
Wireless Networks 5 (1999) 489–502 489

Energy-efficient selective cache invalidation

Jun Cai and Kian-Lee Tan
Department of Computer Science, National University of Singapore, Lower Kent Ridge Road, Singapore 119260

In a mobile environment, users of portable computers can query databases over the wireless communication channels. To reduce
contention on the limited bandwidth of the wireless channels, frequently accessed data are cached at the mobile clients. However,
maintenance of the cache consistency is complicated by the mobile clients’ frequent disconnection to conserve energy. One promising
approach in the literature is for the server to periodically broadcast invalidation reports from which clients can salvage their cache content
that are still valid. This mechanism is, however, not energy efficient as clients are expected to examine the entire invalidation report.
In this paper, we reexamine the cache coherency problem and propose three novel cache coherency schemes. While these schemes are
based on periodic broadcast of invalidation reports, they allow clients to selectively tune to the portions of the invalidation report that
are of interest to them. This allows the clients to minimize the power consumption when invalidating their cache content. We conducted
extensive studies based on a simulation model. Our study shows that the proposed schemes are not only effective in salvaging the cache
content that are still valid (and hence result in lower access time), but are also efficient in energy utilization. While none of the proposed
algorithms is superior in both the access time and energy efficiency, one of the schemes, Selective Cache Invalidation, provides the best
overall performance.

1. Introduction

Recent advances in wireless networks and computer
down-sizing technologies have led to the development of
the concept of mobile computing. In the near future, mil-
lions of mobile users will be equipped with small, yet
powerful battery-operated palmtops. Through the wireless
links, these portable equipments will become an integrated
part of existing distributed computing environments, and
mobile users can access data stored at information servers
located at the static portion of the network even while they
are on the move. In our increasingly mobile world, the
ability to access information on demand in any location
and at any time can satisfy people’s needs as well as confer
them with a competitive advantage. As such, the potential
market for mobile computing applications has been esti-
mated to be billions of dollars annually [8]. For example,
passengers will access airline schedules, investors will ac-
cess stock activities and travelers will access weather and/or
traffic conditions.

For mobile computing to be widely accepted, there are
two obstacles to be overcome. First, for palmtops that op-
erate on AA batteries, power conservation is a key issue.
According to [1,8], for an “average user”, the power source
is expected to last 2–3 hours before replacing or recharging
becomes necessary. What makes it worse is the prediction
by battery experts of the modest improvement in battery
capacity of only 20–30% over the next 5–10 years [6,14].
Therefore, mobile computers would frequently be discon-
nected from the network or be kept in weak connection sta-
tus to save energy. Second, the bandwidth of the wireless
channel is also very limited, varying from 1.2 Kbps for slow
paging channels, through 19.2 Kbps (e.g., CDPD) to about
2 Mbps for the wireless LAN. This calls for mechanisms
(such as minimizing transmissions) to avoid the contention

of the limited bandwidth. These two issues pose a great
challenge to researchers in the community.

Caching of frequently accessed data at the mobile clients
has been considered to be a very useful and effective mech-
anism in conserving bandwidth and energy. When the data
items are available in the cache, mobile clients can avoid
uplink requests (provided these objects are valid). As ar-
gued in [2,3], reduced transmission implies better utilization
of the limited bandwidth. Moreover, energy does not need
to be spent in transmitting data. Note that transmitting data
consumes more energy than receiving data, and energy con-
sumed is proportional to the fourth power of the distance
between the clients and the server and can be affected by
factors such as terrain, season and rain. In addition, mini-
mizing transmissions can also result in cost benefits, espe-
cially, if one is billed on a pay-per-packet basis.

However, the frequent disconnection and mobility of
clients complicate the issue of keeping the cache consis-
tent with that of the server. One promising approach in the
literature is for the server to periodically broadcast object
invalidation reports. An object invalidation report contains
information about objects that have been updated recently.
Based on the report, clients only need to invalidate objects
that are found in the report and can salvage their cache
content that are still valid. This mechanism is, however,
not energy efficient as clients are expected to examine the
entire invalidation report.

In this paper, we reexamine the cache coherency problem
and propose three novel cache coherency schemes. While
these schemes are based on periodic broadcast of inval-
idation reports, they are unique in two ways. First, all
the proposed schemes adopt a group-based approach, i.e.,
broadcast a group invalidation report. The Group Cache
Invalidation scheme broadcasts a group invalidation report
while the Hybrid Cache Invalidation scheme and the Selec-

 J.C. Baltzer AG, Science Publishers



490 J. Cai, K.-L. Tan / Selective cache invalidation

tive Cache Invalidation Scheme broadcast a pair of inval-
idation reports (an object invalidation report and a group
invalidation report). Second, all the schemes allow clients
to selectively tune to the portion of the invalidation report(s)
that are of interest to them. This allows the clients to mini-
mize the power consumption when invalidating their cache
content. We conducted extensive studies based on a simu-
lation model. Our study shows that the proposed schemes
are not only effective in salvaging the cache content that
are still valid, but are also efficient in energy utilization.
While none of the proposed algorithms is superior in both
the access time and energy efficiency, the Selective Cache
Invalidation scheme provides the best overall performance.

The remainder of this paper is organized as follows. In
the next section, we present the system model and review
related work. A detail discussion of the basic cache co-
herency scheme that has been proposed in the literature
is also given. Section 3 presents our proposed cache co-
herency schemes. The simulation model and the simulation
results are presented in section 4. In section 5, we conclude
with discussions on some future work.

