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Abstract. Methods of balancing call registration and paging are developed in this paper. Given that the probability distribu-

tion on the user location as a function of time is either known or can be calculated, previous work shows the existence of lower

bounds on the average cost of paging. Here these bounds are used in conjunction with a Poisson incoming-call arrival model to

formulate the paging/registration optimization problem in terms of timeout parameters, �m; the maximum amount of time to wait

before registering given the last known location was m. Timer-based methods, as opposed to location-based methods, do not

require the user to record and process location information during the time between location updates. This feature might be desir-

able for minimizing mobile transceiver use during idle periods. We then consider uniform motion processes where a spatial trans-

lation of starting location produces an identical spatial translation of the associated time-varying probability distribution. This

leads to a universal timeout parameter � which may be readily calculated. We study � and the minimum cost of paging/registra-

tion for a simple model of user motion and compare our results to an earlier method of location-based paging/registration cost

minimization.

1. Introduction

Thewhereabouts of a user in amobile communication

system must first be known in order to correctly route

an incoming call. This user location is usually obtained

via some combination of paging and registration. Paging

is the process whereby the system issues polling signals

in various locations and waits for user response. Regis-

tration is initiated by the user explicitly to notify the sys-

tem of its location. Since bandwidth may be scarce at

both the radio level and the underlying switching level,

unnecessary paging over wide areas can impose an addi-

tional burden on the system [1,2]. Requiring frequent

registration would serve to reduce the range over which

the system needs to search but could be equally onerous

for high frequencies of registration. This inverse cou-

pling of paging and registration costs forms the basis of

the paging/registration optimization problem.

Currently, users register when they change location

areas [3]. A location area is a group of locations (usually

specified in terms of a radius) all of which are paged

when an incoming call is directed to the user. Location

areas are currently independent of the detailed charac-

teristics of user motion. Thus, a user who registers in a

metropolitan area at the start of the day and never leaves

the workplace, might still be paged throughout the

region. This suggests that using more specific location

informationmight benefit system performance.

Under the rubric of location area management, a

number of different schemes have been proposed for

minimizing the cost of paging and registration; see for

example [4^10]. However, optimal paging and registra-

tion, whether explicitly stated or not, is predicated on

location estimation using some notion of user location

probability. It therefore makes sense to explicitly sepa-

rate the paging, registration, and probability distribu-

tion estimation problems. Three basic questions result:

1. Given a probability distribution, what is the least

average amount of effort necessary (number of loca-

tions searched) to find a user? What is the effect of

delay constraints?

2. Given a time-varying distribution known both by

the user and the system, what are the optimal paging

procedures based on information available at the

mobile? I.e., location-based, timer-based or ``state''

based registration/paging.

3. How can these time-varying location probabilities

be efficiently estimated based on measurement and/

or models of user motion?

There are a number of approaches to the problem

based on what information is available to whom (mobile

unit and/or system). In this paper we develop timer-

based methods of balancing call registration and paging

using optimal paging algorithms developed elsewhere

[11]. Timer-based methods, as opposed to location-

based methods, do not require the user to record and

process location information during the time between

location updates. This feature might be desirable for

minimizingmobile transceiver use during idle periods.

Specifically, we use a time-varying location probabil-

ity distribution and previously developed analytic

bounds on paging cost in conjunction with a Poisson

page-arrival model, to formulate the paging/registra-

tion optimization problem in terms of a set of timeout
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parameters, f�mg. Each �m is defined as the maximum

amount of time to wait before registering given the last

known location was m.

1

These f�mg could be calculated

by the system and given to the user as necessary (at call

termination or last registration). They might also be cal-

culated by the user directly.

However, finding the optimal f�mg for spatially var-

iantmodels of usermotion is difficult in general owing to

the subtle interaction of the registration process and con-

ditional location probabilities.We therefore concentrate

on the spatially-invariant case. Specifically, we illustrate

our method on a time-varying Gaussian user location

distribution which often arises as a result of isotropic

random user motion [12]. We then compare our results

to a simple location-based paging/registration minimi-

zation scheme [4].

2. Analysis

Let pijm�t� be the probability distribution on a user

residing in location i at time t given that its location was

m at t � 0. It is assumed that this distribution, which

depends on the underlying model of user motion, is

either known or can be calculated. Implicit in the ijm

notation is the idea that future location i for t > 0

depends only upon the current locationm at t � 0. How-

ever, this need not be the case. In a more general nota-

tion, m might be replaced by a location process state

variable �. However, for the sake of clarity we retain the

ijm notation while recognizing that it may be extended

whenever necessary.

