconnections, invalidation reports are broadcast to 
clients to identify outdated items. Detailed reports may not be 
desirable because they can consume too much bandwidth. On 
the other hand, false invalidations may set in if the accurate 
timing of updates is not provided. In this research, we aim to 
reduce the false invalidation rates of cached items. Based on 
our analysis, false invalidation rates are closely related to 
clients’ reconnection patterns (i.e., the distribution of the time 
spans between disconnections and reconnections). We show 
that in theory for any given reconnection pattern, a report with a 
minimal false invalidation rate can be derived. For practical 
uses, we propose to capture the reconnection pattern by 
sampling and develop a method to compose a near-optimal 
invalidation report. This method is simple and fast. 
Experimental results have confirmed that our method is indeed 
more effective in reducing the false invalidation rate than 
others. 
 

Categories and Subject Descriptors 
H.1.1 [Systems and Information Theory]: Information theory, 
Value of information. 
 

General Terms 
Algorithms, Design, Theory. 
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1. INTRODUCTION 
It was predicted [3] that in a mobile wireless computing 
environment of the future, massive numbers of low powered 
palmtop machines would query databases over the wireless 
communication channels. Technology progresses so fast that it 
is now the reality. Numerous such mobile databases are in use 
today, including mobile surgical databases [23], stock 
information systems, and a variety of general purposed pocket 
databases for small business and personal use. In a mobile 
computing environment [5], a set of database servers 
disseminates information via wireless channels to mobile 
clients [24]. Clients can relocate and connect to different 
database servers at different times. 
 
Due to the narrow bandwidth of wireless channels, 
communication between the clients and servers ought to be 
minimized to reduce contentions. Caching of frequently 
accessed data at mobile clients has been shown to be a very 
effective mechanism in handling this problem. Other benefits of 
caching include energy savings (by reducing the amount of data 
transferred) and cost savings (especially if one is billed on a 
pay-per-packet basis). 
 
It is generally assumed that updates to database are broadcast 
without much delay to the clients (by the server). Therefore, as 
long as the clients stay connected, their caches are current. 
However, in a mobile database environment, clients are 
frequently disconnected due to some battery power saving 
measures [12] or unpredictable failures. Discarding entire 
caches after short disconnections can be wasteful as many data 
items in the caches may still be valid; this is especially true for 
a mobile database environment, where the bandwidth is narrow 
and battery power (of clients) is limited. Therefore, an efficient 
schemes which helps in power saving and also  for the reuse of 
cache is much needed [20]. 
 
Many caching coherence algorithms have been proposed for 
conventional client-server architectures [7, 10, 11, 25, 27]. 
There have been some researches on cache management for 
mobile computing published recently in the literature [2, 6, 8, 9, 
17, 18, 19, 21, 28, etc.]. To reuse the caches after short 
connections, a common approach is to broadcast invalidation 
reports to clients to help identifying outdated items in the 
caches [3, 15]. Detailed reports can be long, consuming much 
bandwidth and thus may not be desirable. On the other hand, 
without detailed timing information, cached items can be 
falsely invalidated. In this paper, we continue the discussion of 
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how to compose a report with a minimal false invalidation rate 
[13]. We have observed that false invalidation rates have to do 
with clients’ reconnection patterns (i.e., the distribution of the 
time spans between disconnection and reconnection). By 
applying nonlinear system’s approximation method to the 
clients’ reconnection pattern, we showed that a report with a 
minimal false invalidation rate can be derived. For practical 
uses, we devise a method that yields a near-optimal invalidation 
report that can be computed efficiently. Simulation results have 
also confirmed that our near-optimal method is fast and 
effective in reducing false invalidations. 
 
The rest of the paper is organized as follows. In Section 2, we 
review the mobile computing environment and research on 
cache management for such an environment. Section 3 reviews 
the compositions of invalidation reports to lay down the 
groundwork for our approach. In Section 4, we propose the 
algorithm to take clients’ reconnection patterns into account in 
the design of invalidation reports. Unfortunately, deriving such 
optimal reports requires a priori knowledge of the reconnection 
patterns and much computation. Therefore, we propose to 
compose a near-optimal report in Section 5. The solution is 
practical, dynamic, fast, and agile. Simulation results are 
presented in Section 6, and we conclude our study in Section 7. 

 
2. PRELIMINARY 
 
2.1 A Mobile  Computing Architecture 
With networks of powerful workstations becoming 
commonplace, client-server software architectures efficiently 
provide access to shared services and resources [22]. In a 
client-server architecture, the database resides at the server and 
is accessed by application programs running on the clients’ 
workstations. A client communicates with the database server 
through message passing. It, however, increases the cost of 
each data request. A solution is to reduce the number of 
requests by caching a portion of the database at the client side. 
  