2. Preliminaries

2.1. The context

The model for a mobile data access system adopted in
this paper, as shown in figure 1, is similar to that speci-
fied in [3]. The mobile environment consists of two dis-
tinct sets of entities: a larger number of mobile clients
(MC) and relatively fewer, but more powerful, fixed hosts
(or database servers) (DS). The fixed hosts are connected
through a wired network, and may also be serving local
terminals. Some of the fixed hosts, called mobile support
stations (MSS), are equipped with wireless communication

Figure 1. The wireless computing environment.

capability. An MC can connect to a server through a wire-
less communication channel. It can disconnect from the
server by operating in a doze mode or a power-off mode.
(To conserve energy, hardware vendors have come up with
dual-mode processors. One example is the Hobbit Chip
from AT&T that consumes 250 mW in the full operational
active mode but only 50 µW in the doze mode [13].) Each
MSS can communicate with MCs that are within its radio
coverage area called a wireless cell. A wireless cell can
either be a cellular connection or a wireless local area net-
work. At any time, an MC can be associated with only one
MSS and is considered to be local to that MSS. An MC can
directly communicate with an MSS if the mobile client is
physically located within the cell serviced by the MSS. An
MC can move from one cell to another. The servers man-
age and service on-demand requests from mobile clients.
Based on the requests, the objects are retrieved and sent
via the wireless channel to the mobile clients. The wireless
channel is logically separated into two subchannels: an up-
link channel which is used by clients to submit queries to
the server via MSS, and a downlink channel which is used
by MSS to pass the answers from server to the intended
clients. We assume that updates only occur at the server,
and mobile clients only read the data.

To conserve energy and minimize channel contention,
each MC caches its frequently accessed objects in its non-
volatile memory such as a hard disk. Thus, after a long dis-
connection, the content of the cache can still be retrieved.
To ensure cache coherency, each server periodically broad-
casts invalidation reports. All active mobile clients listen to
the reports and invalidate their cache content accordingly.
As in [16,18], we assume that all queries are batched in a
query list, and are not processed until the MC has inval-
idated its cache with the most recent invalidation report.
We assume that each server stores a copy of the database
and broadcasts the same invalidation reports. In this way,
clients moving from one cell to another will not be affected.
Thus, it suffices for us to restrict our discussion to just one
server and one cell.

There are two metrics that can be used to characterize
information retrieval in wireless environment. The first is
the access time which is the time from the initiation of
the query to the time when all requested objects are down-
loaded. The second is the energy consumption during the
retrieval process. It is highly desirable to design mecha-
nisms that minimize both the access time and energy con-
sumption.

2.2. Related work

In this section, we review the cache coherency schemes
proposed in the literature. We also briefly review selective
tuning mechanisms which have largely been studied in the
context of “indexing on air”.



J. Cai, K.-L. Tan / Selective cache invalidation 491

2.2.1. Cache coherency schemes
The use of caching strategy requires a cache coherency

scheme to ensure that the cached objects are consistent with
those stored in the server. However, as mobile clients can
disconnect and be powered off, it becomes difficult for the
mobile clients to know whether their cached data are still
valid or not, especially after long disconnection time. Two
basic categories of cache coherency strategies have been
discussed in the literature [3]. Under the first category, the
stateful-based approach, the server knows the objects that
are cached by the mobile clients. As such, whenever there
is any update to the database, the server sends invalidation
messages to the affected clients. The other category, the
stateless-based approach, does not require the server to be
aware of the state of the clients’ cache. Instead, the server
keeps track of the update history (of a reasonable length)
and provides this information to clients either by periodic
broadcasting or as and when requested by the clients. Be-
cause the stateful approach is more complex (e.g., servers
may have to track clients who have moved out of the cur-
rent cell or disconnected, etc.), most of the existing work
are based on the stateless approach. This paper also focuses
on stateless schemes.

Barbara and Imielinski are among the first to address
cache invalidation issues in wireless environment [3].
In [3], they proposed three cache invalidation schemes
where the server periodically broadcasts object invalidation
reports to mobile clients. Mobile clients use the invalida-
tion reports to invalidate their caches accordingly. The three
schemes differ in the contents of the invalidation reports.
Under the schemes, if the disconnection time exceeds a cer-
tain threshold, clients may be forced to discard the entire
cache contents upon reconnection. This is because clients
are unable to determine the validity of their cache contents
since their disconnection. Discarding the entire cache after
a long disconnection time essentially takes away the bene-
fits of caching, especially if the update rate is low and most
of the cached objects are still valid. The effectiveness of
these schemes, thus, depend on the length of the discon-
nection, the update rate as well as the objects updated.

In [11], two promising cache invalidation techniques that
broadcast invalidation reports were proposed. The invali-
dation report for the first technique, called Bit-Sequences
(BS), contains a set of binary bit sequences with an asso-
ciated set of timestamps. The bit sequences are organized
as a hierarchical structure with the highest level having as
many bits as the number of objects in the database, and
the lowest level has only 1 bit. Clients will use the bit
sequence at level k with the most recent timestamp that is
equal to or predates their disconnection times to invalidate
their caches, and items in the sequences marked “1” will
be invalidated. The nice property of the scheme is that
clients are guaranteed that, among the data items that are
marked in the bit sequence, at least half of them have ac-
tually been updated in the database. While the scheme was
shown to be effective in reducing the number of cached
objects discarded, the size of the bit sequence broadcast is

large and can lead to poor bandwidth utilization. To cut
down on the size of the bit sequence, a scaleable version,
called Multi-Level BS (ML-BS), was proposed. Unlike BS,
each bit in ML-BS corresponds to a group. The simulation
study also showed the effectiveness of ML-BS especially
for “information feed” application domain.

In [18], several group cache invalidation strategies were
proposed. Unlike the schemes in [3,11], the basic group
cache invalidation strategy checks the cache validity with
the server after a reconnection. As such, the schemes can
retain as many valid objects as possible. To avoid excessive
usage of the uplink bandwidth, the database is partitioned
into a number of groups. The server maintains for each
group an object update history of the past WL seconds
where L is the time interval for broadcasting an invalida-
tion report, and W is an integer greater than zero. The
server can then check the validity of a group by examining
whether the objects in the group have been updated since
the mobile clients become disconnected. If any of the ob-
jects in a group has been updated, the entire group has to be
invalidated. However, under the basic strategy, some inval-
idation may be unnecessary. This is because the objects in
a group that have been updated may also appear in the most
recent invalidation report received by the clients, while the
other objects of the group have not been updated. Under
such a scenario, the group is still valid. To reduce such un-
necessary invalidation, the GCORE scheme was proposed.
GCORE distinguishes between hot and cold update objects
in each group. Hot objects are those that are included in the
most recent invalidation report that is broadcast. Instead of
examining the entire group, GCORE excludes hot objects
from the group before checking for their validity. In this
way, valid groups can be salvaged, and future downlink
cost can be significantly reduced. The reported study also
demonstrated the superiority of GCORE in terms of band-
width requirement. Unfortunately, the scheme still requires
a substantial amount of uplink requests: for each query,
uplink requests are necessary to invalidate the cache and
uplink requests are also needed to request for the desired
objects (that are not in the cache or have been invalidated).