We define a paging cost function, Fm�t�, as the cost

of paging (average number of locations searched) given

that the last known location (or location state) was m.

Fm�t�may be derived from arbitrary criteria and the con-

ditional location probability distribution pijm�t�. We

seek tominimize this cost.

It has previously been shown [11] that Fm�t� is mini-

mized by sequential search of each location in decreasing

order of probability. Hence,

Fm�t� �

X1

`�1

`pq
`jm
�t� ; �1�

where q` is an ordering function such that pq
`jm
� pq

`�1jm
.

Notice then that the average number of polling

events, and thus the average polling delay, is identical to

the average number of locations polled. Although proce-

dures exist whereby the average polling delay can be

greatly reduced at the expense of modestly increased

average number of locations searched [11], here we con-

centrate on the simpler case without delay constraints.

This provides a lower bound on the average paging

cost.

2.1. Average paging cost without registration

We assume a user's location is known to the system

during the course of a conversation, just after a paging

event and just after registration. We will concern our-

selves with the time between the last known location and

the next paging/registration event: the roaming interval.

We do not consider intervals terminated by a call initia-

tion since no additional cost is incurred. We will then

assign costs to registration events and seek to minimize

the time average cost of paging/registration.

To this end, assume the cost of registration is unity

and the cost of paging is P per location. Since paging

events are primarily generated by incoming calls, we

assume that paging events form a Poisson point process

of intensity �p independent of usermotion. Since Poisson

processes are memoryless, the time until the next paging

event is described by the probability distribution

st�t� � �pe
ÿ�pt

where t is referenced to the start of the

roaming interval. The cumulative distribution function

of st�� isSt�T� � 1ÿ e
ÿ�pT

.

If a user never registers, the expected cost of a roam-

ing interval for which the last known location was m is

then,

Cm�1� � P

Z
1

0

Fm���st���d� : �2�

If �m is the probability of the last known location being

m and we assume independent paging events, then the

average cost of a roaming interval is

C�1� � P

Z
1

0

�F ���st���d� ; �3�

where

�F ��� �

X

m

Fm����m :

Since user motion and paging are assumed independent

processes, �m � �m, the steady state probability of resid-

ing in locationm.

C, however, gives no indication of the steady state

expenditure rate. We therefore calculate the average

cost per unit time of a roaming interval. Letting

d�mi; i;1� be the duration of the ith roaming interval

and c�mi; i;1� its cost, we can define the average cost per

unit time as

��1� � lim

N!1

P
N

i�1
c�mi; i;1�

P
N

i�1
d�mi; i;1�

; �4�

which via the weak law of large numbers becomes

��1� �

P
m
Cm�1��m

P
m
�d�m;1��m

; �5�

where
�d is the average duration of a roaming interval.

1

The simple case of memoryless motion was chosen for clarity.

However, the framework can be easily extended to include any other

type of ergodic user motion. Please see section 2 for further

explanation.
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However, since the user never registers, the roaming

interval is independent of location. Thus, the ``null regis-

tration policy'' average cost per unit time is

��1� � �p

X

m

Cm�1��m : �6�

2.2. Average cost of joint registration and paging

Suppose that the last known user location is m at

t � 0. The user is assumed to register at time t � �m if a

paging event does not occur first. Thus, the probability

of the roaming interval being terminated by a paging

event is St��m�, and 1ÿ St��m� by a registration. The

expected registration cost is then 1ÿ St��m� so that the

total cost is

Cm��m� � P

Z
�m

0

Fm���st���d�� �1ÿ St��m�� : �7�

The probability distribution on the duration d�m� of a

roaming interval started in locationm is

pd�m��d� � st�d� � ��d ÿ �m��1ÿ St��m�� �8�

for 0 � d � �m where ��� is the unit impulse function.