In a mobile client/server computing environment, clients no 
longer are required to remain in fixed positions. Figure 1 shows 
a general architecture for a mobile client-server computing 
paradigm that is similar to [14]. It consists of two distinct sets 
of entities: a large number of mobile client hosts (MCHs) and 
relatively fewer but more powerful fixed hosts, which are 
connected through a wired network. MCHs usually run on 
small batteries, such as AA, while fixed hosts may have 
continuous power supplies. MCHs usually have weaker 
transmitting capability than fixed hosts. Some of the fixed 
hosts, called the MSS (Mobile Support Stations), [4] are 
equipped with a wireless interface to communicate with mobile 
client hosts, which are located within a radio coverage area, 
called a wireless cell. A cell could be a real cell as in a cellular 
communication network or a wireless local area network, which 
operates within the area of a building. In the former case, the 
bandwidth could be severely limited, supporting a data rate in 
the range of 10 to 20 Kb/sec, while in the latter, the bandwidth 
would be much higher, up to 10Mb/sec [1]. Fixed hosts can 
communicate with other hosts (mobile or fixed) via a wireless 
channel. An MCH can directly communicate with an MSS if it 
is physically located within the cell serviced by the MSS.  At 
any time, an MCH may logically belong to only one cell. A 

wireless communication channel comprises an uplink (from a 
client to the server) and a downlink (from the server to a client) 
sub channels. An MCH submits requests to the local MSS via 
an uplink channel and receives the results via a downlink 
channel. Due to the weaker transmitting capability of the 
mobile clients (as compared to the fixed hosts), an asymmetric 
communication with much smaller uplink bandwidth than 
downlink is created. Receiving messages is less costly than 
sending messages for clients.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Figure 1: A Mobile Computing Architecture 
 

2.2. Cache Management 
Caching on the client side can reduce client-server interactions, 
lessening the network traffic and message-processing overhead 
for both the servers and clients. Various cache coherence 
schemes [5, 9, 15, 16, etc.] have been developed for 
conventional client-server architectures. These algorithms are 
generally classified into two categories: the callback approach 
and the detection approach. In the callback approach, servers 
are responsible for the coherency of caches. Usually, servers 
send invalidation messages directly to clients to invalidate data 
items cached. On the other hand, in the detection approach, it is 
the clients’ responsibility to maintain the consistency.  
Clients request servers, from time to time, to validate their 
cached data. Since mobile client hosts frequently disconnect to 
conserve battery power and are frequently on the move, it is 
very difficult, for a server to keep track of the status and 
locations of the clients and the validity of cached data items. As 
a result, the callback approach cannot be easily implemented 
mobile environment. On the other hand, due to the limited 
transmission capability of mobile clients, it is not appropriate 
for clients to request information so frequently. Moreover, the 
narrow bandwidth [5] of the wireless network could be clogged 
up if a massive number of clients attempt to query the server to 
validate their caches. As a result, both the callback and 
detection approaches employed in the traditional client-server 
architecture are not readily applicable to the mobile 
environment, and new methods have to be designed. 
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There have been some researches on designing cache coherence 
schemes for mobile computing. Refresh time [11] has been 
used to determine the validity of cached items. Each item 
cached is associated with a refresh time. When the refresh time 
expires, the client contacts the server for an updated value. 
However, appropriate refresh durations are difficult to 
determine. Dynamic refresh time [10], based on the update 
frequency of the items, has been proposed as an improvement. 
However, many cached items can still be falsely invalidated 
(i.e., valid items considered as invalid) while others may be 
falsely validated (i.e., invalid items considered as valid). The 
cache coherency is not maintained effectively and consistently. 
 
The cache invalidation method was proposed [3] to minimize 
the data transfer in both directions: the downlink and the 
uplink. In this approach, the server, periodically or 
asynchronously, broadcasts reports containing items that have 
been updated. When a client receives such reports, it checks 
against its cache and invalidate. Due to its simplicity and 
efficiency, invalidation reports have been adopted in many 
recent researches [15, 17, 21, 26, etc]. 
 
Based on the timing of the invalidation messages being 
broadcast by the servers, cache invalidation methods can be 
either asynchronous or synchronous. In an asynchronous 
approach [16, 24, 26], a server broadcasts an invalidation 
message as soon as an item changes its value. A client who is 
connected can immediately invalidate these items in its cache. 
The biggest problem with the asynchronous approach is its 
unpredictable waiting time for such invalidation messages, 
which depends on the update activities on the database. Some 
improvements have been made in [20] such that even when the 
updating frequency is low, it is assured that at least one 
broadcast is sent in a certain period. 
 
