

An Approach of Composing Near Optimal Invalidation
Reports

Meng Su

Department of Computer
Science Penn State Erie

The Behrend College
Erie, PA 16509, USA
mengsu@psu.edu

Chih-Fang Wang
Department of Computer

Science
Southern Illinois University
Carbondale, IL 62901, USA

cfw@cs.siu.edu

Wen-Chi Hou
Department of Computer

Science
Southern Illinois University

Carbondale, IL 62901, USA
hou@cs.siu.edu

ABSTRACT
Caching can reduce expensive data transfers and improve the
performance of mobile computing. In order to reuse caches
after short disconnections, invalidation reports are broadcast to
clients to identify outdated items. Detailed reports may not be
desirable because they can consume too much bandwidth. On
the other hand, false invalidations may set in if the accurate
timing of updates is not provided. In this research, we aim to
reduce the false invalidation rates of cached items. Based on
our analysis, false invalidation rates are closely related to
clients’ reconnection patterns (i.e., the distribution of the time
spans between disconnections and reconnections). We show
that in theory for any given reconnection pattern, a report with a
minimal false invalidation rate can be derived. For practical
uses, we propose to capture the reconnection pattern by
sampling and develop a method to compose a near-optimal
invalidation report. This method is simple and fast.
Experimental results have confirmed that our method is indeed
more effective in reducing the false invalidation rate than
others.

Categories and Subject Descriptors
H.1.1 [Systems and Information Theory]: Information theory,
Value of information.

General Terms
Algorithms, Design, Theory.

Keywords
Mobile Databases, Invalidation Report, False Invalidation,
Reconnection Pattern.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MDM 2005 05 Ayia Napa Cyprus
(c) 2005 ACM 1-59593-041-8/05/05....$5.00

1. INTRODUCTION
It was predicted [3] that in a mobile wireless computing
environment of the future, massive numbers of low powered
palmtop machines would query databases over the wireless
communication channels. Technology progresses so fast that it
is now the reality. Numerous such mobile databases are in use
today, including mobile surgical databases [23], stock
information systems, and a variety of general purposed pocket
databases for small business and personal use. In a mobile
computing environment [5], a set of database servers
disseminates information via wireless channels to mobile
clients [24]. Clients can relocate and connect to different
database servers at different times.

Due to the narrow bandwidth of wireless channels,
communication between the clients and servers ought to be
minimized to reduce contentions. Caching of frequently
accessed data at mobile clients has been shown to be a very
effective mechanism in handling this problem. Other benefits of
caching include energy savings (by reducing the amount of data
transferred) and cost savings (especially if one is billed on a
pay-per-packet basis).

It is generally assumed that updates to database are broadcast
without much delay to the clients (by the server). Therefore, as
long as the clients stay connected, their caches are current.
However, in a mobile database environment, clients are
frequently disconnected due to some battery power saving
measures [12] or unpredictable failures. Discarding entire
caches after short disconnections can be wasteful as many data
items in the caches may still be valid; this is especially true for
a mobile database environment, where the bandwidth is narrow
and battery power (of clients) is limited. Therefore, an efficient
schemes which helps in power saving and also for the reuse of
cache is much needed [20].

Many caching coherence algorithms have been proposed for
conventional client-server architectures [7, 10, 11, 25, 27].
There have been some researches on cache management for
mobile computing published recently in the literature [2, 6, 8, 9,
17, 18, 19, 21, 28, etc.]. To reuse the caches after short
connections, a common approach is to broadcast invalidation
reports to clients to help identifying outdated items in the
caches [3, 15]. Detailed reports can be long, consuming much
bandwidth and thus may not be desirable. On the other hand,
without detailed timing information, cached items can be
falsely invalidated. In this paper, we continue the discussion of

116

 Static Network
LAN/WAN/Internet etc.

MSS

MCH1
MCH2

MCH4
MCH5

MCH6
MCH7

MSS MSS

Database Servers

MSS: Mobile Support Station, MCH: Mobile Client
Host Note: this figure is modified from [3].

how to compose a report with a minimal false invalidation rate
[13]. We have observed that false invalidation rates have to do
with clients’ reconnection patterns (i.e., the distribution of the
time spans between disconnection and reconnection). By
applying nonlinear system’s approximation method to the
clients’ reconnection pattern, we showed that a report with a
minimal false invalidation rate can be derived. For practical
uses, we devise a method that yields a near-optimal invalidation
report that can be computed efficiently. Simulation results have
also confirmed that our near-optimal method is fast and
effective in reducing false invalidations.

The rest of the paper is organized as follows. In Section 2, we
review the mobile computing environment and research on
cache management for such an environment. Section 3 reviews
the compositions of invalidation reports to lay down the
groundwork for our approach. In Section 4, we propose the
algorithm to take clients’ reconnection patterns into account in
the design of invalidation reports. Unfortunately, deriving such
optimal reports requires a priori knowledge of the reconnection
patterns and much computation. Therefore, we propose to
compose a near-optimal report in Section 5. The solution is
practical, dynamic, fast, and agile. Simulation results are
presented in Section 6, and we conclude our study in Section 7.

2. PRELIMINARY

2.1 A Mobile Computing Architecture
With networks of powerful workstations becoming
commonplace, client-server software architectures efficiently
provide access to shared services and resources [22]. In a
client-server architecture, the database resides at the server and
is accessed by application programs running on the clients’
workstations. A client communicates with the database server
through message passing. It, however, increases the cost of
each data request. A solution is to reduce the number of
requests by caching a portion of the database at the client side.