In [15], a Broadcast-base Group Invalidation (BGI) was
proposed. The BGI scheme can be considered a broadcast-
based version of GCORE [18]. However, it is distinguished
from GCORE in several ways. First, it minimizes uplink
requests (and hence energy). Second, in GCORE, the server
is responsible for validating the cache at group levels, but
under BGI, the clients are the ones performing the task. Fi-
nally, BGI exploits grouping of hot and cold update objects,
while GCORE did not address grouping issues.

More recently, several incremental cache invalidation
schemes have also been proposed for relational operators
(such as selection, projection and join) [4].

2.2.2. Selective tuning schemes
The idea of selective tuning is first introduced by

Imielinski, Viswanathan and Badrinath [9]. The basic idea
is to organize broadcast data such that the CPU can oper-



492 J. Cai, K.-L. Tan / Selective cache invalidation

ate in the less power consuming doze mode most of the
time and “wake up” to listen to the channel only when the
data of interest are broadcast. This is achieved by building
“indexes on air”, i.e., transmitting an index along with the
data. Two schemes were studied in this paper. The (1,m)
indexing scheme broadcasts an index m times during one
full broadcast. While this method reduces tuning time, it
leads to long access time because of the additionalm copies
of indexes. The second scheme, the distributed indexing
scheme, exploits only partial replication at index level so
that several distinct indexes are used to index different por-
tion of the data broadcast. It was shown that distributed
indexing results in the best access time and tuning time.
The same authors also proposed two hash-based indexing
schemes and a flexible indexing scheme [10]. Signature-
based techniques have also been studied in [9,12]. Indexing
over non-uniform broadcast environment (where popular
data are broadcast more frequently than less popular ones)
can be found in [5,16].

2.3. The basic scheme: Object-based Cache Invalidation
(OCI)

Suppose the server contains a database DB of objects.
The server also maintains an update history of objects dur-
ing the last wL time units, where w is referred to as the
update broadcast window. The client maintains a cache
of frequently accessed objects. Each object is also asso-
ciated with a timestamp TS that reflects the last known
update time of the object. The client also keeps a vari-
able T c that indicates the last time it receives an update
report.

The Object-based Cache Invalidation (OCI) algorithm is
similar to the one proposed in [3]. Under this algorithm,
the server broadcasts the object invalidation reports (OIR)
periodically at times Ti = iL where i > 0 and L is the
broadcast interval of update report. The content of OIR at
time Ti is defined as follows:

OIRi = {[id, TSid] | id is the object identifier of an object
O ∈ DB and TSid is the timestamp of the last
update of O such that Ti − wL 6 TSid 6 Ti}.

Suppose the next invalidation report will be broadcast
at time Ti. At the client, the client maintains a list of
query objects, Qi, in the interval [Ti−1,Ti]. At time Ti,
the client listens to the invalidation report, and validates
its cache content as follows. If the difference between the
current report timestamp (i.e., Ti) and T c is bigger than
wL, the entire cache is dropped. This is because there is
no mechanism for the client to know whether the cached
content is still valid. Otherwise, the timestamps of the
cached objects are compared against the timestamps of
the objects in the report. If the object has been updated
recently, then it is invalidated; else its timestamp is up-
dated to reflect the latest timestamp at which it is known to
be valid. Figure 2 shows an algorithmic description of the
scheme.

if (Ti − T c > wL) {drop the entire cache}
else {

for (every object O with identifier id
in the client cache) {
if (there is a pair [id, TSid] in OIRi) {

if (TSc
id < TSid) {

invalidate O
remove O from cache

}
else {TSc

id ← TSid}
}

}
}
for (every object O ∈ Qi) {

if (O is in the cache) {
use the cache to answer the query

}
else {submit uplink request for object}

}
T c ← Ti

Figure 2. The object-based cache invalidation scheme.

OCI has the following noticeable characteristics:

1. The scheme is not energy efficient. To check the
cache’s validity, the whole OIR has to be downloaded.
The energy consumed solely on invalidation can be
significant and wasteful because only a very small por-
tion of information in the OIR may actually be useful
to a specific mobile client. For example, suppose a
query only involves 30 data objects that are cached lo-
cally. If the average disconnection time of a client is
around 200 seconds. Then intuitively we will set w
to no less than 200 seconds. Suppose the update rate
is about 10 obj/sec, then an OIR will contain roughly
2000 records of updated information (if the database
is very large and update is uniformly distributed on
the database). That is to say, to check the validity of
30 data objects, an OIR of 2000 records will be down-
loaded. Although the size of each OIR record could be
very small, the entirety is just too large to be ignored.
One can easily calculate that with some certain values
the energy consumption for this algorithm will be even
greater than a strategy without any caching technique.

2. The update window w plays a vital role in this algo-
rithm since the entirety of the cache will be discarded
when Ti − T c > wL. The purpose of the update re-
port is to tell the clients at what time what data have
been updated. As disconnection of a mobile client is
quite a common phenomenon in mobile environment,
it becomes important that the value of w be carefully
chosen so that the update report contains enough infor-
mation to meet the requirements of most of the clients.
Suppose the average disconnection time is fixed. Then,
it can be observed that the size of the update report de-
pends on the update rate. When the update rate is high,



J. Cai, K.-L. Tan / Selective cache invalidation 493

the size of the OIR can also be very large and takes
up a significant portion of the downlink bandwidth. To
keep the OIR small, one can use a small value for w
which would mean low cache salvage rate, i.e., fewer
objects can be salvaged by the clients. This is equally
bad since more data have to be transmitted over the
downlink channel to answer the queries. Finding an
optimal value is a non-trivial task.

3. The above drawbacks of this algorithm result in the
fact that invalidation is done at the cache level, that
is to say, each time the client processes a query, the
whole cache content should be checked for its valid-
ity in order to restore the cache to the current status.
Without doing this, the timestamp of the cache content
cannot be advanced to the timestamp of the current up-
date report, and eventually, Ti−T c will be larger than
w even if the mobile client actually disconnects for a
short while each time.