In the synchronous approach [3, 24, 27], cache invalidation 
messages are broadcast periodically. That is, the server gathers 
updates for a period of time and then broadcasts these updates 
with the time of updates all in one message. Some latency could 
be induced between the actual updates and notification of the 
updates to the mobile clients. Once invalid items are found in 
the cache, the client submits an uplink request for updated 
values. The invalidation report divides the time into intervals. 
  
Despite the differences in cache coherence schemes, it is 
generally assumed that outdated items in caches are updated 
immediately. Therefore, as long as a client stay connected, its 
cache remains current. 

 
3. INVALIDATION REPORTS FOR 

RECONNECTED USERS 
While Invalidation reports can be used to invalidate outdated 
items in the cache, another use of invalidation reports is to help 
reconnected users identify outdated items without entirely 
discarding the cache after short disconnections. Discarding 
entire caches after short disconnections can be wasteful as 
many data items in the caches may still be valid; this is 
particularly important to the mobile databases, where the 
bandwidth is narrow and battery power (of clients) is limited [5, 
20]. In this research, we will focus on composing invalidation 

reports for reconnected clients. In the following, we briefly 
describe existing ways for composing invalidation reports. 
 
3.1 Broadcasting Timestamp (BT) Strategy 
It is generally assumed that a reconnected client cannot answer 
any queries until it has received the newest invalidation report 
and updated its cache. 
 
Broadcasting timestamp (BT) strategy [3] was developed based 
on the synchronous invalidation approach. The report is 
composed of a set of pairs (ID, timestamp), in which ID 
specifies an item that has been updated, and the timestamp 
indicates when a change was made to that item. Note that a 
report can only cover the activities of a limited period of time, 
called a window period. The longer the window period of a 
report, the larger the invalidation report, which can lead to a 
long latency in the dissemination of reports. Normally, for each 
item cached, the client either purges it from the cache if the 
item is reported to have been changed, or changes the item’s 
timestamp to the timestamp of the report (i.e., up to date). Note 
that the entire cache will have to be discarded if the client has 
disconnected longer than the period covered by the report. 

 
3.2 Bit-Sequence (BS) Approach  
In the above approach, updated items are indicated by IDs and 
their respective timestamps in the report. When the number of 
items updated is large, the size of the invalidation report can 
become large too. In order to save bandwidth, the bit-sequence 
(BS) approach is proposed [15]. Two techniques, the bit-
sequence mapping and the update aggregation, are used to 
reduce the size of the report. The bit-sequence mapping aims to 
reduce the naming space of the items, while the update 
aggregation aims to reduce the number of timestamps used in 
the report. Since our approach is based on the BS approach, we 
shall elaborate on this approach a little more here. 
 
In the BS approach, each data item is mapped to a bit of an N-
bit sequence, where N is the total number of data items in the 
database. That is, the nth bit in the sequence corresponds to the 
nth data item in the database. A value “1” in a bit indicates the 
corresponding data item has been changed; and “0” indicates 
otherwise. This technique reduces the naming space from 
Nlog(N) bits for N items (needed in BT approach) to N bits 
here.  
 
Another technique, called the update aggregation [15], is used 
in conjunction with the bit-sequence mapping to reduce the 
number of timestamps in a report. Instead of having one 
timestamp for each updated item, the report uses only one 
timestamp, which is the time when the report is to be delivered. 
A bit value “1” in the bit-sequence now indicates that the 
corresponding item has been updated since the timestamp of the 
report. A bit value “0” indicates no change has been made to 
that item since the timestamp. 
 
Although update aggregation reduces the size of a report, it also 
decreases the accuracy of the report. Since there is only one 
timestamp in a report, all items mentioned in the report have to 
be treated as being updated at the time indicated by the 
timestamp. As a result, valid items could be falsely invalidated; 
that is, false invalidations set in. For example, consider a client 
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disconnected at time d as shown in Figure 2. After reconnected, 
it received a report with a timestamp t. Recall that updates are 
broadcast by the server and are immediately reflected in clients’ 
caches. Therefore, the client still has valid copies for those 
items updated between t and d. Since there is no way to tell 
these items from items that  are updated after d in the report, all 
the items mentioned in the report will all have to be purged 
when the client reconnects. 