In a mobile client/server computing environment, clients no
longer are required to remain in fixed positions. Figure 1 shows
a general architecture for a mobile client-server computing
paradigm that is similar to [14]. It consists of two distinct sets
of entities: a large number of mobile client hosts (MCHs) and
relatively fewer but more powerful fixed hosts, which are
connected through a wired network. MCHs usually run on
small batteries, such as AA, while fixed hosts may have
continuous power supplies. MCHs usually have weaker
transmitting capability than fixed hosts. Some of the fixed
hosts, called the MSS (Mobile Support Stations), [4] are
equipped with a wireless interface to communicate with mobile
client hosts, which are located within a radio coverage area,
called a wireless cell. A cell could be a real cell as in a cellular
communication network or a wireless local area network, which
operates within the area of a building. In the former case, the
bandwidth could be severely limited, supporting a data rate in
the range of 10 to 20 Kb/sec, while in the latter, the bandwidth
would be much higher, up to 10Mb/sec [1]. Fixed hosts can
communicate with other hosts (mobile or fixed) via a wireless
channel. An MCH can directly communicate with an MSS if it
is physically located within the cell serviced by the MSS. At
any time, an MCH may logically belong to only one cell. A

wireless communication channel comprises an uplink (from a
client to the server) and a downlink (from the server to a client)
sub channels. An MCH submits requests to the local MSS via
an uplink channel and receives the results via a downlink
channel. Due to the weaker transmitting capability of the
mobile clients (as compared to the fixed hosts), an asymmetric
communication with much smaller uplink bandwidth than
downlink is created. Receiving messages is less costly than
sending messages for clients.

Figure 1: A Mobile Computing Architecture

2.2. Cache Management
Caching on the client side can reduce client-server interactions,
lessening the network traffic and message-processing overhead
for both the servers and clients. Various cache coherence
schemes [5, 9, 15, 16, etc.] have been developed for
conventional client-server architectures. These algorithms are
generally classified into two categories: the callback approach
and the detection approach. In the callback approach, servers
are responsible for the coherency of caches. Usually, servers
send invalidation messages directly to clients to invalidate data
items cached. On the other hand, in the detection approach, it is
the clients’ responsibility to maintain the consistency.
Clients request servers, from time to time, to validate their
cached data. Since mobile client hosts frequently disconnect to
conserve battery power and are frequently on the move, it is
very difficult, for a server to keep track of the status and
locations of the clients and the validity of cached data items. As
a result, the callback approach cannot be easily implemented
mobile environment. On the other hand, due to the limited
transmission capability of mobile clients, it is not appropriate
for clients to request information so frequently. Moreover, the
narrow bandwidth [5] of the wireless network could be clogged
up if a massive number of clients attempt to query the server to
validate their caches. As a result, both the callback and
detection approaches employed in the traditional client-server
architecture are not readily applicable to the mobile
environment, and new methods have to be designed.

117

There have been some researches on designing cache coherence
schemes for mobile computing. Refresh time [11] has been
used to determine the validity of cached items. Each item
cached is associated with a refresh time. When the refresh time
expires, the client contacts the server for an updated value.
However, appropriate refresh durations are difficult to
determine. Dynamic refresh time [10], based on the update
frequency of the items, has been proposed as an improvement.
However, many cached items can still be falsely invalidated
(i.e., valid items considered as invalid) while others may be
falsely validated (i.e., invalid items considered as valid). The
cache coherency is not maintained effectively and consistently.

The cache invalidation method was proposed [3] to minimize
the data transfer in both directions: the downlink and the
uplink. In this approach, the server, periodically or
asynchronously, broadcasts reports containing items that have
been updated. When a client receives such reports, it checks
against its cache and invalidate. Due to its simplicity and
efficiency, invalidation reports have been adopted in many
recent researches [15, 17, 21, 26, etc].

Based on the timing of the invalidation messages being
broadcast by the servers, cache invalidation methods can be
either asynchronous or synchronous. In an asynchronous
approach [16, 24, 26], a server broadcasts an invalidation
message as soon as an item changes its value. A client who is
connected can immediately invalidate these items in its cache.
The biggest problem with the asynchronous approach is its
unpredictable waiting time for such invalidation messages,
which depends on the update activities on the database. Some
improvements have been made in [20] such that even when the
updating frequency is low, it is assured that at least one
broadcast is sent in a certain period.

In the synchronous approach [3, 24, 27], cache invalidation
messages are broadcast periodically. That is, the server gathers
updates for a period of time and then broadcasts these updates
with the time of updates all in one message. Some latency could
be induced between the actual updates and notification of the
updates to the mobile clients. Once invalid items are found in
the cache, the client submits an uplink request for updated
values. The invalidation report divides the time into intervals.

Despite the differences in cache coherence schemes, it is
generally assumed that outdated items in caches are updated
immediately. Therefore, as long as a client stay connected, its
cache remains current.

3. INVALIDATION REPORTS FOR

RECONNECTED USERS
While Invalidation reports can be used to invalidate outdated
items in the cache, another use of invalidation reports is to help
reconnected users identify outdated items without entirely
discarding the cache after short disconnections. Discarding
entire caches after short disconnections can be wasteful as
many data items in the caches may still be valid; this is
particularly important to the mobile databases, where the
bandwidth is narrow and battery power (of clients) is limited [5,
20]. In this research, we will focus on composing invalidation

reports for reconnected clients. In the following, we briefly
describe existing ways for composing invalidation reports.

3.1 Broadcasting Timestamp (BT) Strategy
It is generally assumed that a reconnected client cannot answer
any queries until it has received the newest invalidation report
and updated its cache.