3. Energy-efficient cache coherency schemes

In this section, we present the three proposed cache
coherency schemes to address the limitations of the OCI
scheme. In other words, our algorithms attempt to mini-
mize energy consumption, salvage as many cache objects
as possible, and perform invalidation at query level.

3.1. Group-based Cache Invalidation (GCI)

We shall begin by looking at the basic group-based
scheme, Group-based Cache Invalidation (GCI). GCI op-
erates as follows. At the server, the whole database is par-
titioned into a set of disjoint groups, each containing the
same number of objects. Note that each data object has an
additional attribute (i.e., group id) associated with it. The
server also keeps information on the most recent updates to
the groups. In other words, each group has associated with
it a timestamp which corresponds to the most recent update
on an object in the group. We shall refer to this fixed size
information at time Ti as the GIRi:

GIRi =
{

[gid, TSgid] | gid is the group id of a group of
objects and TSgid is the timestamp of the most
recent update of the group

}
.

The server periodically broadcasts GIR. At the client,
the client organizes the cache content based on the group
ids, i.e., all objects with the same group id are placed to-
gether, and the entire group has associated with it a single
timestamp TSc

gid which represents the last known update
time of the group. As in OCI, the client also maintains a
list of query objects, Qi, during the interval [Ti−1,Ti]. At
time Ti, the client listens to the GIR and uses it to inval-
idate the cached objects based on the group timestamps.
The resulting algorithm is as shown in figure 3.

The GCI scheme has several advantages over OCI. First,
the size of GIR is fixed and is independent of the duration

for (every pair [gid, TSgid] ∈ GIRi) {
if (client caches objects in group gid) {

if (TSc
gid < TSgid) {

remove all objects in corresponding
group from the cache

}
else {TSc

gid ← TSgid}
}

}
for (every object O ∈ Qi) {

if (O is in the cache) {
use the cache to answer the query

}
else {submit uplink request for O}

}

Figure 3. The group-based cache invalidation scheme.

of the client’s disconnection and update rate. This means a
fixed bandwidth utilization for broadcasting GIR. Second,
discarding of cache content is based purely on invalidation
(though it may be false invalidation) and has nothing to
do with the client’s disconnection time. Third, the con-
cept of selective tuning can be exploited to reduce energy
consumption. As group identifiers are in fact virtual ids,
we can assign them in consecutive values. The GIR can
then be broadcast in a fixed order (such as an increasing
order of gid). Since the clients are aware of the groups
that they are interested in, they only need to be in active
mode to examine the timestamps of the relevant groups,
while most of the other time can be spent in doze mode.
This can be done since the size of a (gid, TSgid) pair is
fixed. Furthermore, the client need not download the entire
GIR; instead, only the relevant (gid, TSgid) pairs from GIR
need to be examined. In other words, cache invalidation
can be done at query level and not cache level. Therefore
energy consumed by invalidating cache can be extremely
small.

However, GCI also has several disadvantages. The most
distinguished shortcoming of this scheme is false invali-
dation. False invalidation is defined as the phenomenon
that a cached object is wrongly invalidated even though
it is still valid (e.g., the cached object is valid but other
objects in the same group have been updated resulting
in the group being invalidated). As invalidation is done
at group level, we can conceive that, under high update
rate, the cache salvage rate for this scheme can be signif-
icantly smaller than the basic algorithm. While bandwidth
can be saved by fixing the GIR size and energy saved by
the group-based invalidation, the penalty brought by lower
cache salvage rate is reflected in more unnecessary down-
link transmission for false invalidation. As downloading
information also consumes energy, thus the penalty for this
scheme is expected to far outweigh the gain for high update
rates.



494 J. Cai, K.-L. Tan / Selective cache invalidation

3.2. The Hybrid Cache Invalidation (HCI)

A very natural way to handle the limitations of algo-
rithms OCI and GCI is to integrate them into a Hybrid
Cache Invalidation (HCI) scheme. In this case, the server
broadcasts every L time units a pair of invalidation re-
ports, an object invalidation report (OIR) and a group in-
validation report (GIR). To realize this, the server keeps
two update lists (corresponding to the GIR and OIR re-
spectively):

OUi =
{

[id, TSid] | id is the identifier of object O ∈ DB
and TSid is the timestamp of the last update of O
such that Ti − wL 6 TSid 6 Ti

}
,

GUi =
{

[gid, TSgid] | gid is a group identifier and TSgid

is the timestamp of the latest update among all
objects in the group such that TSgid < Ti − wL

}
.

Essentially, OUi (and OIR) reflects the updates on in-
dividual objects during the last w broadcast intervals of
the invalidation report, while GUi (and GIR) monitors
the group update behaviors. Unlike scheme GCI, the de-
termination of TSgid is optimized to salvage as much
cache content as possible. This is based on the observa-
tion that OIR would have contained the information of
some of the recently updated objects, and hence the valid
timestamp for each group can be pushed further back than
the most recent update time of this group. Thus, the valid
timestamp for each group is given by the timestamp of
the object in the group that is updated at time closest to
Ti − wL.

The HCI scheme facilitates invalidation in two ways.
First, for those clients with a small disconnection time, a
direct cache checking is performed using the OIR. Second,
for those disconnected before the time Ti − wL, OIR and
GIR can work together so that the clients need not discard
the entirety of its cache. The OIR minimizes false invali-
dation and the GIR avoids invalidation of the entire cache
for long disconnection time. The algorithmic description of
the protocol is shown in figure 4.

3.3. Selective Cache Invalidation (SCI)

HCI, unfortunately, is limited by the energy consuming
operation of downloading the OIR. To minimize the energy
consumption, we propose that we should focus on objects
related to the query only. In this way, we can facilitate
selective tuning of the reports. We call the new scheme
Selective Cache Invalidation (SCI). The main difference

between SCI and HCI lies in the organization of the pair of
invalidation reports. First, in SCI, GIR is broadcast before
OIR. Second, the entries in OIR are ordered and broadcast
based on the groups. In other words, updates in the same
group will appear together. A partition symbol will separate
continuous groups. Third, an additional pointer should be
added to each element of GIR, and this pointer points to
the starting position of the objects within this group in the
OIR. Figure 5 shows the organization of the invalidation
reports.

