
Cache Invalidation Scheme for
Mobile Computing Systems with Real-time Data*

Joe Chun-Hung Yuen, Edward Chan, Kam-Yiu Lain and H. W. Leung
Department of Computer Science

City University of Hong Kong
{ csjyuen, csedchan, cskylam } @cityu.edu.hk

Abstract
In this paper, we propose a cache invalidation

scheme called Invalidation by Absolute Validity Interval
(IA VI) for mobile computing systems. In IA VI, we define
an absolute validity interval (A VI), for each data item
based on its dynamic property such as the update
interval. A mobile client can verify the validity of a
cached item by comparing the last update time and its
A VL A cached item is invalidated if the current time is
greater than the last update time plus its A VI. With this
self-invalidation mechanism, the IA VI scheme uses the
invalidation report to inform the mobile clients about
changes in AVIs rather than the update event of the data
items. As a result, the size of the invalidation report can
be reduced significantly. Through extensive simulation
experiments, we have found that the performance of the
IVAI scheme is significantly better than other methods
such as bit sequence and timestamp.

1 Introduction
Recent advances in mobile communication

technology have greatly increased the functionality of
mobile information services. An important application
of mobile computing systems is to provide various types
of real-time information such as stock quotes, weather
conditions and traffic information, to mobile clients
[SLR99]. A number of efficient data dissemination
strategies have been proposed in recent years. Amongst
the proposed methods, most are based on data broadcast
as it is very cost effective in disseminating a substantial
amount of information to a large number of mobile
clients [AAFZ95, DCKV97].

In a mobile computing system, in order to reduce
the data access delay, some data items are cached at the
client machines. Thus, efficient cache invalidation
methods are critical to the whole system performance
[BI94, HL97, JEHL95, WYC96]. One of the most
important considerations in the design of cache
invalidation scheme is to minimise the required bandwidth
for broadcasting the invalidation reports as well as the size

of the invalidation reports. Various efficient methods have
been proposed for preparing the cache invalidation reports
such as the bit sequence and time-stamp methods [BI94,
JEHL95]. In this paper, by exploring the fact that the
values of many data items in mobile computing systems
have real-time properties, we propose a cache invalidation
scheme, called Invalidation by Absolute Validity Interval
(/VA/). In the scheme, we define an Absolute Validity
Interval (AVI) to estimate the life-span of the data value
for a data item. By estimating the AVI values of the data
items, it is possible to reduce the size and frequency of
invalidation messages required to maintaining the
coherence of the cached data items. Extensive simulation
experiments have been performed to compare IVAI with
other cache invalidation schemes, and the results show that
IAVI gives the best performance in most scenarios.

2 Related Work
Caching frequently accessed data items on the client

side has been recognised as an important technique to
reduce access delay and network traffic in a limited
bandwidth mobile environment. Barbara and Imielinski, in
one of the earliest work in this area, proposed three
different variants of this approach - Broadcasting
Timestamp (TS), Amnesic Terminals (AT) and Signatures
(SIG) - depending on the expected duration of network
disconnection [BI94]. However, the algorithms are only
effective if the clients have not been disconnected for a
period exceeding an algorithm specific parameter.
Otherwise the entire cache has be to be discarded even
though some of the cached data items might still be valid.

Jing eL al. proposed a bit-sequence scheme (BS) in
which the invalidation report consists of bit sequences
associated with a set of tirnestamps [JEHL95]. Using the
information embedded in the bit sequences, a client needs
only to invalidate its entire cache if more than half of the
data items have been updated in the server since its last
invalidation time. This ingenious approach has the
drawback of greater complexity and much larger

* The work described in this paper was partially supported by a grant from the Research Grants Council of Hong Knog SAR, China
[Project No. CityU1097/99E] and a grant from CityU (Project No. 7001069).

34 S I G M O D R e c o r d , Vol . 29 , N o . 4, D e c e m b e r 2 0 0 0

invalidation reports than the TS and AT methods,
particularly when the number of data items is large.