Broadcasting timestamp (BT) strategy [3] was developed based
on the synchronous invalidation approach. The report is
composed of a set of pairs (ID, timestamp), in which ID
specifies an item that has been updated, and the timestamp
indicates when a change was made to that item. Note that a
report can only cover the activities of a limited period of time,
called a window period. The longer the window period of a
report, the larger the invalidation report, which can lead to a
long latency in the dissemination of reports. Normally, for each
item cached, the client either purges it from the cache if the
item is reported to have been changed, or changes the item’s
timestamp to the timestamp of the report (i.e., up to date). Note
that the entire cache will have to be discarded if the client has
disconnected longer than the period covered by the report.

3.2 Bit-Sequence (BS) Approach
In the above approach, updated items are indicated by IDs and
their respective timestamps in the report. When the number of
items updated is large, the size of the invalidation report can
become large too. In order to save bandwidth, the bit-sequence
(BS) approach is proposed [15]. Two techniques, the bit-
sequence mapping and the update aggregation, are used to
reduce the size of the report. The bit-sequence mapping aims to
reduce the naming space of the items, while the update
aggregation aims to reduce the number of timestamps used in
the report. Since our approach is based on the BS approach, we
shall elaborate on this approach a little more here.

In the BS approach, each data item is mapped to a bit of an N-
bit sequence, where N is the total number of data items in the
database. That is, the nth bit in the sequence corresponds to the
nth data item in the database. A value “1” in a bit indicates the
corresponding data item has been changed; and “0” indicates
otherwise. This technique reduces the naming space from
Nlog(N) bits for N items (needed in BT approach) to N bits
here.

Another technique, called the update aggregation [15], is used
in conjunction with the bit-sequence mapping to reduce the
number of timestamps in a report. Instead of having one
timestamp for each updated item, the report uses only one
timestamp, which is the time when the report is to be delivered.
A bit value “1” in the bit-sequence now indicates that the
corresponding item has been updated since the timestamp of the
report. A bit value “0” indicates no change has been made to
that item since the timestamp.

Although update aggregation reduces the size of a report, it also
decreases the accuracy of the report. Since there is only one
timestamp in a report, all items mentioned in the report have to
be treated as being updated at the time indicated by the
timestamp. As a result, valid items could be falsely invalidated;
that is, false invalidations set in. For example, consider a client

118

disconnected at time d as shown in Figure 2. After reconnected,
it received a report with a timestamp t. Recall that updates are
broadcast by the server and are immediately reflected in clients’
caches. Therefore, the client still has valid copies for those
items updated between t and d. Since there is no way to tell
these items from items that are updated after d in the report, all
the items mentioned in the report will all have to be purged
when the client reconnects.

 Figure 2: False Invalidations

In order to reduce false invalidations, a hierarchically structured
and more detailed report has been proposed [15]. Instead of
using just one bit-sequence (and a timestamp), n bit-sequences
(n > 1), each is associated with a timestamp, are used in the
report to show the update activities of n overlapping
subintervals. Specifically, the ith sequence (0 ≤ i ≤ n-1), denoted
by Bi, has a length of N/2i bits, where N is the number of data
items in the database, and it records the latest N/2i+1 update
activities. Each bit-sequence is associated with a timestamp
T(Bi) indicating since when there have been such N/2i+1
updates. As shown in Figure 4, the first bit-sequence B0 has a
length of N and half of it are “1’ bits, indicating that N/2 items
(out of N) have been updated since T(B0). The second sequence
B1 has N/2 bits, each corresponding to a data item that has been
updated since T(B0) (i.e., a “1” bits in B0). Again, half of the
bits in B1 (i.e., N/4 bits) have the value “1”, indicating half of
the N/2 items that have been updated since T(B0) were actually
updated after T(B1). In general, the jth bit of the Bi corresponds
to the jth “1” bit in the Bi-1, and half of each bit-sequence are 1’s.
It can be observed that the total number of bit-sequences n is
log(N).

The issue of false invalidation doesn't exist in the architecture
[16] because the servers can directly invalidate the client caches
or clients can query the Mobile Support Station for the
validation of caches after reconnection.

The above BS scheme has been modified in [11] to
accommodate a variable number of updates (instead of just
N/2) for the reported period. The modified scheme is called the
dynamic BS. Instead of mapping an item to a bit in B0, each
updated item is represented explicitly by its ID in the dynamic
BS. Thus, B0 is now made of the IDs of those items that have
been updated since T(B0). The rest of bit-sequences (B1, … Bn-

1) are composed in the same way as in the original BS. That is,
sequence Bi (0 < i ≤ n-1) has k/2i-1 bits, with half of them being
“1”s, where k is the number of items updated since T(B0).

4. COMPOSITION OF OPTIMAL

HIERARCHICAL BIT-SEQUENCES
Although Jing’s [15] hierarchically structured bit-sequences
discussed above reduced the naming space of items and the

number of timestamps, there is no justification for why the bit-
sequence hierarchy should be partitioned based on half of the
updates. In fact, this “half-update-partition” scheme could favor
some situations over others. After reconnecting at (or before)
the current time, clients 1 and 2 can use B0 to invalidate their
items, and client 3 will use B1. Since clients 1 and 2
disconnected between T(B0) and T(B1), as explained earlier in
Figure 3, all cached items updated during this period will have
to be invalidated and some of them might be falsely
invalidated. Thus, if there are a large number of clients like
clients 1 and 2, who disconnected during this (likely long)
period, there can be a lot of items falsely invalidated. On the
other hand, since there is no client disconnected between T(Bn-

2) and T(Bn-1), the bit-sequences Bn-2 is wasted. The above
scenario is likely to happen because the time span between
T(B0) and T(B1) is much longer than that between T(Bn-2) and
T(Bn-1). As observed, there are more bit-sequences covering the
more recent but shorter periods than the earlier but longer
periods in Jing’s approach. Clearly, this hierarchical structure
with “half-update- partition” may not yield minimal false
invalidations.