Letting d�mi; i; �mi
� be the duration of the ith roaming

interval and c�mi; i; �mi
� its cost, we can define the aver-

age paging/registration cost per unit time as

���� � lim

N!1

P
N

i�1
c�mi; i; �mi

�

P
N

i�1
d�mi; i; �mi

�

; �9�

where � is a vector composed of the �m. Via the weak

law of large numbers we have

���� �

X

m

C�m��m

X

m

�d�m; �m��m

,

: �10�

Notice that here �m is not necessarily the steady state

probability of being in location m. This difference is

caused by the dependence of �m on the registration pro-

cess which is itself dependent on user location. Thus, for

each choice of the f�mg, the associated �m must be calcu-

lated as well. This coupling makes it difficult to optimize

the f�mg in general. For example, say �
1
� 0 and all other

�m are infinite. In location 1 we would have an infinite

number of registrations. Thus, regardless of the steady

state location distribution �m, wewould have �1 � 1.

Nonetheless, we may formally determine the �m in

terms of the �m by first defining a probability distribution

qljm, the probability that the next known location will

be l given the last known location was m.
2

Since we

assume the probability distribution pljm�t� is known we

canwrite

qljm �

Z
�m

0

pljm�t�st�t�dt� �1ÿ St��m��pljm��m� �11�

owing to the assumed independence of the paging and

motion processes.

Now we note that qljm describes a Markov process

on the last known location and that the �m form the sta-

tionary distribution for this process. It is therefore possi-

ble, using suitable numerical methods, to obtain the �m

as functions of the �m, and thereby find the optimal set

f�mgwhichminimizes ����.

To gain analytic insight, however, in what follows

we consider only spatially invariant user motion pro-

cesses with identical distributions on location trajec-

tories from any starting point; i.e., the �m are effectively

uniform.

3. Cost minimization

Here we assume that the motion process is indepen-

dent of the starting location; i.e. Fm�t� � F�t�. A number

of motion models, such as unconstrained random walks

or walks on finite rings, spheres or tori are independent

of starting state in that the probability distribution

derived from starting in any one state is simply a spatial

translation of that derived from starting in another state.

Since the registration policy for each last known location

should be identical under these conditions, we have

�i � �j � � so that

C � P

Z
�

0

F ���st���d�� �1ÿ St���� �12�

and

�d��� �

Z
�

0

�st���d�� ��1ÿ St���� : �13�

For a Poisson paging process we have

���� �
�p

1ÿ e
ÿ�p�

P

Z
�

0

F ����pe
ÿ�p�d�� e

ÿ�p�

� �

:

�14�

We then seek the � which minimizes eq. (14). Differen-

tiating both sides and setting the result to zero shows

that extremal points occur as � !1 andwhen

���� � �p�PF ��� ÿ 1� �15�

Eqs. (14) and (15) allow some general conclusions to

be drawn. Since F��� > 0 and ���� > 0, if

Pmax

�
F ��� < 1

then it is best never to register since the cost of paging is

always smaller than that of registering. Conversely, if

PF ��� increases without bound in � at any rate such that

F��� � Ge
��

for some suitably chosenG > 0 and � < �p, then because

� must be bounded, some optimum � > 0 always exists

2

Once again, it is important to note that general location process

state variables � and � could be substituted for the locations l and m.

Thus, the motion process need not necessarily be Markov on the cur-

rent locationm.
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for which the cost ���� is minimized. Finally, if F���

increases rapidly with � then eqs. (14) and (15) suggest

that frequent registration (small �) is optimal.

4. Application to a simple model of user motion

4.1. Optimum � and ���� for isotropic diffusive motion

A number of motion models which are specified in

terms of independent increments result in Gaussian dis-

tributions on location probability [12,13]. The simplist is

diffusive motion on a line which has probability density,

pg�x; �� �
1

���������

�D�

p e

ÿ�xÿvt�
2

D� ; �16�

where x is the location variable,D is the diffusion coeffi-

cient (units of length
2

=time), and v is the mean velocity.

Two-dimensionalmotion is considered inAppendixA.

To obtain minimum average paging we must search

each location in decreasing order of probability [11]. The

most likely location is the mean of the distribution with

symmetric equally likely locations to either side of the

mean. Thus, assuming that locations are quantized in

steps of � centered about themean vtwe have

F��; �� � px�0; �� �

X

1

n�1

�4n� 1�px�n; �� ; �17�

where

px�n; �� �

Z

�n�
1

2
���vt

�nÿ
1

2
���vt

pg�x; ��dx �

Z

�n�
1

2
��

�nÿ
1

2
��

1

���������

�D�

p e

ÿx
2

D� dx :

Notice then that F ��; �� is independent of the mean velo-

city; i.e., F ��; �� reflects positional uncertainty rather

than the rate of change in absolute position.