Wu et. al. [WYC96] have modified the TS and AT
algorithms to include cache validity check after
reconnection. The proposed algorithms however do not
solve the basic problem of TS in that the entire cache will
have to be dumped ff the disconnection time is greater than
its update history window [WYC96]. More recently, a
family of adaptive cache invalidation algorithms is
proposed [HL97]. The essence of these algorithms is that
the type of invalidation report to be sent is determined
dynamically based on system status such as disconnection
frequency and duration as well as update and query
pattern.

3 Absolute Validity Interval (AVI)

An important characteristic of the data items in a
mobile computing system is that they possess different
degrees of real-time properties, e.g., they often represent
the current status of the objects in the external
environment, whose value may change quite rapidly
[SLR99]. Examples include news updates and the latest
market prices of stocks. Due to the real-time properties
of the data items, updates, which are captured by some
external devices or obtained from data vendors, are
required to maintain the validity of the data values.
Usually, stale (invalid) data values are much less useful.

Basically, there are two types of update arrival
patterns: periodic and sporadic. For example, the arrival
of the most current price of a stock is sporadic. For some
data items, it may not be necessary to track all the
changes in values. It might be sufficient to only sample
the changes to the status of the actual objects
periodically (an example is road traffic conditions)

Based on the real-time properties of a data item, we
can assign a validity interval to the data item to
characterize how rapidly the data value will change, e.g.,
the average fife-span of a data value. We call this
assigned validity interval the Absolute Validity Interval
(AVI). For some data items, such as weather forecast, a
larger AVI can be safely assigned, while for real-time
stock quotes, a shorter AVI on the order of seconds will
be needed. Although the updates for some data items are
sporadic, it is assumed that it is still possible to define an
approximate update interval value for them.

The assigned AVI value of a data item is not
necessarily equal to the actual life-span of the values of
the data item. In fact, this is not possible for sporadic
updates. The AVI value in this case only needs to be a
reasonably good approximation to the average life-span
of the values of the data item. In practice, the AVI of a
data item can be derived based on the previous update
intervals of the data item. It is assumed that each update
is associated with a time-stamp, which is its generation
time. After the completion of the update, the time-stamp

will be recorded with the updated data item. The time-
stamp together with the AVI of the data item can be
used to determine its validity.

The AVI of a data item can also be used as an
estimator for the validity of a data value at a client
cache. A data item cached at a client has to be updated
from time to time by the server in order to maintain
coherency between the two. The update intervals can be
used to define the validity periods of a cached item. A
data item is updated at the beginning of each update
interval. Hence, it is valid from the time it was cached
until the time of the next update. In other words, as
shown in Figure l(a) the time from the n ~ update on the
data item to the time of the (n+l) th update is the validity
period of the data item after n th update. The value from
the n ~ update is stale after the arrival of the (n+l) ~
update.

Since the validity period of a data item is only
known after the next update arrives, i.e. the validity
period of a data item after the (n-l) th update is not
defined until the n ~h update has occurred. The
differences between the validity period and AV1 are
shown in Figure 1 (b). We define the False Valid Period
(FVP) as the time period where AVI overestimates the
validity period of the data item and the False Invalid
Period (FIP) as the time period where AVI
underestimates the validity period. If FVP is greater than
zero, the actual update interval of the data item is shorter
than expected. The values of FVP should be kept small,
since during FVP a client will consider an invalid data to
be valid. On the contrary, if FIP is greater than zero, the
actual update interval is longer than expected. A client
will consider a cached item to be invalid during that
period even though it is actually still valid. By suitably
adjusting the AVI based on the update intervals, the
values of FVP and FIP can be kept rather small.

(n-1)th update (n)th update (n+l)th update

1 1 1
m Time

Valid period of (n-I)th updated copies @. Valid period of (n)tbupdated copies ,[

(a)
(n-1)th update (n)th update (n+l)th update

1 1 1
p Time

~ Valid period or (n-I)th updated copies ~ Valid period of (n)tbopdaled copies DI

i Absolute validity Int, rvdi _]_ Absolute validity interval
T 4

..,....dperiod
(b}

Figure 1 (a) Validity period, (b) AVI model

4 Cache Invalidation by AVI

4.1 The Principles

$IGMOD Record, Vol. 29, No. 4, December 2000 35

We have defined AVI and the validity period of
data items at the client cache. Now we proceed to
describe how they can be used to support an efficient
cache invalidation scheme, which we call lnvalMation
by Absolute Validity Interval (IAVI). Since a cached
item is assumed to be invalid if its AVI has expired, no
explicit invalidation notification is needed to invalidate
the cached items in the mobile clients. In the other
words, a client can invalidate its cached items by
calculating the items' last update times and the AVI of
the data items.