In our research [13], we considered how to make the best use of
bit sequences to lower the false invalidations. As noted earlier,
some of the bit-sequences are of little or no use because there
are few or no clients disconnected during that period. Those bit-
sequences could have been used more effectively if we had
placed them in the periods with more disconnected clients. That
is, the effectiveness of the bit-sequences is closely related to the
reconnection patterns of mobile clients; i.e., how long clients
are likely to reconnect after disconnection. Therefore, to reduce
the false invalidation rates, a reorganization of the bit-
sequences that takes into account clients’ reconnection patterns
needs to be devised.

Assume that the reconnection pattern [19] of a client can be
represented by a certain probability distribution f(x) such as the
one shown in Figure 3. We analyzed the relationship between
the false invalidations and the reconnect distributions. Assume
that a mobile client disconnected at time x. After it reconnects
and receives its first report, it looks for a sequence, say Bi, in
the report with the largest timestamp that is less than or equal to
its disconnection time x (i.e., T(Bi) ≤ x). If the client did not
disconnect exactly at T(Bi), there might be a chance for false
invalidation, because the client may have already updated some
of the items in its cache between T(Bi) and x when it was still
connected. The larger the difference between x and T(Bi), the
more items might have been updated by the clients before
disconnection, and those items would be falsely invalidated
when reconnected.

Since the server receives update requests from users of all
kinds, we may assume that updates to the database are
independent. Let c be the update arrival rate during the window
period and f(x) be the reconnection pattern. Then, the expected
total number of falsely invalidated items, denoted by TFI, is

))())(((
1

0

)(

)(

1

dxxfBTxcTFI i

n

i

BT

BT

i

i

⋅−= ∑ ∫
−

=

+ (4.1)

t d
disconnected

report
arrived

update:

119

where n is the number of bit-sequences in the report,
T(Bn)= CT (i.e., the current time). To illustrate our algorithm,

we rewrite the theorem in [13] as following:

Figure 3: Reconnect Time Distribution

Theorem. Suppose f(x) is a continuous positive real
function on interval [a, b], and n is a positive integer. Then,

there exists a vector T
nxxX][11 −= , ,L such that

))(()(
1

0

1

dxxfxXg i

n

i

x

x

i

i

∑ ∫
−

=

+

= Obtains its maximum,

where bxxxxa nn =≤≤≤≤= −110 L . Furthermore,
the value X is the solution of nonlinear system

1.- , 2, ,1 ,0))(()(1
1 nixxxfdxxfi

x

i
x iii L==−+∫ +

−
 (4.2)

In [13], we deduced that to minimize TFI is equivalent to

maximize))()((
1

0

)(

)(

1

dxxfBT i

n

i

BT

BT

i

i

∑ ∫
−

=

+

.Hence, T(Bi), i=1,… n-1

are the solution of (4.2) according to the Theorem.

Let
i

i x
XgXF

∂
∂

=
)()(, then Eq. (4.2) is equivalent to

[] ,)(,),(),()(
11

T
n2 XFXFXFXF −= L ,0)(=XF (4.3)

where 0 is a n-1 dimension vector [0, 0, …, 0]T.

In general, with the existence result of the solution of (4.3), by
using Newton's iterative method, we can find the approximation
of the solution ∗X by the following iteration:

)()('

,0))((')(
1

1

1

kkkk

kkkk

XFXFXX

XXXFXF
−

+

+

−=−

=−+

),()(1
kk XFXDF −−= k = 0, 1, 2, L ,

where

)(0

)()(

)()(

 0)(

)(

11

433

322

21

0

0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−− nn Mxf

xfMxf
xfMxf

xfM

XDF

OOO

OOO

(4.4)

and

1, , 2, 1,for)(')()(-2 1 −=−+= − nixfxxxfM iiiii L

)(XDF is a symmetric tridiagonal matrix and Eq. (4.3) is
equivalent to the linear system equations

)())((kkk XFXXXDF −=− (4.5)

By using LU decomposition method [1], we can solve the linear
equations (4.5) to obtain 1+kX . We know that the complexity of
this method is O(n), where n is the order of the tridiagonal
matrix. We can solve (4.6) for sequence { } . 1,2,k , L=kX
After N steps of iteration, the complexity
is)()(nOnON =⋅ . That is, we can obtain the arbitrary
approximation of the solution in polynomial time. We can use

.0 ,)(
2

1

2
,,1

2

21 >≤−=− ∑
−

=
++ εε

n

i
ikikkk xxXX

to find the number of steps N. Hence the result satisfies the
precision requirement.

Here is the algorithm of finding the optimal window partition
(from x0= T(B0) to xn = T(Bn)) for any reconnection pattern
f(x) based on the above analysis:

Algorithm:

Step1. Evaluate))(()(
1

0

1

dxxfxXg i

n

i

x

x

i

i

∑ ∫
−

=

+

= . If we can find

the maximum of g(X) at 110 nn xxxx ≤≤≤≤ −L
directly, return x1, … , xn-1. Otherwise go to step 2.

Step 2. Solve nonlinear equation (4.2). If we can find the exact
solution, return x1, … , xn-1.
Otherwise go to step 3 for an approximation solution.