 
       Figure 2: False Invalidations 

 
In order to reduce false invalidations, a hierarchically structured 
and more detailed report has been proposed [15]. Instead of 
using just one bit-sequence (and a timestamp), n bit-sequences 
(n > 1), each is associated with a timestamp, are used in the 
report to show the update activities of n overlapping 
subintervals. Specifically, the ith sequence (0 ≤ i ≤ n-1), denoted 
by Bi, has a length of N/2i bits, where N is the number of data 
items in the database, and it records the latest N/2i+1 update 
activities. Each bit-sequence is associated with a timestamp 
T(Bi) indicating since when there have been such N/2i+1 
updates. As shown in Figure 4, the first bit-sequence B0 has a 
length of N and half of it are “1’ bits, indicating that N/2 items 
(out of N) have been updated since T(B0). The second sequence 
B1 has N/2 bits, each corresponding to a data item that has been 
updated since T(B0) (i.e.,  a “1” bits in B0). Again, half of the 
bits in B1 (i.e., N/4 bits) have the value “1”, indicating half of 
the N/2 items that have been updated since T(B0) were actually 
updated after T(B1). In general, the jth bit of the Bi corresponds 
to the jth “1” bit in the Bi-1, and half of each bit-sequence are 1’s. 
It can be observed that the total number of bit-sequences n is 
log(N). 
 
The issue of   false invalidation doesn't exist in the architecture 
[16] because the servers can directly invalidate the client caches 
or clients can query the Mobile Support Station for the 
validation of caches after reconnection. 
 
The above BS scheme has been modified in [11] to 
accommodate a variable number of updates (instead of just 
N/2) for the reported period. The modified scheme is called the 
dynamic BS. Instead of mapping an item to a bit in B0, each 
updated item is represented explicitly by its ID in the dynamic 
BS. Thus, B0 is now made of the IDs of those items that have 
been updated since T(B0). The rest of bit-sequences  (B1, … Bn-

1) are composed in the same way as in the original BS. That is, 
sequence Bi (0 < i ≤ n-1) has k/2i-1 bits, with half of them being 
“1”s, where k is the number of items updated since T(B0). 
 
4. COMPOSITION OF OPTIMAL 

HIERARCHICAL BIT-SEQUENCES 
Although Jing’s [15] hierarchically structured bit-sequences 
discussed above reduced the naming space of items and the 

number of timestamps, there is no justification for why the bit-
sequence hierarchy should be partitioned based on half of the 
updates. In fact, this “half-update-partition” scheme could favor 
some situations over others. After reconnecting at (or before) 
the current time, clients 1 and 2 can use B0 to invalidate their 
items, and client 3 will use B1. Since clients 1 and 2 
disconnected between T(B0) and T(B1), as explained earlier in 
Figure 3, all cached items updated during this period will have 
to be invalidated and some of them might be falsely 
invalidated. Thus, if there are a large number of clients like 
clients 1 and 2, who disconnected during this (likely long) 
period, there can be a lot of items falsely invalidated. On the 
other hand, since there is no client disconnected between T(Bn-

2) and T(Bn-1), the bit-sequences Bn-2 is wasted. The above 
scenario is likely to happen because the time span between 
T(B0) and T(B1) is much longer than that between T(Bn-2) and 
T(Bn-1). As observed, there are more bit-sequences covering the 
more recent but shorter periods than the earlier but longer 
periods in Jing’s approach. Clearly, this hierarchical structure 
with “half-update- partition” may not yield minimal false 
invalidations. 
 
In our research [13], we considered how to make the best use of 
bit sequences to lower the false invalidations. As noted earlier, 
some of the bit-sequences are of little or no use because there 
are few or no clients disconnected during that period. Those bit-
sequences could have been used more effectively if we had 
placed them in the periods with more disconnected clients. That 
is, the effectiveness of the bit-sequences is closely related to the 
reconnection patterns of mobile clients; i.e., how long clients 
are likely to reconnect after disconnection. Therefore, to reduce 
the false invalidation rates, a reorganization of the bit-
sequences that takes into account clients’ reconnection patterns 
needs to be devised. 
 
Assume that the reconnection pattern [19] of a client can be 
represented by a certain probability distribution f(x) such as the 
one shown in Figure 3. We analyzed the relationship between 
the false invalidations and the reconnect distributions. Assume 
that a mobile client disconnected at time x. After it reconnects 
and receives its first report, it looks for a sequence, say Bi, in 
the report with the largest timestamp that is less than or equal to 
its disconnection time x (i.e., T(Bi) ≤ x ). If the client did not 
disconnect exactly at T(Bi), there might be a chance for false 
invalidation, because the client may have already updated some 
of the items in its cache between T(Bi) and x when it was still 
connected. The larger the difference between x and T(Bi), the 
more items might have been updated by the clients before 
disconnection, and those items would be falsely invalidated 
when reconnected. 