At the client, it operates as follows. It first selectively
tunes to the GIR, and keeps the pointers of interested groups
(i.e., those in query) in memory. Once all the desired groups
are determined, it selectively tunes to the respective position
in the OIR using the pointers. Thus, only the desired groups
are examined. The functionality of the improved algorithm
SCI is as shown in figure 6.

for (every pair [id, TSid] ∈ OIRi) {
if (object id is in the client cache){

if (TSc
id < TSid) {

remove object from the cache
}
else {TSc

id ← TSid}
}

}
if (Ti − T c > wL) {

for (every group gid in the client cache) {
selectively tune to the pair

[gid, TSgid] in GIRi
if (TSc

gid < TSgid) {
remove all objects in group

from the cache
}
else {TSc

gid ← TSgid}
}

}
for (every object O ∈ Qi) {

if (O is in the cache) {
use the cache to answer the query

}
else {submit request for O}

}
T c ← Ti

Figure 4. The hybrid cache invalidation scheme.

Figure 5. Organization of the invalidation reports.



J. Cai, K.-L. Tan / Selective cache invalidation 495

P ← φ
for (every group in the client cache) {

selectively tune to the
triplet [gid, TSgid, Pgid] in GIRi

if TSc
gid < TSgid {
invalidate all objects of group

}
else {

TSc
gid ← TSgid

P ← P ∪ {Pgid}
}

}
while (P 6= ∅) {

p← first(P )
P ← P − {p}
switch to doze mode until the position p

is coming
while (not encounter partition symbol) {

download pair [id, TSid]
if (id is in client cache) {

if TSc
id < TSid {
invalidate object

}
else {

TSc
id ← TSid

}
}

}
}
for (every object O ∈ Qi) {

if (O is in the cache) {
use the cache to answer the query

}
else {submit uplink request for O}

}

Figure 6. The selective cache invalidation scheme.

3.4. Discussion on grouping

The performance of the three proposed group-based
schemes can be influenced by the grouping scheme. There
are two issues that concern grouping, namely how the ob-
jects should be grouped and the size of each group (or
number of groups). For the first issue, we based our ap-
proach on the observation that very often only a small set of
data objects are hot in demand, and likewise, only a small
set of data objects are hot in terms of frequency of update.
As such, we can divide the whole database into four data
sets as shown in figure 7.

Clearly, it makes no sense to group objects in the HH
category (hot update-hot demand) with objects in the CC
category (cold update-cold demand). Therefore, groups can
be formed from objects in the same category. In our
study, we divided the whole database into the four dif-
ferent categories, and groups are formed within each cate-
gory.

Figure 7. Grouping of objects.

There is also a tradeoff in the number of groups. If the
number of groups is too large, the size of the GIR will
also be large, and this will utilize a significant amount of
the channel bandwidth which may lead to poor channel
utilization. On the other hand, a small number of groups
may also be bad. This is because when the number of
groups is small, the size of the groups will be large. As a
result, it becomes more likely for groups to be invalidated.
In our performance study, we shall study the effect of the
number of groups.

4. A performance study

We conducted extensive studies based on a simulation
model. Four schemes are studied in this simulation, i.e.,
OCI, GCI, HCI and SCI. The schemes are evaluated based
on two metrics, the access time and energy consumption.
The access time also serves to indicate the utilization of
wireless bandwidth. The energy consumption contains
three components: the energy consumed on cache inval-
idation, the energy consumed on uplink request and the
energy consumed to download the desired data. The access
time is calculated in seconds, while energy is measured in
units of data received/transmitted. A unit is defined as the
energy consumed on receiving 1 K bits of information, and
based on the findings in [7], transmitting data is assumed
to be 10 times more power consuming than receiving data.

4.1. The simulation model

Figure 8 shows our simulation model. The model com-
prises several modules: clients, uplink channel, downlink
channel and server. Clients submit requests to the server
via the uplink channel, and receives results from the server
via the downlink channel. When a client reconnects, it em-
ploys an invalidation scheme to invalidate its cache content
and submits query objects accordingly. In order to focus
on the cache invalidation effect, we assume that a cache
miss is only resulted from invalidation. In other words, we
assume that all the queries in a mobile computer reference
a fixed subset of objects that are initially cached in its local
storage. The model has been implemented using a C-based
simulation package [17].

Table 1 shows the notations and default parameter set-
tings used in the simulation. The database has a total of
D objects that are organized into N groups, each with G



496 J. Cai, K.-L. Tan / Selective cache invalidation

objects. The size of each object (excluding the object id
and group id) is O bits. The size of the object id and group
id are Oid bits and Gid bits, respectively. Each timestamp
is Tid bit. β1% of the data objects are in the hot update set,
while (100− β1)% of them belong to the cold update set.
β2% of the data objects are in the hot demand set, while
(100− β2)% of them belong to the cold demand set. Data
in the hot update and hot demand sets are randomly chosen
from the D objects. α1% of the updates are focused on
the hot update set while the remaining (100−α1)% are on
the cold update set. The number of objects requested per
query is uniformly distributed in the interval [Q/2, 3Q/2].
The objects are picked such that α2% of them are from the
hot demand set, and the rest are from the cold demand set.
The query arrival rate follows a Poisson distribution with
a mean of λq while the update arrival rate follows a Pois-
son distribution with a mean of λu. Clients disconnection
time is assumed to follow a negative exponential distribu-
tion with a mean of ν. The update reports are broadcast

Figure 8. Mobile communication model.

every L seconds, and the update broadcast window is given
by w. Finally, the bandwidth for the downlink and uplink
channels are given by Cdown and Cup, respectively. For the
selective cache invalidation scheme, the separators between
groups are each p bits. Most of the settings used are similar
to those used in previous work [15,18].