A useful simplification can be had if we define

F��; �� � F��; ���. Letting � � n� and taking the limit of

�! 0we find

F��� �

Z

1

0

4�

���������

�D�

p e
ÿ�

2
=D�

d� : �18�

The integral of eq. (18)may be simplified to

F��� �

2D�

���������

�D�

p �

���������

4�D

�

r

: �19�

Notice that although F��� is unbounded as � !1, we

can find aG > 0 and � < �p such that,

F��� � Ge
��

:

Thus, an optimal � > 0 which minimizes � exists. Also

note thatF��� has units of distance.

We then have

���� �

�p

1ÿ e
ÿ�p�

P

�������

4D

�

r

Z

�

0

���

z
p

e
ÿ�pz

�pdz� e
ÿ�p�

 !

:

�20�

Substituting t � ��p (and ! � z�p) while defining a

mobility index � � D=�p produces
3

��t� �
�p

1ÿ e
ÿt

2P�
1=2

Z

t

0

���

!

�

r

e
ÿ!

d!� e
ÿt

� �

: �21�

Using the identity [14,15]

Z

���

!

p

e
ÿ!

d! �
1

2

���

�

p

erf�

���

!

p

� ÿ

���

!

p

e
ÿ!

we obtain

��t� �
�p

1ÿ e
ÿt

�
1=2
P�erf�

��

t
p

� ÿ 2

���

t

�

r

e
ÿt
� � e

ÿt

 !

:

�22�

Observe the monotonically increasing cost associated

with increasingmobility index �.

It is worthwhile to note that similar expressions can

be obtained for motion in two dimensions. The primary

difference is the growth rate ofF��� in � . For two dimen-

sions F��� / � which leads to paging component in �

which varies linearly in � (see Appendix A for details).

However, here we concentrate on linear motion for ease

of comparison to previousmethods.

For clarity, we hereafter assume either that �p � 1 or

that � is measured in cost per average page interarrival

3
Notice that here the mobility index is the ratio of the diffusion

coefficient to page arrival rate; an intuitively reasonable quantity.

Fig. 1. Mean cost per normalized unit time ��t� for diffusive motion

process with paging cost� 0:1 and variousmobility indices �.
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time, 1=�p. Regardless of how we choose to think about

it, the end result is that themultiplicative factor of �p dis-

appears from eq. (22). A family of curves for ��t� para-

metrized in � is shown for P � 0:1 in Fig. 1. Pronounced

optimum t
�
are readily apparent for higher mobility

indices. We also plot the minimum � as a function of
���

�

p

forP � 0:1 and 0:01 in Fig. 2.

4.2. Comparison to simple location-based updating

Consider the currently popular location-based update

schemewhere a user is assigned a location area and regis-

ters the first time it breaches the area boundary. One

might then consider sizing the location area optimally as

a function of � the usermobility index [4].

The optimization problem then becomes one of find-

ing the interval size which minimizes the paging/regis-

tration cost per unit time. The location area is assumed

to be an interval symmetric about the last known loca-

tion. In keeping with previous work, we will assume the

average paging cost per unit time is proportional to the

product of the interval size and the page arrival rate;

2�pI . Normalizing by �p (or setting �p � 1) we have

��I� � 2PI � 1=T�I ; �; �� ; �23�

where as before � is the mobility index, � is the mean

velocity andT�I ; �; �� is themean time to first boundary

crossing at�I both referenced to the mean page interar-

rival time, 1=�p.

Following [13] (also see Appendix B), we may find

T�I ; �; �� as

T�I ; �; �� �

2I
2
=� � � 0;

I

�

tanh

2�I

�

� �

� 6� 0:

8

<

:

�24�

For � � 0, the optimum location area (interval) size is

readily calculated as I
�
�

�����

�

2P

3

q

. This leads to

��I
�
� � 3

��������

�P
2

2

3

s

: �25�

For � 6� 0, ��I
�
�must be calculated numerically.

In Fig. 3 we compare the optimized mean cost for

this location-based method to that of the optimum

timer-based method as a function of mobility index �

and various �. We set the relative paging cost P � 0:1.

The optimum timer-based paging/registration method

both underbounds and greatly outperforms the previous

method especially for larger �.