In practice, however, as explained in the previous
section that the arrivals of some data items can be
sporadic, the optimal AVI value of a data item may vary
with time. This change in the AVI of a data item will
either shorten its FVP or enlarge its FIP. First, we
consider the case that the new AVI of a data item is
smaller than the previous one. In this case, the data item
should be invalidated before its AVI expires. If the
client uses the previous AVI, FVP will be longer than
the previous estimate. The change in AVI is typically
caused by an update of the data item, and hence the
cached item must be invalidated.

The second case is for a data item whose new AVI
value is longer than the previous one. In this case no
notification message is needed, since the cached item
will be invalidated automatically when its AVI expires.
FIP in this case will be increased although this is still
not desirable. Although it is possible to send explicit
notifications to mobile clients on the new AVI value,
this must be done before the AVI of the cached item
expires. Mobile clients experience frequent link
disconnection, and it is hard to verify the new AVI to
the current cached copy of a disconnected mobile client.

Thus, we conclude that an invalidation report is
needed to notify the client when the AVI value of a data
item is reduced but not when it is increased. When the
AVI of a data item is reduced, notification is needed to
inform the mobile client in order to minimize FVP.
Otherwise the client might use invalid copy of the data
in its cache. However, for the case where the AVI of a
data item has increased, it is better to do nothing and let
the next update of the data item refresh the cache.
Suppose the server sends a report to inform the clients of
the new AVI i.e. the cached item is still valid. Now if
after a short time the data item is updated before the new
AVI expires, an additional invalidation message will
have to be sent. All these will result in a substantial
increase in overhead. Moreover, all the additional effort
is wasted if the cached data item is not accessed after the
original AVI has expired. It is preferable to accept a
larger FIP than trying to update AVI, and let the client
make an explicit request when the data is actually
accessed.

4.2 Server Algorithm

The server algorithm consists of two parts,
invalidation report generation and AVI adjustment. AVI
adjustment refers to the modification of the AVI values
of the data items to achieve the desired level of the
cache coherence.

4.2.1 Invalidation Report Generation
In order to notify the mobile clients of the changes

in AVI values, invalidation reports are generated and
disseminated periodically. The invalidation report
contains a data ID and its update time, whose update
interval must satisfy the following expression:

Tupdmti.n) - Tupdaerti~-I) < AVIci) x (1 - Fi) eqn. (1)
where TuNate0.n) is the timestamp of n ~ update on data
item i; AVI0) is the AVI of data item i; and Fi is the AVI
tolerance for data item i.

According to the above expression, if the update
interval of data item i is longer than its AVI plus its AVI
tolerance, it will be included in the invalidation report as
this implies that the life-span of a data value is shorter
than expected. AVI tolerance is designed to tackle
randomness in update interval. Since it is not possible to
predict the occurrences of update events, the update
interval and AVI will not be perfectly matched. In order
words, the current AVI is considered valid if the
difference between the update interval and the AVI of a
data item is small. The tolerance limit is data dependent,
and different kinds of data items may have different
degrees of tolerance. However, for data items with the
same AVI tolerance, the one with a shorter AVI will
have a smaller tolerance limit according to the above
expression. This is because a shorter AVI implies that
the data item is updated frequently and the value is
relatively dynamic, and hence a tighter tolerance is
desirable to minimize the FVP.

4.2.2 AVI Adjustment
Due to the dynamic nature of a data item,

continuous adjustment on its AVI is needed to minimize
the values of FVP and FIP. Since AVI is estimated by
past update intervals, dramatic shifts of the mean update
interval will lead to a large FVP or FIP. Furthermore,
the continuous mismatch of AVI and update intervals
means that a data item will be included in the
invalidation reports for an extended period of time,
increasing the invalidation report size and degrading
overall system performance.