4.2. Effect of update history, wL

In this experiment, we study the effect of w on the var-
ious algorithms. Intuitively, for OCI, since only OIR is
employed, w should be selected such that wL is no less
than ν. However, for the other schemes, the inclusion of
GIR provided some information of the updates before time
T − wL. Thus, a smaller w can achieve reasonable per-
formance. Our simulation results confirm our intuition. In
figure 9(a), we see that for small update window w, the
access time for scheme OCI is very large. This is so be-
cause a small w value increases the probability of ν > wL
(i.e., client’s disconnection time is relatively longer than
wL). As a result, more cached objects are being invali-
dated. This in turn results in an increasing demand on the
downlink channel as more queries have to be processed
from scratch (no cache content can be reused). The other
three schemes avoid this problem by including a GIR in
their update report. With GIR, clients disconnect before
time T − wL can always use it to salvage its cache con-
tent. Thus no query should be reprocessed unless all the
related cache contents are invalidated. As no OIR is broad-
cast in the GCI scheme, the access time of this scheme is
not affected by w. However, since GCI bases its validation
scheme solely on GIR, false invalidation is high, resulting

Table 1
System and workload parameters.

Notation Definition Default values

D Server database size 100,000 obj
λq Query arrival rate, obeys Poisson distribution 2 query/sec
λu Update arrival rate, obeys Poisson distribution 5 obj/sec
Q Mean objects referenced by a query, which has a 30 obj

uniform distribution with low Q/2 and high 3Q/2
β1 % of data objects in the hot update set 10
β2 % of data objects in the hot demand set 10
α1 % of updates on hot update set 90
α2 % of demands on hot demand set 90
G Group size 100 obj
N Total number of groups ≈ D/G
ν Disconnection time obeys negative exponential distribution 200 sec

with mean ν
Cup Bandwidth of uplink channel 19.2 kbps
Cdown Bandwidth of downlink channel 100 kbps
L Periodic broadcast interval 20 sec
w Broadcast window 10
O Object size 4096 bits
Oid Object id size 32 bits
Gid Group id size 16 bits
Lgid Link size 16 bits
Tid Timestamp size 64 bits
p Partition symbol (for SCI only) 8 bits



J. Cai, K.-L. Tan / Selective cache invalidation 497

Figure 9. Effect of update history (wL).

in a longer access time than schemes HCI and SCI. In fact,
when the update rate is high, the performance of GCI will
be severely affected (see in figure 11(a)). Both HCI and
SCI are equally effective in salvaging the cache content.
Because SCI has an additional link in each element of GIR
for the purpose of selective tuning on OIR, thus it’s access
time is slightly longer than HCI.

The results on power consumption is shown in fig-
ure 9(b). As expected, OCI is the least energy efficient
since it can salvage the least number of objects and re-
quires downloading the entirety of the OIR. HCI also shows
a high energy consumption because of its need to down-
load the whole OIR when performing cache invalidation,
but since it has a higher cache salvage rate than OCI, the
energy consumed on receiving invalidated data objects is
smaller than OCI. Thus the total energy consumed is also
smaller than OCI. As for GCI and SCI, as selective tuning
technique is applied in both schemes, energy consumption
for these two schemes are quite small. Besides, as SCI has
a higher cache salvage rate (SCI uses OIR to reduce the
phenomenon of false invalidation which can be significant
in GCI), it consumes the least energy.

4.3. Effect of disconnection time, ν

A user’s behavior is difficult to predict especially in a
mobile environment. Mobile client may or may not dis-
connect from the wireless network, and if it should, it may
disconnect with different duration each time. As we men-
tioned before, disconnection is one of the most important
factors that complicates the problem of cache invalidation.
Thus for a scheme to be practical and useful, it should
be robust to the clients’ disconnection behaviors. In this

experiment, we study how disconnection time will affect
the performance of the four schemes. Figure 10 shows the
results.

As shown in figure 10(a), the OCI scheme is the least
robust while the proposed schemes are almost unaffected
by the disconnection time. This is expected since we have
seen in the previous simulation howw is related to ν. When
ν is smaller than wL, all the schemes can effectively sal-
vage many valid objects in the cache. In particular, we
observe that for short disconnection time (< 60 sec in this
experiment), GCI performs the worst because of its prob-
lem of false invalidation. We also observe that OCI outper-
forms HCI and SCI for two reasons. First, the short mean
disconnection time minimizes the phenomenon of whole
cache invalidation in OCI. Second, in HCI and SCI, a GIR
is broadcast together with OIR which consumes additional
bandwidth. Since OIR can cover enough update history
because of the relatively small disconnection time, the use-
fulness of the GIR is very limited. However, as ν in-
creases, the performance of OCI degenerates because most
of the clients need to reprocess from scratch as a result
of discarding their entire cache content. As for HCI and
SCI, they reap the benefits of the GIR that lead to a high
cache salvage rate. We note that GCI performs (slightly)
worse than HCI and SCI (because of false invalidation).
At a first glance, it appears that the performance of GCI
is not that bad since it employs only GIR when broad-
casting invalidation messages. However, in this experi-
ment, the update rate is low (5 obj/sec), and the impact of
false invalidation (which is the intrinsic weakness of group-
based schemes) is not significant in the GCI schemes. In
the next experiment, we shall study this effect on the GCI
scheme.



498 J. Cai, K.-L. Tan / Selective cache invalidation

Figure 10. Effect of disconnection time.

Figure 11. Effect of update rate.

Figure 10(b) shows the energy consumption of the vari-
ous schemes. As in the previous experiment, SCI and GCI
are highly energy efficient (with SCI slightly better than
GCI). Schemes OCI and HCI consume more energy due to
the downloading of the entirety of the OIR.

4.4. Experiment on update rate, λu

Figure 11 shows the effect of update rate on access time
and energy consumption. A higher update rate means a
higher probability of cache invalidation, and also a larger

update history for a fixed w. This explains why the perfor-
mance of OCI deteriorates so rapidly in both figure 11(a)
and figure 11(b). GCI also degenerates rapidly as the up-
date rate increases. When update rate is high (greater than
15 obj/sec), the average access time increases very fast.
Even though GCI has a fixed update report size (thus
more downlink bandwidth spared for invalidated objects),
the penalty brought about by false invalidation is signif-
icant to result in unacceptable access time performance.
Both SCI and HCI present a good performance in terms
of access time demonstrating the effectiveness of exploit-



J. Cai, K.-L. Tan / Selective cache invalidation 499

Figure 12. Effect of query arrival rate.

ing the pair of (OIR, GIR) reports in salvaging cache con-
tent.