5. Discussion and conclusions

Given any spatially invariant model of user motion,

the resultant time-varying location probability distribu-

Fig. 2. Minimum mean cost per normalized unit time �minversus the

square root of the mobility index � for a diffusive motion process with

paging costs� 0:1 and 0:01.

Fig. 3. Cost comparison of a simple location-based paging/registration

scheme and the optimal timer-based methods developed here. Drift

velocity� as shown. Notice that the optimum method is independent

of �.
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tion, a paging arrival process and the relative cost of

paging, we showed how to calculate an optimum time-

out parameter, � which minimizes the average cost of

paging/registration. Thus, if an incoming call or a new

call initiation has not occurred within � seconds of the

last registration or call termination, the user should reg-

ister its locationwith the system. The parameter � should

be relatively easy to calculate for a wide range of spa-

tially invariant motion models after calculation of the

associated expected paging costF���.

For the case where motion characteristics vary as a

function of location, we showed that the optimization

problem is in general difficult. However, a theoretical

framework through which suitable numerical methods

could be appliedwas also provided.

We then solved the optimal timer-based paging/regis-

tration problem for a simple model of user motion in

one and two dimensions. and found that timer-based

minimum paging/registration cost is dependent on loca-

tion uncertainty rather than mean user velocity. This

point is theoretically important since it is natural to

think of highmobility users as those whichmove rapidly.

For example, an automobile moving at a steady 100

kph in a known direction has a mobility index of � � 0

for the paging/registration problem; i.e., there is no

uncertainty in the location given the velocity, time and

starting point.

Owing to the difficulty of deriving general analytic

expressions for mean first passage time under two

dimensional isotropic diffusion we restricted our study

to the one-dimensional case. We found that our method

performed substantially better than a fixed location

area-based procedure. The general form of the optimiza-

tion equations, results from Appendix A and heuristic

bounds on themean first passage time in two dimensions

lead us to believe that similar comparative results can

be expected for two dimensions. Regardless, the asser-

tion that a timer-based method performed better than a

location-basedmethod is misleading since it is not neces-

sarily true that all location-based registration schemes

necessarily perform more poorly than timer-based

schemes.

For example, optimal paging techniques could be

applied to the location-based scheme thereby reducing

the effective paging cost P by at least half. For � � 0,

this modification makes the location-based scheme per-

form almost as well as the timer-based scheme. In addi-

tion, if paging area boundaries are allowed to change

during the roaming interval, then current research indi-

cates that the strong dependence on � can be removed

[16].

In both this paper and in [11], the problem of how

pijm�t� may be derived or measured is left open. Future

work should consider the issue of location process char-

acterization and prediction. Recent results in optimal

prediction theory based on empirical sequences [17] may

prove useful in this regard.

It is also possible to formulate the optimal paging/

registration problem in terms of decision theory. In par-

ticular, one may assume the mobile terminal knows its

location as well as the cost to be incurred by a paging

event at time t. In as much as this information charac-

terizes the state of the system, optimal decision methods

such as Markovian Decision Theory [18,19] can be

brought to bear. Furthermore, this problem might be

generalized to include whatever state information is

available in a practical sense such as time of day, system

geography or anything else easily obtainable. Methods

which use both location and time information are cur-

rently under study [20].

A natural extension of this line of thought leads to

the notion that the probability distribution used for opti-

mal paging by the system depends upon the registration

scheme used by the mobile. Thus, one could envision a

treatment of the problem similar to cooperative game

theory [21,22] whereby the registration policy is itera-

tively refined until a fixed point in the policy space is

identified. Such an approach, if successful would allow

the calculation of absolute lower bounds on paging/

registration costs.

Appendix A. F��� and ���� for two-dimensional

motion

For two dimensions, the probability density for iso-

tropic diffusionwith drift is

pg�x; y; �� �
1

�D2�
e
ÿ

�xÿvx��
2
��yÿvy��

2

D
2
� : �26�

Assume that the regions to be paged are annuli of equal

area A. Thus the annuli, centered about the mean

�vx; vy�� , will be searched from smallest to largest radius.

The first annulus is a disk of radius

���������

A=�
p

. The second

annulus has outer radius r2 which must satisfy

r
2

2
ÿ r

2

1
� A=�. Thus, r2 �

������������

2A=�
p

. Proceeding induc-

tivelywe obtain rn �
������������

nA=�
p

.