The minimum, mean and maximum values of the
historical update intervals can be used to estimate the
AVI of a data item depending on the desired degree of
cache coherence. Using the minimum update interval as
the i tem's AVI will result in the smallest AVI and the
highest degree of cache coherence as FVP is minimized.
However, the drawback is that FlIP will be large. The
reverse is true when the maximum historical update

36 S I G M O D R e c o r d , V o l . 29 , N o . 4, D e c e m b e r 2 0 0 0

interval is used. In the application of minimum and
maximum values for the calculation of the new AVI, the
value should be taken from the set of n preceding
updates. This requires more complex handling but does
allow the AVI value to adapt to changes in update
intervals more effectively.

Similarly, when the mean value of update interval is
used to estimate AVI, the AVI of a data item is obtained
by taking the average for a number of preceding update
intervals. Using the mean allows us to balance FIP and
FVP and this approach is used in our simulation
experiments described in Section 5 below.

4.3 Cfient Algorithm
Cache invalidation on the client side is divided into

two parts, implicit invalidation and explicit invalidation.

4.3.1 Implicit Invalidation
The validity of a cached data item is determined by

the update time (the time stamp of data item) and the
AVI value. When a cached item is referenced by a
transaction from a mobile client, the transaction will
examine the update time and the AVI value of the item.
If the sum of the update date time and the AVI value is
smaller than the current time, the item is assumed to be
invalid. (Note that it may be valid but the transaction
does not know, which is the case during FIP).

By using implicit invalidation, traffic cost for
invalidation is minimized since a client can invalidate its
cached items using the method described above without
waiting for additional information from the server.
Moreover, when the client reconnects to the mobile
network after disconnection, it can invalidate its cached
copy without waiting for the next invalidation report
from mobile server. If a cached item's AVI has expired,
the data item can be invalidated without extra
verification. Note, however, that if the cached copy
seems to be valid based on its AVI, the client needs to
reference the first invalidation after reconnection report
to determine the validity of its cached items.

4.3.2 Expficit Invalidation
Besides implicit invalidation, a cached item can

also be invalidated explicitly by invalidation reports
broadcast from the server. If the update interval of a data
item violates the AVI assumption (eqn. 1), its ID will be
included in the invalidation report and broadcast to the
mobile clients. Note that in the explicit invalidation
scheme, the size of an invalidation report is much
smaller than other techniques such as Bit Sequence (BS)
and timestamp (TS). Unlike BS and TS, which include
every update event in invalidation reports within certain
period or interval, the invalidation report of the AV1
scheme only contains the entries for the data items
whose AVIs have been modified and meet the condition

defined in equation (1). Moreover, if AVI and the
update interval of a data item are reasonably well
matched, many of the update events do not generate
explicit invalidation reports. This major advantage will
be verified in the next section by our simulation studies.

5 Performance Study
We have compared the performance of IAVI with

two efficient schemes, Bit-Sequence (BS) [JEHL95] and
Timestamp (TS) [BI94]. Furthermore, an idealized
cache invalidation scheme called Perfect Server (PS) is
also developed for comparison purposes. In PS, it is
assumed that the system has full knowledge of the
content of all the mobile clients' caches. As a result, the
invalidation reports generated by PS will only contain
the update information of the data items cached in the
mobile client's caches, thus, releasing more broadcast
bandwidth for data dissemination. Such a scheme would
be too costly to implement in real-life as it requires the
generation of updates regarding the content of mobile
client caches continuously to the mobile server.

5.1 System Model and Parameters

Figure 2 depicts the simulation model of a mobile
computing system, which uses data broadcast to
disseminate data items. Data items are categorized into
several groups and stored in the database at the mobile
server. The Update Process continuously generates
updates to update the data items at the mobile server
according to the group's update interval. The update
logs are generated and stored in the System Monitor
temporarily. The Mobile Server retrieves the logs
periodically for generating invalidation reports.