 
Since the server receives update requests from users of all 
kinds, we may assume that updates to the database are 
independent. Let c be the update arrival rate during the window 
period and f(x) be the reconnection pattern. Then, the expected 
total number of falsely invalidated items, denoted by TFI, is  
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where n is the number of bit-sequences in the report,  
T(Bn)= CT (i.e., the current time). To illustrate our algorithm, 

we rewrite the theorem in [13] as following: 
 
 

 
 
 
 
 
 
 

 
 

Figure 3: Reconnect Time Distribution 
 

 
Theorem. Suppose f(x) is a continuous positive real 
function on interval [a, b], and n is a positive integer. Then, 

there exists a vector T
nxxX ][ 11 −= ,  ,L  such that  
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where 0 is a n-1 dimension vector [0, 0, …, 0]T.  
 
In general, with the existence result of the solution of (4.3), by 
using Newton's iterative method, we can find the approximation 
of the solution ∗X  by the following iteration: 
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and 
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)(XDF  is a symmetric tridiagonal matrix and Eq. (4.3) is 
equivalent to the linear system equations 
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By using LU decomposition method [1], we can solve the linear 
equations (4.5) to obtain 1+kX . We know that the complexity of 
this method is O(n), where n is the order of the tridiagonal 
matrix. We can solve (4.6) for sequence { } . 1,2,k , L=kX  
After N steps of iteration, the complexity 
is )()( nOnON =⋅ . That is, we can obtain the arbitrary 
approximation of the solution in polynomial time. We can use 
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to find the number of steps N. Hence the result satisfies the 
precision requirement.                          
 
Here is the algorithm of finding the optimal window partition 
(from x0= T(B0) to xn = T(Bn) ) for any reconnection pattern 
f(x) based on the above analysis: 
 
Algorithm: 

Step1. Evaluate  ))(()(
1

0

1

dxxfxXg i

n

i

x

x

i

i

∑ ∫
−

=

+

= . If we can find 

the maximum of g(X) at  110 nn xxxx ≤≤≤≤ −L  
directly,  return x1, … , xn-1.  Otherwise go to step 2. 
 
Step 2. Solve nonlinear equation (4.2). If we can find the exact 
solution, return x1, … , xn-1.    
Otherwise go to step 3 for an approximation solution. 
 
Step 3.  For a given approximation error ε, let  k =0, and the 
initial value 
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 k = k+1, continue, 
else return 1+kX  . 

 
Example. Assume that we are to divide a window of size 10 
into 2 subintervals, and the reconnect pattern follow the normal 
distribution  

),200/)5(exp()( 2−−= xxf   0 ≤ x ≤ 10. 
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The optimal partition point x1 is the solution of equation (4.2) 
which is 
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Let ε = 10-5 and the initial value  x0,1 = 5, by using the iteration 
of step 3 in the algorithm, we obtained  x1 = 4.8997. 
 
5. A Practical Approach to Compose a 

Near Optimal Invalidation Report 
It has been proved that given a reconnection pattern, an 
invalidation report composed by the above method can 
minimize the false invalidation rate [13]. However, the 
approximate solution by Newton iteration depends on the 
selection of the initial values. We can not guarantee that the 
initialization in step 3 always works. As a result, a new 
approximate algorithm for equation (4.2) which can replace 
step 3 is described in the following. 
 
In reality, clients’ reconnection distributions could be arbitrary. 
The real distribution is actually a series of numerical values. 
For example, the distribution in Figure 5 can be approximated 
by m sampling points: (x1, y1), (x2, y2), …, (xi, yi), … (xm, ym). 
The larger the m value, the closer the approximation. Hereafter, 
we shall assume the reconnection pattern is a series of 
numerical values, which supposedly can be readily derived 
from the server’s log. 
Recall that in the previous section, the critical problem was  to 
find a vector X = [x1, x2, ···, xn-1]T  such that 

 ))(()(
1

0

1

dxxfxXg i

n

i

x

x

i

i

∑ ∫
−

=

+

= attains its maximum, where n, x0 

and xn are three constants, x0 ≤⋅⋅⋅≤ xi ≤ xi+1 ≤⋅⋅⋅≤ xn.  
 