Step 3. For a given approximation error ε, let k =0, and the
initial value

1,,2,1for a)/n-(b*i where
 ,] , , ,[

 ,0

T
1,02,01,00

−=+=

= −

niax
xxxX

i

n

L

L

Loop:
Solve (4.5) for 1+kX by using LU decomposition

if ∑
−

=
++ >−=−

2

1

2
,,1

2

21)(
n

i
ikikkk xxXX ε ,

Reconnect Time Period: CT – DT

Frequency

CT: Current Time

DT: Disconnect time f(x)

120

 k = k+1, continue,
else return 1+kX .

Example. Assume that we are to divide a window of size 10
into 2 subintervals, and the reconnect pattern follow the normal
distribution

),200/)5(exp()(2−−= xxf 0 ≤ x ≤ 10.

)()(1

10

1

dxxfxXg
x∫=

The optimal partition point x1 is the solution of equation (4.2)
which is

 0)()(11

10

1

=−∫ xfxdxxf
x

Let ε = 10-5 and the initial value x0,1 = 5, by using the iteration
of step 3 in the algorithm, we obtained x1 = 4.8997.

5. A Practical Approach to Compose a

Near Optimal Invalidation Report
It has been proved that given a reconnection pattern, an
invalidation report composed by the above method can
minimize the false invalidation rate [13]. However, the
approximate solution by Newton iteration depends on the
selection of the initial values. We can not guarantee that the
initialization in step 3 always works. As a result, a new
approximate algorithm for equation (4.2) which can replace
step 3 is described in the following.

In reality, clients’ reconnection distributions could be arbitrary.
The real distribution is actually a series of numerical values.
For example, the distribution in Figure 5 can be approximated
by m sampling points: (x1, y1), (x2, y2), …, (xi, yi), … (xm, ym).
The larger the m value, the closer the approximation. Hereafter,
we shall assume the reconnection pattern is a series of
numerical values, which supposedly can be readily derived
from the server’s log.
Recall that in the previous section, the critical problem was to
find a vector X = [x1, x2, ···, xn-1]T such that

))(()(
1

0

1

dxxfxXg i

n

i

x

x

i

i

∑ ∫
−

=

+

= attains its maximum, where n, x0

and xn are three constants, x0 ≤⋅⋅⋅≤ xi ≤ xi+1 ≤⋅⋅⋅≤ xn.

Let S (xi-1, xi) denotes the area under the distribution curve
bounded by subinterval [xi-1, xi] on X-axial as shown in Figure
6. Here, we assume the reconnect distribution is a series of
numerical values. Let a and b be the start and end points on X-
axial of the curve respectively. There exists a vector X0 = [a, x1,
x2, … , xn-1 , b]0 such that these values divide evenly the whole
area covered by the distribution curve into n subintervals.
That is:

S (a, x0
1) = ... = S(x0

i-1, x0
i) = S(x0

i, x0
i+1) = ...=

S(x0
n-1, b) = S(a, b) / n

Figure 4: Finding Initial Value for X

As shown in the Figure 4, the dot line represents the true
distribution curve. The rectangle areas are equal to their
corresponding S(x0

i, x0
i+1). The solid-line curve (called f 0(x)

thereafter) in Figure 6 can be regarded as an approximation of
the actual distribution curve. Obviously, f0(x) also satisfies such
equation:

1- , 2, ,1 ,0))(()(
0

1
0

0
1

00
00 nixxxfdxxfi

x

i
x

iii L==−+∫ + −

because

∫
+

−−+ −===10

0
))((),(),()(1

000
0

00
1

0
1

0
0

ix

ix
iiiiiii xxxfxxSxxSdxxf

This demonstrates that vector X0=[a, x1, x2, …, xn-1, b]0 is the

ideal solution for))(()(0

1

0
0

1

dxxfxXg i

n

i

x

x

i

i

∑ ∫
−

=

+

= to obtain its

maximum. Just as demonstrated in Figure 6, the process of
finding the initial value of X should be straightforward.

Assume that the distribution curve f (x) is comprised of a
certain number, say m, of points, and the points are P1, P2, ...,
Pm with coordinates (x1, f(x1)), (x2, f(x2)), ..., (xm, f(xm)).
Because the interval [xi, xi+1] is relatively tiny for a large m,
according to trapezoidal rule in numerical analysis [1], we have
the following approximation with relatively good precision:

Then the following values are easy to get:

S(a, x1)
S (a, x2) = S(a, x1) + S(x1, x2)
...
S (a, xm) = S(a, xm-1) + S(xm-1, xm)
S (a, b) = S(a, xm) + S(xm, b)

because vector X0=[a, x1, x2, … , xn-1 , b]0 divides evenly the
whole area [a, b] covered by the distribution curve into n
subintervals. That is S (a, x0

1) = ... = S(x0
i-1, x0

i) = ...= S(x0
n-

1, b) = S(a, b) / n.

(5.1)

121

We should have

S(a, x0

1) = S(a, b) / n
S(a, x0

2) = 2 · S(a, b) / n
...
S(a, x0

n-1) = (n-1) · S(a, b) / n

With Equations (5.1) and (5.2), round x0
i to the nearest xj, that

is
S(a, x0

i) = i · S(a, b) / n ≈ S(a, xj)

The value of [a, x1, x2, … , xn-1 , b] 0 is then obtained.