17"

J ,,..,,r--T i.i i I I t -C)
Oala B r o e d c a s ~

t~antb m Rm A ..,tv:'~.~...-"

I o D/Picked
Sltltic elc mer Ced~e]zzeelMalieR Repm't

I I I I I I I 1 I'1 f ' l I I I I

~lidltiorl I~epOtl ~ Data Picket

Figure 2 Simulation model

Mobile clients generate transactions and each
mobile transaction consists of a set of data requests.
Once a transaction is generated, the mobile client will

SIGMOD Record, Vol. 29, No. 4, December 2000 37

try to fulfill the data requirements of the transaction with
its local cache. For data requests that cannot be fulfilled
by the cached items, a message will be sent to the
mobile server to request the data explicitly. If the
validity of a cached item cannot be determined (for
example after the client has just reconnected to the
network after disconnection), the data request message
will be deferred until the invalidation report is received.
Once all the data requests of a transaction are fulfilled,
the transaction will commit and the mobile client will
either go into a doze mode or generate another
transaction after a think time. The client is disconnected
from the mobile network when it enters the doze mode.

The baseline setting of the system parameters used in
the simulation are listed below:

Database size 100000 items
Items size* 256 bits
Update interval 3600 sec.
Update interval variance -i 0%- + 10% uniform
Update processes [[roup 4 8roups
Group size distribution 5k, 10k, 15k and the rest of

database size
1.0, 2.0, 4.0 and 8.0 Relative update interval**

Number of mobile clients
Disconnect probability, interval
Access hot spot, probabilio/
Mean think time, query length
Cache size, replacement policy

100
0.1,4000 sec.
100 items, 0.8
100 see., 10 items
50 items, LRU

*An extra 32 bits arc required in 1AV1 scheme to store the AVI value
of the data item.
** The relative update interval is a multiple of update interval.
Mobile client parameters

5.2 Results
5.2.1 Impac t of Database Size

Figures 3 and 4 depict the mean response time of
the transactions and invalidation report size against the
database size, respectively. In Figure 3, we observe that
PS and IAVI outperform TS and BS (smaller mean
response time) and their performance is relatively
unaffected by changes in database size. The
performance of BS is affected significantly by the size
of the database. When the database size is large, it is
even worse than TS whose performance is consistently
much worse than PS and IAVI. The poor performance of
BS when the database size is large is due to the large
invalidation report as can been seen in Figure 4. The
size of invalidation report increases with the size of the
database according to the formula 2N + log2N x
Time_bit_size, where N is the size of the database and
Time_bit_size is the number of bits needed to represent
update time [JEHL95] whereas the invalidation report
sizes of TS, IAVI and PS depend on the update volume.

5.2.2 Impact of Update Rate
As shown in Figure 5, the mean response time of

TS decreases dramatically with an increase in update
interval while those of the other schemes are relatively

unaffected. The drop in response time of TS is due to the
decrease in the invalidation report size when the update
interval is longer, as can be seen in Figure 6. As the
invalidation report of TS includes all update records
within the window frame, report size is heavily
influenced by the update interval. However, IAVI only
records the update records that violate its AVI value and
hence is less affected by changes in update interval.

50
45
40

3O
25

~ 2 0 - o
~15
~ lO

~ o
35000 55000 75000

- -~-TS
• BS

IAVI
o PS

95000 115000
Database Size (items)

Figure 3: Mean Response Times vs Database Size

3OO000

2500OO

2OOO00

15oooo

.~ 100000

50000

---b-TS
• BS
x IAVI

& .~ & & L
T

0 "L ~ Ia n -- , , , ,

35000 55000 75000 95000 115000
Database Size (items)

Figure 4: Invalidation Report Size vs Database Size

3001

"~" 250 '~, A TS

._ ~ IAVI

a - -

= oT
360 1360 2360 3360

Update Interval (sec)

Figure 5: Mean Response Time vs Update Interval

5.2.3 Impac t of the Cache Size
Figures 7 and 8 depict the performance of the cache

invalidation schemes when different cache sizes are

38 S I G M O D R e c o r d , V o l . 29 , N o . 4, D e c e m b e r 2 0 0 0

used. As expected, an increase in cache size reduces the
mean response time and increases the cache hit rate.
IAVI outperforms TS and BT significantly especially
when the cache size is small. It is due to the fact that the
false valid rate increases with cache size for all schemes
but IAVI is relatively unaffected. This is because when
the cache size increases, it is more likely that stale items
will remain in the cache, resulting in an increase in the
false valid rate. However, with IAVI, these items will be
removed automatically when their AVIs expire.