In terms of energy consumption, HCI also shows a trend
of high energy consumption because of the huge OIR size
when update rate is high. As selective tuning is adopted
in SCI, the energy consumption for this scheme is the
least. GCI also performs selective tuning on GIR, how-
ever, since it has a smaller cache salvage ratio, the en-
ergy consumed on downloading invalidated objects is larger
than SCI.

4.5. Effect of query arrival rate, λq (scaleability)

Scale (which represents the number of concurrent users
that can be supported) is another important issue. The larger
the number of queries the environment can support, the
better the scheme is. Keeping other parameters fixed, this
problem is mainly determined by two factors: the amount of
downlink bandwidth that is available for data transmission
(other than the invalidation reports) and the cache salvage
rate. The results of this study is shown in figure 12.

Again OCI leads to the worst access time. This is be-
cause of its huge OIR size and low cache salvage rate.
The large amount of data to be transmitted (as query rate
increases) due to invalidation causes channel congestion
quickly. For the same reason of contention on downlink
channel due to high false invalidation, GCI is also inferior.
For HCI and SCI, although their update reports are larger
compared with OCI and GCI, the benefits brought by higher
salvage rate of both OIR and GIR reports far outweigh their
cons, leading to a much shorter access time (compared with
OCI and GCI). Since energy consumption is determined by
cache salvage rate and the invalidation scheme, the query

arrival rate has no impact on it. As shown, the relative
performance of the scheme remains largely the same: SCI
is the best, followed by GCI, followed by HCI and OCI is
the worst.

4.6. Effect of update skew

Another factor that can affect the effectiveness of the
caching schemes is the update skew, i.e., how the updates
are directed at the database objects. In the previous ex-
periments, we have used the default of 90% of the updates
directed at 10% of the database objects. In this experiment,
we shall see the effect of update skew on our schemes. For
simplicity, we shall restrict our study to update skew of
the form α − β, where α% of the updates are directed at
β% of the database, and α + β = 100%. Intuitively, as α
increases, a cache invalidation scheme should improve in
performance, since fewer data are being invalidated. Fig-
ure 13 shows the results, where the x-axis denote the α val-
ues. From the result, we observe two phenomenon. First,
the OCI scheme does not benefit from higher α values com-
pared to the other three schemes. This is resulted from an
intrinsic deficiency of the OCI scheme. With this scheme,
when the disconnection time is greater than wL, the whole
cache will be invalidated (i.e., 100% invalidation). Thus the
small benefit brought about by higher α values (reflected
in the other 3 schemes) is largely masked by the huge loss
on whole cache invalidation. Second, the GCI scheme per-
forms even worse than OCI for small α values. In our
experiment, this happens when α < 0.8. This is because
more groups are being updated, leading to large number of
false invalidation.



500 J. Cai, K.-L. Tan / Selective cache invalidation

Figure 13. Effect of update skew (α1).

The result on energy consumption is largely similar to
previous experiments with SCI being the most energy effi-
cient and OCI consumes the most energy.

4.7. Effect of group size on SCI

In the above five experiments, we have demonstrated
the superiority of the SCI scheme both in terms of energy
consumption and access time. As grouping is an essential
component used in group-based schemes, in this experi-
ment, we shall study its effect on SCI. Specifically, we will
explore the impact of group size on SCI. Recall that the
main functionality of GIR is to provide clients with up-
date information before time T −wL. Since a large group
size implies high false invalidation, intuitively we prefer
to adopt a small group size. However, a small group size
results in a larger number of groups and thus a larger GIR
size. The resultant effect may be poor performance since a
significant portion of the downlink bandwidth may have to
be utilized. Eventually the gain on reducing false invalida-
tion will be overtaken by the loss due to severe contention
on the downlink bandwidth. Since update rate is a critical
source of cache invalidation in SCI, we examine the impact
of grouping with four different update rates. The results of
the experiment are shown in figure 14.

Figure 14(a) shows the tradeoffs that we have discussed
in section 3.4 – neither too small or too large a group size
is effective. Furthermore, we note that when the update
rate is low, a large group size can lead to lower access time
since the number of groups will be small and invalidation
is not frequent. However, as the update rate increases, a
large group size is not desirable because of the large num-
ber of false invalidation. In terms of energy consumption

(figure 14(b)), the scheme favors small group size since
decreasing group size results in fewer false invalidation –
despite a larger GIR, the net effect is a gain in energy con-
sumption.

However, by further looking at the grouping scheme,
we found that, since most user requests are focused on hot
demand data, the benefit of the caching scheme can be im-
proved if efforts are focused on salvaging those data. From
the result of figure 14, we note that smaller group size is
better when update rate is high (see the curve when update
rate = 15). Therefore, in order to salvage more hot demand
data, we need to use a smaller size for this data category.
Besides, as hot update data are difficult to salvage, it makes
sense to salvage hot demand, cold update data (i.e., the HC
category). Figure 15 justifies our intuition.

Figure 15 shows the results of an experiment that varies
the HC group size, while keeping the group sizes for the
other categories at the default setting. In figure 15, we see
that, when update rate is low (update rate = 1), a smaller
HC group size performs slightly worse than a larger group
size for the same reason as that in the previous experiment.
However, as the update rate increases, more groups will
be invalidated. In this case, a smaller group size is pre-
ferred. However, by comparing figures 14 and 15, we can
see that, reducing the group size of all four categories uni-
formly is not a good choice because the benefit of higher
cache salvage rate for smaller group size is diminished by
the cost on higher bandwidth usage of GIR. Instead, se-
lectively reducing group size of particular categories (e.g.,
HC group) is a better choice. For example, in figure 14, we
see that, when the update rate is 20, the best result for uni-
formly reducing the group size of all categories is achieved
when the group size is around 50. Here, the access time is



J. Cai, K.-L. Tan / Selective cache invalidation 501

Figure 14. Effect of group size on SCI.

Figure 15. Effect of HC group size on SCI.

around 22. In figure 15, a HC group size of 20 can bring
down the access time to around 19. The reason is that, by
only utilizing small group size for the HC category, we reap
enough benefit to justify the additional usage of bandwidth.