Again, in order to obtain ∫ + 1)(i

x

i
x

dxxf , we calculate S(xi-1,

xi) as described in Section 4. Depending on the accuracy
desired, we divide the whole period [a, b] evenly into r×n
subintervals, where r is an arbitrary positive integer that meets
the condition r×n < m, by letting Xr = [a, x’1, x’2, … , x’r× n-1 , b]
r . Then, we have

 S(x’i- x’i-1) = S (a, b) / (r×n) ,
Next, adjust x0

1 onto the x’i values, where x’i falls in (a, x0
2);

that is, adjust the value of x0
1 once at a time from x’1 to x’2×r-1 .

After adjusting x0
1 value to x’i , calculate f(x0

1) (x0
1- a); a new

value of x0
2 is obtained according to

f(x0

1) · (x0
1- a) = S (x0

1, x0
2).

Calculating f(x0

2)(x0
2- x0

1) using the updated x0
2 value, a new

value of x0
3 is also obtained according to the formula

f(x0

2) · (x0
2- x0

1) = S (x0
3, x0

2)

Repeat such procedure till the new x0

n-1 is obtained. Calculate
g (X0) according to the new X0 = [a, x1, x2, … , xn-1 , b] 0. Find
the corresponding X0 so that g (X0) attains the maximum by
comparing g (X0) value with different X0. To improve the
accuracy, we can divide the two adjacent intervals in which the
above x1

0 is resided into finer intervals. After repeating the
same process as above, higher accuracy can be achieved.

6. SIMULATION COMPARISON
In this section, simulation results on Jing’s and our approaches
based on the size of invalidation reports and false invalidation
rate are compared. We have chosen to experiment with the
dynamic versions of these two approaches because of their
flexibility in accommodating a variable number of updates in
the report. We also discussed the effect of timestamps on the
overall size of a report later.

The purpose of the simulations is mainly to compare the size of
the reports and the effectiveness of the bit-sequences in
reducing the false invalidation rate, denoted FIR, which is
defined as

FIR=
dinvalidateitemsofnumber

dinvalidatefalselyitemsofnumber
−−−

−−−−

Since the compositions of the bit-sequences are different in
these two approaches, the lengths of bit-sequences will also be
different. In order to make fair comparisons of the effectiveness
of bit-sequences in correctly invalidating items, we define an
effectiveness measure, denoted EF, as

EF =
sequencesbitoflength

FIR
−−−

−1

This measure tells the percentage of correct invalidations per
unit length of bit-sequences. We shall compute the relative
effectiveness (REF), the ratio of our EF to Jing’s EF, as

EFsJing
EFour
−

−
'

, to show the how effective our approach is when

compared to Jing’s approach.

 It is noted that the near-optimal method proposed in section 5
does not require any a priori knowledge of the reconnection
pattern. Approximate clients’ reconnect distribution is derived
dynamically from clients’ reconnect activities. In the
simulation, the database size is set to be 10,000. Furthermore,
We draw 6,000 sampling points to approximate the reconnect
distribution. To obtain the optimal partition, we first divide the
window into 3 intervals, as described in Section 5, and then
divide each interval into 10 subintervals to obtain a more
accurate partition; finally, we divide the two candidate
subintervals that contain the optimal partition points, into 10
intervals each to derive our final partition.

We chose two patterns, a uniform distribution and a non-
uniform distribution with a peak in the middle of the window
described in the Examples 1 and 2 of Section 4.1 in [13] for our
simulations. We have also tested with various database update
rates, 10%, 20%, 30%, 40%, and 50%, which are the
percentages of items updated during the last window period, to
see their effects on the false invalidation rate. The lengths of the
bit-sequences in the two approaches are usually different. The
expected size of Jing’s bit-sequences (excluding B0) can be
calculated beforehand as 2k, where k is the number of items
updated since T(B0); in our approach, it depends on the number
of subintervals in the window, which can be chosen as desired.
In order to compare the effectiveness of bit-sequences, we have
chosen the number of subintervals to be 3 in our approach so
that the lengths of our bit-sequences can be as close to Jing’s as
possible. Note that in general, the more subintervals in a

10% 20% 30% 40% 50%

Method

Update
Rate

Length FIR Length FIR Length FIR Length FIR Length FIR

Near-Opt 1754 0.1757 3444 0.1760 5134 0.1757 6826 0.1755 8513 0.1759

Optimal 1754 0.1755 3444 0.1759 5134 0.1755 6826 0.1754 8513 0.1757

Jing's 2281 0.2315 4313 0.2307 6344 0.2310 8345 0.2313 10378 0.2309

Ratio 0.7690 0.7581 0.7985 0.7626 0.8093 0.7598 0.8180 0.7585 0.8203 0.7610

REF 1.395 1.341 1.325 1.311 1.307

(5.2)

Table 1: Uniform Distribution

122

window, the larger the reports, and the fewer the false
invalidations. In our method, we can divide the window into
more subintervals as desired to reduce the false invalidation
rate, while Jing’s cannot (size = 2k).

As discussed in Section 4 of [13], for a uniform reconnection
pattern, an evenly divided window yields the optimal
performance. For the convenience of calculation, the window
size has been set to be 10 time units in all simulations. In the
following tables, in the “Length” column we report the length
of bit-sequences in bits. The row “Ratio” shows the ratios of the
length and FIR of the optimal method to Jing’s. Since the
performance of our near-optimal solution is nearly identical to
the optimal method, the ratios also apply to both the optimal
and near-optimal methods to Jing’s. Hereafter, we shall not
differentiate our near-optimal and the optimal methods, unless
otherwise stated.