I--

6OOOOO

500000

4OOOOO

3OOOOO

20000O

1OOOOO

0
36O

L TS
• BS

a PS

b----- - - n • n

2 1360 Inte2360sec)rval(3360 Update

Figure 6: Invalidation Report Size vs Update Interval

4•• = TS
* BS

~40 × IAVI

E 3 0

20 t

~: lo-t
C 5-t
Q;) I

0
20 40 60 80 10E

Cache Size (items)

Figure 7: Mean Response Time vs Cache Size

6 C o n d u s i o n s

In a mobile computing environment, mobile clients
are usually equipped with local cache for reducing
latency in data accesses. However, the frequent
disconnection of mobile clients from the network and
updates occurring at the mobile server introduces the
problem of cache incoherence. Several cache
invalidation schemes, such as Timestamps and Bit-
sequence have been proposed to maintain cache
coherence efficiently. The former sends out detailed
update records within the predefined window frame to
its client for cache invalidation while the latter organizes
and records the update records in a report whose size
depends on the database size. Therefore, the invalidation
reports of both the Timestamps and Bit-sequence

schemes are dependent on the actual updates occurring
within the window frame and the size of database.

In this paper, we proposed the IAVI scheme for
cache invalidation based on the real-time properties of
the data items We define an Absolute Validity Interval
(AVD for each data item and use this property to self-
invalidate items in the client cache. When a mobile
client accesses a cached item, the update timestamp and
AVI of the data item can verify the validity of the item.
The cached item is invalidated if the access time is
greater than the last update time by its AVI. With this
self-invalidation mechanism, although IAVI uses
invalidation reports to inform the mobile clients about
changes in AVI, the size of an invalidation report can
still be reduced significantly.

0.6-

0 . 5 - ~ . ~

0.4.

~. 0.3.

0.2. ~ * BS
~ x lAW

o 0.1. a PS

0
20 40 60 80 10(3

Cache Size (items)

Figure 8: Cache Hit Rate vs Cache Size
R e f e r e n c e s
[AAFZ95] Acharya, S., Alonso, R., Franklin, M., Zdonik, S.,
"Broadcast Disk: Data Management for Asymmetric
Communication Environments", Proc. ACM SIGMOD, 1995.
[BI94] Barbara, D. and Imielinski, T., "Sleepers and
Workaholics: Caching Strategies in Mobile Environments",
Proc. ACM SIGMOD, 1994.
[DCKV97] Datta, A., Celik, A., Kim, J. and VanderMeer,
D.E., "Adaptive Broadcast Protocol to Support Power
Conservant Retrieval by Mobile Users", Proc. 13th
International Conference on Data Engineering, 1997.
[HL97] Hu, Q. and Lee, D.L., "Adaptive Cache Invalidation
Methods in Mobile Environments", Proc. 6th IEEE Intl. Syrup.
on High Performance Distributed Computing Environments,
1997.
[JEHL95] Jing, J., Elmargarmid, A., Helal, A. and Aionso, F.,
"Bit-Sequences: an Adaptive Cache Invalidation Method in
Mobile Client/Server Environments", Technical Report CSD-
TR-94-074, Purdue University, 1995.
[SLR99] Srinivasan, R., Liang C., Ramamritham, K.,
"Maintaining Temporal Coherency of Virtual Data
Warehouse", Proc. Real Time Systems Symposium, 1999.
[WYC96] Wu, K.L., Yu, P.S. and Chen, M.S., "Energy-
efficient Caching for Wireless Mobile Computing", Proc. 2tY h
International Conf, in Data Engineering, Feb 1996

SIGMOD Record, Vol. 29, No. 4, December 2000 39