After rewriting the probability distribution in polar

coordinates, F2��� is then

F2��� �

X

1

n�1

n

Z

���

nA

�

p

��������

�nÿ1�A

�

p

2r

D2�
e
ÿ

r
2

D
2
�dr �

1

1ÿ e
ÿA=�D2�

:

�27�

DefiningF 2��� � AF2��� and takingA! 0we obtain

F 2��� � �D2� ; �28�

which increases without bound in � but which satisfies

F 2��� � Ge
��

for suitable G > 0 and � < �p. Thus, the associated

paging/registration cost �2��� has a minimum for some

� > 0 (see text).
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The expression for �
2
analogous to eq. (22) is then

�
2
�t� �

�
p

1ÿ e
ÿt

P�

Z

t

0

!�e
ÿ!

d!� e
ÿt

� �

� �
p

P���

�
p

e
ÿt

1ÿ e
ÿt

�1ÿ P��t� ;

�29�

where � � D=�
p

is defined as the mobility index. Thus,

the paging cost contained in �
2
is linear in � for two-

dimensional motion. This result implies that as a general

rule, given a mobility index �, the timer value which

minimizes �
2
will be smaller than that of the correspond-

ing one-dimensional motion; i.e., the paging cost grows

more rapidlywith � in twodimensions than in one dimen-

sionandtherebyrequiresmore frequent registration.

Appendix B. Mean first passage time for random

walks

The following derivation is an adaptation and exten-

sion ofmethods used by [13].

Consider a particle at position integer position

0 � X � R at time t � 0. At each time step, the particle

moves one unit to the right with probability p and left

with probability 1 ÿ p. Using a recursive method [13],

the mean number of steps before the particle touches

boundaries at 0 orR for the first time is,

D�X ; p � 1=2� � X�Rÿ X� �30�

and

D�X ; p 6� 1=2� � R

1ÿ

1ÿp

p

� �

X

1ÿ

1ÿp

p

� �

R

ÿ X

2

6

4

3

7

5

1

2pÿ 1

: �31�

Now let the steps be of size�x and let the steps occur

at integer multiples of �t. Define t � �tT where T is

the number of steps. We can define the particle position

x�t� as

x�t� � x�0� �

X

T

i�1

�x
i

:

Assuming that each step is independent and x�0� � 0

we have approximately

p

x�t�

�x�t�� � N t

�x

�t
�2pÿ 1�; t

�x
2

�t
4p�1ÿ p�

� �

:

I.e., the distribution approaches normal for a large num-

ber of independent steps, T . Following convention [12],

we define diffusion constantD andmean velocity v as

D

2

�

�x
2

�t
4p�1ÿ p�

and

v �

�x

�t
�2pÿ 1� ;

respectively. We further define X � x=�x, R � r=�x

and d�x� � D�X��t.

For zero mean velocity we have p � 1=2. Thus, we

obtain

d�x; v � 0� �

2x�rÿ x�

D

: �32�

For p 6� 1=2we have

d�x; v 6� 0� �

1

v

r

1ÿ

1ÿp

p

� �

x=�x

1ÿ

1ÿp

p

� �

r=�x
ÿ x

2

6

4

3

7

5

�33�

but we desire an expression in terms of D and v rather

than�x and p.

The definition for v yields

p � �v�t=�x� 1�=2

and combinedwith the definition ofD yields

�x �

��������������������������������

v
2�t2 �D�t=2

q

�

���������������

D�t=2

p

for small�t. From this we obtain

p �

1

2

�

v

2

��������

2�t

D

r

:

Substitution of these results into eq. (33), letting

�t! 0 and utilizing the identity

lim

n!1

�1ÿ a=n�
bn

� e
ÿab

with a �

2v
������

D=2

p , b �

x

������

D=2

p and n �

1

����

�t
p

yields

d�x; v 6� 0� �

1

v

r

1ÿ e
ÿ

4v

D

x

1ÿ e
ÿ

4v

D

r

ÿ x

" #

: �34�

For the special case of x � r=2 we can simplify eq. (34)

to obtain

d�r=2; v 6� 0� �

r

v

1ÿ e
ÿ

vr

D

�1ÿ e
ÿ

2vr

D
��1� e

ÿ

2vr

D
�

ÿ

1

2

" #

�

r

2v

tanh

vr

D

� �

:

�35�

Derivation of corresponding results in two dimensions

is difficult [13,23].
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