It can be observed from Table 1 that our bit-sequence size is
around 80% of Jing’s (i.e., 0.7589, 0.7879, 0.7984, 0.8067,
0.8091 for 10%, 20%, 30%, 40%, 50% update rates,
respectively). This result is consistent with our analysis on the
estimations of bit-sequence sizes. Recall that the length of
Jing’s bit-sequences is 2k (excluding B0), while ours is k +
(2/3)k = (5/3)k, where k is the size of B1 (and also the number
of items updated), and (2/3)k is the expected size for B2. That
is, ours is only 83% ((5/3)k / 2k ≈ 0.83) of Jing’s. The FIRs
basically remain the same for different database update rates in
each approach, that is, around 18.8% in our approach and
20.0% in Jing’s approach. It indicates that FIR has to do with
the ways of composing bit-sequences, and has nothing to do
with the rates of updates. In summary, not only are our bit-
sequences shorter than Jing’s, (approximately 80% of Jing’s),
but also achieve better (or lower) false invalidation rates
(approximately 94% of Jing’s). This implies our bit-sequences
are more effective in lowering the false invalidation rate.
According to the relative effectiveness measure REF, our bit-
sequences are 25 – 34% more effective in correctly invalidating
items than Jing’s.

Now let us consider the size of timestamps. The total size of
timestamps in Jing’s report is 32log(k), while it is 32n in ours,
where log(k) and n are the numbers of bit-sequences in
respective reports. In our report, there are 3 (i.e., n = 3)
timestamps, while in Jing’s report, it has log(k) timestamps
(log(1,000)=10, log(2,000)=11, …, log(5,000)=13 for 1,000,
2,000, …, 5,000 updates, respectively, during the last window).

Clearly, we use much less timestamps and consume less space
than Jing’s report. In Table 2, we show the results for the non-
uniform distribution described in [13]. According to the
Theorem, we divided the window at 3.1008 and 5.4008. Again,

our bit-sequences are shorter (about 80% of Jing’s), and yet

achieve much better (or lower) false invalidation rates (76% of
Jing’s). As in the uniform case, the FIRs remain the same in
each approach for different item update rates. The FIRs are
around 17.6% in our approach, compared to 23.1% in Jing’s. In
terms of the REF measure, our bit-sequences are 31- 40% more
effective than Jing’s If there is enough bandwidth for longer
reports, in our approach we can easily divide the window into
more subintervals (i.e., more bit–sequences) to achieve lower
false invalidation rates. However, this may not be possible for
Jing’s approach because the number of bit-sequences (i.e.,
log(k)) is completely determined by the number of updates (k)
in the window period. That is, even though there is still
bandwidth left for use, Jing’s approach simply cannot use it to
reduce the false invalidation rates. Excess bandwidth may be
used to reduce false invalidation by increasing the number of
bit-sequences in our approach.

In summary, our approach clearly outperforms Jing’s approach
in terms of the length of bit-sequences, number of timestamps,
effectiveness of reducing FIR, and flexibility in using excess
bandwidth to reduce false invalidation rates. Our near-optimal
solution yields almost identical results as the optimal one. As
mentioned earlier, the near-optimal solution can be applied to
any distributions without a priori knowledge of the
distributions; it is fast and agile.

7. CONCLUSIONS
In this paper, we discussed the composition of invalidation
reports to achieve minimal false invalidation rates. Based on the
bit-sequence approach [11] and our discussion in [13], we
redesigned the hierarchy of the bit-sequences, taking into
account the reconnection patterns of mobile clients. We have
shown that by using a numerical approximation of integral in
solving the nonlinear system, we can derive a near-optimal
partition of the window, which does not require a priori
knowledge of the reconnection pattern. It is dynamic, fast, and
yields almost identical results as the optimal one. We have
performed simulations to show that our approach of composing
reports indeed has better performance than Jing’s in terms of
the length of bit-sequences, number of timestamps,

10% 20% 30% 40% 50%

Method

Update
Rate

Length FIR Length FIR Length FIR Length FIR Length FIR

Near-Opt 1731 0.1883 3399 0.1879 5065 0.1884 6733 0.1882 8397 0.1881

Optimal 1731 0.1883 3398 0.1878 5065 0.1884 6732 0.1881 8397 0.1880

Jing's 2281 0.2008 4313 0.2004 6344 0.2001 8345 0.2006 10378 0.2005

Ratio 0.7589 0.9379 0.7879 0.9371 0.7984 0.9412 0.8067 0.9377 0.8091 0.9378

REF 1.337 1.289 1.271 1.259 1.253

Table 2: Non-uniform Distribution

123

effectiveness of reducing FIR, and flexibility in using excess
bandwidth.