5. Conclusion

In this paper, we have reexamined the cache coherency
problem in mobile computing environment. Caching fre-
quently accessed objects in mobile clients can reduce the

contention of channel bandwidth, minimize energy con-
sumption and cost. However, to determine whether the
copy at the client’s cache is consistent with that of the
server can be an expensive process. We have proposed
three novel energy-efficient cache coherency schemes that
are based on periodic broadcast of invalidation reports. The
schemes organize the database into groups and organize
the invalidation reports to facilitate selective tuning. We
conducted extensive studies based on a simulation model
and evaluated the proposed schemes against the traditional
object-based cache invalidation scheme. Our study showed



502 J. Cai, K.-L. Tan / Selective cache invalidation

that the proposed schemes are not only effective in sal-
vaging the cache content that are still valid, but are also
efficient in energy utilization. While none of the proposed
algorithms is superior in both the access time and energy ef-
ficiency, one of the schemes, Selective Cache Invalidation,
provides the best overall performance.

We have already begun work on designing selective tun-
ing mechanisms for demand-driven data. Traditional selec-
tive tuning methods proposed as “indexes on air” cannot
be employed here because demand-driven data are not pre-
dictable. Second, we plan to look at the hybrid approach
of disseminating data. In this case, frequently accessed
data can be periodically broadcast, while less popular data
are provided on demand. We will look at energy efficient
solutions as well as effective caching schemes in this con-
text. Finally, the implementation of some of the promising
schemes to provide wireless access to courseware is also in
our agenda.

Acknowledgements

This work is partially supported by the Research Grant
RP960683 funded by the National University of Singapore.
The anonymous referees provided very helpful comments
that improve the technical quality and literary style of this
paper.

References

[1] R. Alonso and S. Ganguly, Query optimization for energy efficiency
in mobile environment, in: Proceedings of the 1993 Workshop on
Optimization in Databases, Aigen, Austria (September 1993).

[2] B.R. Badrinath and P. Sudame, To send or not to send: Implementing
deferred transmissions in a mobile host, in: Proceedings of the 16th
International Conference on Distributed Computing Systems (May
1996) pp. 327–333.

[3] D. Barbara and T. Imielinski, Sleepers and workaholics: Caching in
mobile distributed environments, in: Proceedings of the 1994 ACM–
SIGMOD International Conference on Management of Data (June
1994) pp. 1–12.

[4] J. Cai, K.L. Tan and B.C Ooi, On incremental cache coherency
schemes in mobile computing environment, in: Proceedings of the
13th International Conference on Data Engineering (April 1997)
pp. 114–123.

[5] M.S. Chen, P.S. Yu and K.L. Wu, Indexed sequential data broadcast-
ing in wireless mobile computing, in: Proceedings of the 17th IEEE
International Conference on Distributed Computing Systems (May
1997).

[6] R. Eager, Advances in rechargeable batteries pace portable computer
growth, in: Proceedings of the 1991 Silicon Valley Personal Com-
puter Conference (1991).

[7] G.H. Forman and J. Zahorjan, The challenges of mobile computing,
IEEE Computer 27(6) (April 1994).

[8] T. Imielinski and B.R. Badrinath, Mobile wireless computing: Chal-
lenges in data management, Communications of the ACM 37(10)
(October 1994).

[9] T. Imielinski, S. Viswanathan and B.R. Badrinath, Energy efficient
indexing on air, in: Proceedings of the 1994 ACM-SIGMOD Inter-
national Conference on Management of Data (June 1994) pp. 25–36.

[10] T. Imielinski, S. Viswanathan and B.R. Badrinath, Power efficient
filtering of data on air, in: Proceedings of the 4th International Con-
ference on Extending Database Technology (March 1994) pp. 245–
258.

[11] J Jing, A. Elmagarmid, A. Helal and R. Alonso, Bit-sequences: An
adaptive cache invalidation method in mobile client/server environ-
ments, Mobile Networks and Applications 2(2) (1997) 115–127.

[12] W.C. Lee and D. Lee, Using signature and caching techniques for
information filtering in wireless and mobile environments, Journal
of Distributed and Parallel Databases 4(3) (1996) 205–227.

[13] P.V. Argade et al., Hobbit: A high-performance, low-power mi-
croprocessor, in: Proceedings of COMPCON’93 (February 1993)
pp. 88–95.

[14] S. Sheng, A. Chandrasekaran and R.E. Broderson, A portable multi-
media terminal for personal communications, IEEE Communications
Magazine (December 1992) pp. 64–75.

[15] K.L. Tan and J. Cai, Broadcast-based group invalidation: An energy
efficient cache invalidation scheme, Information Sciences 100(1–4)
(August 1997) 229–254.

[16] K.L. Tan and J.X. Yu, Energy efficient filtering of nonuniform broad-
cast, in: Proceedings of the 16th IEEE International Conference on
Distributed Computing Systems (May 1996) pp. 520–527.

[17] K. Watkins, Discrete Event Simulation in C (McGraw-Hill, 1993).
[18] K.L. Wu, P.S. Yu and M.S. Chen, Energy-efficient caching for wire-

less mobile computing, in: Proceedings of the 12th International
Conference on Data Engineering (February 1996) pp. 336–343.

Jun Cai received the B.Sc. and M.Sc. degrees in
computer science from FuDan University, PRC, in
1989 and 1992, respectively. He has recently com-
pleted his Ph.D. program from the Department of
Computer Science, National University of Singa-
pore. He is currently working as a System Special-
ist at Singapore Engineering Software (a member
of Singapore Technologies Group).
E-mail: caijun@comp.nus.edu.sg

Kian-Lee Tan received the B.Sc. (Hons) and
Ph.D. degrees in computer science from the Na-
tional University of Singapore, in 1989 and 1994,
respectively. He is currently an Assistant Profes-
sor in the Department of Computer Science, Na-
tional University of Singapore. His major research
interests include multimedia information retrieval,
wireless information retrieval, query processing
and optimization in multiprocessor and distributed
systems, and database performance. He has pub-

lished over 60 conference/journal papers in international conferences and
journals. He has also co-authored a tutorial entitled “Query Processing
in Parallel Relational Database Systems” (IEEE CS Press, 1994), and a
monograph entitled “Indexing Techniques for Advanced Database Sys-
tems” (Kluwer Academic Publishers, 1997). Kian-Lee is a member of the
ACM and IEEE Computer Society.
E-mail: tankl@comp.nus.edu.sg