Let S (xi-1, xi ) denotes the area under the distribution curve 
bounded by subinterval [xi-1,  xi] on X-axial as shown in Figure 
6. Here, we assume the reconnect distribution is a series of 
numerical values. Let a and b be the start and end points on X-
axial of the curve respectively. There exists a vector X0 = [a, x1, 
x2, … , xn-1 , b]0  such that these values divide evenly the whole 
area covered by the distribution curve into n subintervals. 
That is:  
 

S (a,  x0
1 ) = ... = S( x0

i-1,  x0
i ) = S( x0

i,  x0
i+1 ) = ...=   

S( x0
n-1,  b ) = S( a, b ) / n 

 
 

Figure 4: Finding Initial Value for X 
 

As shown in the Figure 4, the dot line represents the true 
distribution curve. The rectangle areas are equal to their 
corresponding S(x0

i, x0
i+1). The solid-line curve (called f 0(x) 

thereafter) in Figure 6 can be regarded as an approximation of 
the actual distribution curve. Obviously, f0(x) also satisfies such 
equation:  
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= to obtain its 

maximum. Just as demonstrated in Figure 6, the process of 
finding the initial value of X should be straightforward. 

 
Assume that the distribution curve f (x) is comprised of a 
certain number, say m, of points, and the points are P1, P2, ..., 
Pm  with coordinates (x1, f(x1)), (x2, f(x2)), ..., (xm, f(xm)). 
Because the interval [xi, xi+1] is relatively tiny for a large m, 
according to trapezoidal rule in numerical analysis [1], we have 
the following approximation with relatively good precision: 

Then the following values are easy to get: 
 
S( a,  x1 ) 
S (a, x2) = S( a,  x1 ) + S( x1,  x2 ) 
...                                                                                
S (a, xm) = S( a,  xm-1 ) + S( xm-1,  xm ) 
S (a, b ) = S( a,  xm ) + S( xm,  b) 
 

because vector X0=[a, x1, x2, … , xn-1 , b]0 divides evenly the 
whole area [a, b] covered by the distribution curve into n 
subintervals. That is S (a, x0

1 ) = ... = S( x0
i-1,  x0

i ) = ...= S( x0
n-

1,  b ) = S( a, b ) / n. 
 
 
 
 

(5.1)
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We should have 
 
S( a,  x0

1 ) = S(a, b) / n                                        
S( a,  x0

2 ) = 2 ·  S(a, b) / n                                           
...                                                                                         
S( a,  x0

n-1 ) = (n-1) ·  S(a, b) / n 
 

With Equations (5.1) and (5.2), round x0
i to the nearest xj, that 

is 
S( a,  x0

i ) = i · S(a, b) / n  ≈ S( a,  xj ) 
 
The value of [a, x1, x2, … , xn-1 , b] 0 is then obtained.  
 
Again, in order to obtain ∫ + 1 )(i

x

i
x

dxxf , we calculate S(xi-1, 

xi) as described in Section 4. Depending on the accuracy 
desired, we divide the whole period [a, b] evenly into r×n 
subintervals, where r is an arbitrary positive integer that meets 
the condition r×n < m, by letting Xr = [a, x’1, x’2, … , x’r× n-1 , b] 
r . Then, we have 
 

               S( x’i- x’i-1 ) =  S (a, b) / (r×n) ,  
Next, adjust x0

1 onto the x’i values, where x’i falls in (a, x0
2); 

that is, adjust the value of x0
1 once at a time from x’1 to x’2×r-1 . 

After adjusting x0
1 value to x’i , calculate f(x0

1) ( x0
1- a); a new 

value of x0
2  is obtained according to  

 
f(x0

1) · ( x0
1- a) = S (x0

1, x0
2). 

 
Calculating f(x0

2)( x0
2- x0

1) using the updated x0
2 value, a new 

value of x0
3  is also obtained according to the formula 

 
f(x0

2) · ( x0
2- x0

1) = S (x0
3, x0

2) 
 
Repeat such procedure till the new x0

n-1 is obtained.  Calculate 
g (X0) according to the new X0 = [a, x1, x2, … , xn-1 , b] 0. Find 
the corresponding X0 so that g (X0) attains the maximum by 
comparing g (X0) value with different X0. To improve the 
accuracy, we can divide the two adjacent intervals in which the 
above x1

0 is resided into finer intervals. After repeating the 
same process as above, higher accuracy can be achieved.  

 
6. SIMULATION COMPARISON  
In this section, simulation results on Jing’s and our approaches 
based on the size of invalidation reports and false invalidation 
rate are compared. We have chosen to experiment with the 
dynamic versions of these two approaches because of their 
flexibility in accommodating a variable number of updates in 
the report. We also discussed the effect of timestamps on the 
overall size of a report later. 