8. REFERENCES

[1] Axelsson."Iterative Solution Methods", Cambridge
University Press, 1994.
[2] D. Barbara, “Mobile Computing and Databases-A Survey”,
IEEE Transactions on Knowledge and Data Engineering, pp.
108-117, Vol. 11, No. 1, Jan/Feb, 1999
[3] D. Barbara and T. Imielinski. “Sleepers and workaholics:
Caching strategies for mobile environments”. Proc. of the ACM
SIGMOD Conference on Management of Data, pp.1-12, May,
1994.
[4] Christof Bornhövd, Mehmet Altinel, Sailesh
Krishnamurthy, C. Mohan, Hamid Pirahesh, Berthold
Reinwald, “DBCache: Middle-tier Database Caching for
Highly Scalable E-business Architectures”, Proceedings of the
2003 ACM SIGMOD International Conference on Management
of Data.
[5] Budiarto , Shojiro Nishio , Masahiko Tsukamoto,” Data
Management Issues in Mobile and Peer-to-peer Environments”,
Data and Knowledge Engineering, v.41 n.2-3, pp.183-204,
2002.
[6] J. Cai, K, Tan, and B. Ooi, “On Incremental Cache
Coherency Schemes in Mobile Computing Environments,”
Proc. of IEEE Data Engineering, Pg. 114-123, April, 1997
[7] M. J. Carey, M. J. Franklin, M. Livny & E. J. Shekita, “Data
Caching Tradeoffs in Client-Server DBMS Architectures”,
Proc. of ACM 1991 SIGMOD, pp. 357-366, May, 1991.
[8] H. Chung, H. Cho, “Data Caching with Incremental Update
Propagation in Mobile Computing Environments”, Proc.
Australian Workshop on Mobile Computing and Databases and
Applications, pp. 120-134, Feb. 1996.
[9] A. K. Elmargarmid, J. Jing, and T. Furukawa, "Wireless
Client-Server Computing for Personal Information Services and
Applications," ACM SIGMOD Record, pp. 43-49, Dec. 1995.
[10] M. Franklin, M. Carey, and M. Livny. “Global Memory
Management in Client-Server DBMS Architectures”. Proc. of
VLDD, pp. 596-609, August 1992.
[11] C. G. Gray and D. R. Cheriton. “Leases: An Efficient
Fault-Tolerant Mechanism for Distributed File Cache
Consistency”. Proc. of SOSP, pp. 202-210, Feb. 1989.
[12] Holliday J, Agrawal, D., El Abbadi, A, “Planned
Disconnections for Mobile Databases”, Proceedings of 11th
International Workshop on Database and Expert Systems
Applications, pp. 165 – 169, 2000.
[13] Wen-Chi Hou, Meng Su, Hongyan Zhang, Hong Wang
"An Optimal Construction of Invalidation Reports for Mobile
Databases" Proceeding of the 10th International Conference on
Information and Knowledge Management (CIKM 2001)
Atlanta, November, 2001.
[14] T. Imielinski, S. Vishwanath, and B. R. Badrinath.
“Energy efficient indexing on air”, Proceedings of the ACM
SIGMOD Conference on Management of Data, Minneapolis,
Minessota, 1994.

[15] J. Jing, A. K. Elmagarmid, A. Helal, and R. Alonso. “Bit-
Sequences: An Adaptive Cache Invalidation Method in Mobile
Client/Server Environments”. ACM/Baltzer Journal of Mobile
Network and Applications, 2(2), pp.115-127, 1997.
[16]Anurag Kahol, Sumit Khurana, Sandeep K. S. Gupta,
Pradip K. Srimani:” A Strategy to Manage Cache Consistency
in a Disconnected Distributed Environment.” IEEE
Trans.Parallel Distrib.Syst. 12(7):686-700, 2000.
[17] Kwong Yuen Lai, Zahir Tari, Peter Bertok, “Cost Efficient
Broadcast Based Cache Invalidation for Mobile Environments”,
18th ACM Symposium on Applied Computing, pp. 871-877,
2003.
[18] Lee, K.C.K, Hong Va Leong, Si, A, “Semantic Data
Broadcast for a Mobile Environment Based on Dynamic and
Adaptive Chunking”, IEEE Transactions on Computers, Vol.
51 , No. 10 , pp. 1253 – 1268, 2002.
[19] Yan Sheng Lu, Xiong Kai Shao, ”Improve Performance of
Disconnected Operation through Submitting by Probability and
Transferring Transactions in Groups “, International conference
on Computer Networks and mobile Computing pp. 502-505,
2003.
[20] Pavan Nuggehalli , Vikram Srinivasan , Carla-Fabiana
Chiasserini, “Energy-efficient Caching Strategies in Ad Hoc
Wireless Networks”, Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking and Computing,
pp. 25-34, 2003.
[21] Xiong-Kai Shao,Yan-Sheng Lu, “Maintain Cache
Consistency in Mobile Database Using Dynamical Periodical
Broadcasting Strategy” , Proc of 2nd International Conference
on Machine Learning and Cybernetics, pp. 2389-2393, 2003.
[22] M., Stonebraker, et al, “Third–Generation Data Base
System Manifesto,” SIGMOD Record 19, 3, pp. 241- 234, Sept.
1990.
[23] J. Strain, R. Acuff, T. Rindfleisch & L. Fagan, “A Pen-
Driven, Mobile Surgical Database: Design and
Implementations,”http://www.smi.stanford.edu/projects/mobile/
amia94-2.html, 1994.
[24] Waluyo, A.B, Srinivasan, B, Taniar, D, “A Taxonomy of
Broadcast Indexing Schemes for Multi Channel Data
Dissemination in Mobile Databases", 18th International
Conference on Advanced Information Networking and
Applications (AINA), Vol. 1 , pp. 213 – 218, 2004.
[25] Y. Wang, “Cache Consistency and Concurrency Control in
a Client/Server DBMS Architecture”, Proc. of ACM SIGMOD
1991, pp. 367-376, May, 1991.
[26] Zhijun Wang, Sajal Das, Hao Che and Mohan
Kumar,”SACCS: Scalable Asynchronous Cache Consistency
Scheme for Mobile Environments”, Proc of 23rd International
Conference on Distributed Systems Workshop, pp. 797-802,
2003.
[27] K. Wilkinson & M. Neimat, “Maintaining Consistency of
Client-Cached Data”, Proc. of 16th VLDB, pp. 122-133,
Aug.1990.
[28] K.L. Wu, P.S. Yu and M.S. Chen “Energy-efficient
Caching for Wireless Mobile Computing”, Proc. 12th
International Conference on Data Engineering, pp. 34-50, Feb.
1996.

124