The purpose of the simulations is mainly to compare the size of 
the reports and the effectiveness of the bit-sequences in 
reducing the false invalidation rate, denoted FIR, which is 
defined as 

FIR=
dinvalidateitemsofnumber

dinvalidatefalselyitemsofnumber
−−−

−−−−  

Since the compositions of the bit-sequences are different in 
these two approaches, the lengths of bit-sequences will also be 
different. In order to make fair comparisons of the effectiveness 
of bit-sequences in correctly invalidating items, we define an 
effectiveness measure, denoted EF, as 
 

EF = 
sequencesbitoflength

FIR
−−−

−1  

This measure tells the percentage of correct invalidations per 
unit length of bit-sequences. We shall compute the relative 
effectiveness (REF), the ratio of our EF to Jing’s EF, as 

EFsJing
EFour
−

−
'

, to show the how effective our approach is when 

compared to Jing’s approach.  
 
 It is noted that the near-optimal method proposed in section 5 
does not require any a priori knowledge of the reconnection 
pattern. Approximate clients’ reconnect distribution is derived 
dynamically from clients’ reconnect activities. In the 
simulation, the database size is set to be 10,000. Furthermore, 
We draw 6,000 sampling points to approximate the reconnect 
distribution. To obtain the optimal partition, we first divide the 
window into 3 intervals, as described in Section 5, and then 
divide each interval into 10 subintervals to obtain a more 
accurate partition; finally, we divide the two candidate 
subintervals that contain the optimal partition points, into 10 
intervals each to derive our final partition.  
 
We chose two patterns, a uniform distribution and a non-
uniform distribution with a peak in the middle of the window 
described in the Examples 1 and 2 of Section 4.1 in [13] for our 
simulations. We have also tested with various database update 
rates, 10%, 20%, 30%, 40%, and 50%, which are the 
percentages of items updated during the last window period, to 
see their effects on the false invalidation rate. The lengths of the 
bit-sequences in the two approaches are usually different. The 
expected size of Jing’s bit-sequences (excluding B0) can be 
calculated beforehand as 2k, where k is the number of items 
updated since T(B0); in our approach, it depends on the number 
of subintervals in the window, which can be chosen as desired. 
In order to compare the effectiveness of bit-sequences, we have 
chosen the number of subintervals to be 3 in our approach so 
that the lengths of our bit-sequences can be as close to Jing’s as 
possible. Note that in general, the more subintervals in a 

10% 20% 30% 40% 50% 

Method 

Update 
Rate  

Length FIR Length FIR Length FIR Length FIR Length FIR 

Near-Opt 1754 0.1757 3444 0.1760 5134 0.1757 6826 0.1755 8513 0.1759 

Optimal 1754 0.1755 3444 0.1759 5134 0.1755 6826 0.1754 8513 0.1757 

Jing's 2281 0.2315 4313 0.2307 6344 0.2310 8345 0.2313 10378 0.2309 

Ratio 0.7690 0.7581 0.7985 0.7626 0.8093 0.7598 0.8180 0.7585 0.8203 0.7610 

REF 1.395 1.341 1.325 1.311 1.307 

(5.2) 

 
Table 1: Uniform Distribution 
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window, the larger the reports, and the fewer the false 
invalidations. In our method, we can divide the window into  
more subintervals as desired to reduce the false invalidation 
rate, while Jing’s cannot (size = 2k). 

 
As discussed in Section 4 of [13], for a uniform reconnection 
pattern, an evenly divided window yields the optimal 
performance. For the convenience of calculation, the window 
size has been set to be 10 time units in all simulations. In the 
following tables, in the “Length” column we report the length 
of bit-sequences in bits. The row “Ratio” shows the ratios of the 
length and FIR of the optimal method to Jing’s. Since the 
performance of our near-optimal solution is nearly identical to 
the optimal method, the ratios also apply to both the optimal 
and near-optimal methods to Jing’s. Hereafter, we shall not 
differentiate our near-optimal and the optimal methods, unless 
otherwise stated. 
                               
It can be observed from Table 1 that our bit-sequence size is 
around 80% of Jing’s (i.e., 0.7589, 0.7879, 0.7984, 0.8067, 
0.8091 for 10%, 20%, 30%, 40%, 50% update rates, 
respectively). This result is consistent with our analysis on the 
estimations of bit-sequence sizes. Recall that the length of 
Jing’s bit-sequences is 2k (excluding B0), while ours is k + 
(2/3)k = (5/3)k, where k is the size of B1 (and also the number 
of items updated), and (2/3)k is the expected size for B2. That 
is, ours is only 83% ((5/3)k / 2k ≈ 0.83) of Jing’s. The FIRs 
basically remain the same for different database update rates in 
each approach, that is, around 18.8% in our approach and  
20.0% in Jing’s approach. It indicates that FIR has to do with 
the ways of composing bit-sequences, and has nothing to do 
with the rates of updates. In summary, not only are our bit-
sequences shorter than Jing’s, (approximately 80% of Jing’s), 
but also achieve better (or lower) false invalidation rates 
(approximately 94% of Jing’s). This implies our bit-sequences 
are more effective in lowering the false invalidation rate. 
According to the relative effectiveness measure REF, our bit-
sequences are 25 – 34% more effective in correctly invalidating 
items than Jing’s. 
 
Now let us consider the size of timestamps. The total size of 
timestamps in Jing’s report is 32log(k), while it is 32n in ours, 
where log(k) and n are the numbers of bit-sequences in 
respective reports. In our report, there are 3 (i.e., n = 3) 
timestamps, while in Jing’s report, it has log(k) timestamps 
(log(1,000)=10, log(2,000)=11, …, log(5,000)=13 for 1,000, 
2,000, …, 5,000 updates, respectively, during the last window). 

Clearly, we use much less timestamps and consume less space 
than Jing’s report. In Table 2, we show the results for the non-
uniform distribution described in [13]. According to the 
Theorem, we divided the window at 3.1008 and 5.4008. Again, 

 
our bit-sequences are shorter (about 80% of Jing’s), and yet  
 
achieve much better (or lower) false invalidation rates (76% of 
Jing’s). As in the uniform case, the FIRs remain the same in 
each approach for different item update rates. The FIRs are 
around 17.6% in our approach, compared to 23.1% in Jing’s. In 
terms of the REF measure, our bit-sequences are 31- 40% more 
effective than Jing’s If there is enough bandwidth for longer 
reports, in our approach we can easily divide the window into 
more subintervals (i.e., more bit–sequences) to achieve lower 
false invalidation rates. However, this may not be possible for 
Jing’s approach because the number of bit-sequences (i.e., 
log(k))  is completely determined by the number of updates (k) 
in the window period. That is, even though there is still 
bandwidth left for use, Jing’s approach simply cannot use it to 
reduce the false invalidation rates.  Excess bandwidth may be 
used to reduce false invalidation by increasing the number of 
bit-sequences in our approach. 
 
In summary, our approach clearly outperforms Jing’s approach 
in terms of the length of bit-sequences, number of timestamps, 
effectiveness of reducing FIR, and flexibility in using excess 
bandwidth to reduce false invalidation rates. Our near-optimal 
solution yields almost identical results as the optimal one. As 
mentioned earlier, the near-optimal solution can be applied to 
any distributions without a priori knowledge of the 
distributions; it is fast and agile. 

 
7. CONCLUSIONS 
In this paper, we discussed the composition of invalidation 
reports to achieve minimal false invalidation rates. Based on the 
bit-sequence approach [11] and our discussion in [13], we 
redesigned the hierarchy of the bit-sequences, taking into 
account the reconnection patterns of mobile clients. We have 
shown that by using a numerical approximation of integral in 
solving the nonlinear system, we can derive a near-optimal 
partition of the window, which does not require a priori 
knowledge of the reconnection pattern. It is dynamic, fast, and 
yields almost identical results as the optimal one. We have 
performed simulations to show that our approach of composing 
reports indeed has better performance than Jing’s in terms of 
the length of bit-sequences, number of timestamps, 

10% 20% 30% 40% 50% 

Method 

Update 
Rate  

Length FIR Length FIR Length FIR Length FIR Length FIR 

Near-Opt 1731 0.1883 3399 0.1879 5065 0.1884 6733 0.1882 8397 0.1881

Optimal 1731 0.1883 3398 0.1878 5065 0.1884 6732 0.1881 8397 0.1880

Jing's 2281 0.2008 4313 0.2004 6344 0.2001 8345 0.2006 10378 0.2005

Ratio 0.7589 0.9379 0.7879 0.9371 0.7984 0.9412 0.8067 0.9377 0.8091 0.9378

REF 1.337 1.289 1.271 1.259 1.253 

 
Table 2: Non-uniform Distribution 
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effectiveness of reducing FIR, and flexibility in using excess 
bandwidth. 
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