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Abstract. The complexity of the mobility tracking problem in a cellular environment has been characterized under an information-theoretic
framework. Shannon’s entropy measure is identified as a basis for comparing user mobility models. By building and maintaining a dictionary
of individual user’s path updates (as opposed to the widely used location updates), the proposed adaptive on-line algorithm can learn
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1. Introduction

Seamless and ubiquitous connectivity is the strongest driving
force today in designing a Personal Communication Service
(PCS) network environment. The need to track down a mo-
bile user for satisfying these connectivity requirements leads
to what is commonly known as the mobility tracking or loca-
tion management problem. In short, while enjoying the free-
dom of being mobile, the user creates an uncertainty about
the exact location of the registered portable device or mo-
bile terminal (henceforth called just mobile) being carried.
The collector network deployed by the service provider has
to work against this uncertainty for a successful call delivery.
Furthermore, this has to be done effectively and efficiently
for every PCS subscriber. To avoid dropping, a call must be
routed to the recipient within an allowable time constraint, yet
with as little information exchange as possible. Transfer of
any more message than necessary results in wastage of valu-
able resources such as scarce wireless bandwidth and mobile
equipment power, thus increasing the operational cost that the
user has to bear ultimately.

The wireless network for a PCS system is still built upon
an underlying cellular architecture. The service area is di-
vided into a collection of cells, each serviced by a base sta-
tion (BS). Several BSs are usually wired to a base station con-
troller (BSC), and a number of BSCs are further connected
to a mobile switching center (MSC) forming a tree-like clus-
ter. This hierarchical wired connection of the MSC, BSCs
and BSs, along with the air-link between the BSs and the mo-
biles form the collector network. The backbone of the PCS
network consists of the existing wire-line networks (such as
PSTN, ISDN and the Internet) interconnecting the collector
networks. The MSCs act as the gateway for the collector net-
work to the backbone.

As a whole, location management involves two kinds of
activities – one on the part of the system and the other on the

part of the mobile. On a call arrival, the system initiates a
search for the target mobile, by simultaneously polling all the
cells where it can possibly be found. The MSC broadcasts
a page message over a designated forward control channel
via the BSs in a set of cells where the mobile is likely to be
present. All the mobiles listen to the page message and only
the target sends a response message back over a reverse chan-
nel. This search mechanism is called paging. In case no infor-
mation about the mobile is available, the system may have to
page all the cells in the service area. As the PCS providers are
shooting for larger and larger (even continent-wide) service
areas, the paging-only location tracking turns out to be inade-
quate. If an exhaustive search is performed for each and every
call that arrives, the signaling traffic would become enormous
even for moderately large networks [23]. The limited number
of paging channels are bound to overload as the call volume
grows. To put an upper bound on the amount of location un-
certainty, a mobile is made to report from time to time. This
reporting, called location update or registration, effectively
limits the search space for paging at a later point of time. The
registration mechanism starts with an update message sent by
the mobile over a reverse channel, which is followed by some
traffic that takes care of related database maintenance opera-
tions.

In this paper, we take a novel approach to tackling the lo-
cation management problem, and characterize its complexity
from an information-theoretic viewpoint. This outlook pro-
vides the insight to design an adaptive on-line algorithm for
tracking a mobile, which is optimal in terms of both update
and paging costs. The objective of our update scheme is to
learn user mobility with optimal message exchange. Learn-
ing endows the paging mechanism with a predictive power
which reduces average paging cost. A preliminary version of
this paper appeared in [6].

In section 2, we provide a taxonomical classification of the
existing location management techniques. Section 3 explains
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the motivations behind our work and the principles it is based
on. In section 4, we look for general and flexible models for
both the cellular network and individual user mobility. Sec-
tion 5 shows how to compare mobility models in terms of
uncertainty, and discusses the richness and limitation of the
models. Section 6 presents the new adaptive and on-line pro-
tocol “LeZi-update”, designed around the well-known univer-
sal lossless compression techniques. Section 7 concludes the
paper with a discussion on its implications and some direc-
tions of future research.

2. Location management: A taxonomy of current
approaches

In this section, we review the basic paging mechanism as well
as two kinds of location update techniques, namely static and
dynamic update strategies.

2.1. Paging

The naive approach to location tracking is to page the mo-
bile simultaneously either in the entire network, or in a part
as dictated by the last update message. As pointed out by
Rose and Yates [28], this may be overkill. In reality, paging
must be completed within an allowable delay constraint, and
there exists the possibility of sequentializing the procedure.
An alternative considered there is to split the service area into
location areas (LAs), where all the cells within an LA are
paged simultaneously. When a call arrives, the LAs are paged
sequentially for the mobile following an ordering termed the
paging strategy. A very intuitive result derived in [28] states
that, under steady-state location probability distribution of a
mobile user, the optimal paging strategy (in terms of the mean
cost of paging) with no delay constraint should page the LAs
in the order of decreasing probability values. Clearly, a uni-
form distribution is the worst adversary, because no additional
improvement is obtainable by changing paging strategy. An
algorithm to find the optimal paging sequence under given de-
lay constraints is also presented in [28]. However, the worst
case still ends up with system-wide paging and incurring high
cost.

To counteract the worst case complexity issue in pure pag-
ing based strategies, most location management schemes rely
on time to time location updates by the mobile. The idea is to
enforce an upper bound on the uncertainty by restricting the
paging domain within the vicinity of the last known location.
The cost of location update, however, adds a new component
to the location management cost. The update cost over a time
period is proportional to the number of times the mobile up-
dates, whereas the paging cost depends on the number of calls
placed and the number of cells paged while routing each of
those calls. The tradeoff between the two components is ev-
ident from the fact that, the more frequently the mobile up-
dates (incurring higher update cost), the less is the number of
paging attempts required to track it down.

From an operational point of view, it seems that paging is
more fundamental than updating in a cellular system. Yet, it

is somewhat interesting to observe that the majority of the
research on location management has actually focussed on
update schemes, assuming some obvious version of paging
algorithm. The most compelling reason for this is the lack
of a single unquestionable probability model for user mobil-
ity that reflects all kinds of movements seen in practice. As
pointed out in [37], not enough studies have been conducted
in realistic movement profiles of mobiles that take care of
speed and directional variations. Usually, pedestrian and ve-
hicular movement are treated separately. This makes the mo-
bility models inappropriate for PCS networks [8] and third-
generation systems [19].

Most paging algorithms proceed with a high reliance fac-
tor on the latest update information. The mobile’s last known
position and its surroundings are considered to be the most
probable current position – the probability decreasing in an
omni-directional way with increasing distance. This is the un-
derlying assumption for the popular cluster paging [22] and
selective paging [1,2,14]. Bar-Noy et al. [4], as well as Birk
and Nachman [7] have taken into account the directional bias
in user movement by associating a number of states for each
cell under a Markov model. Only Pollini and I [24] have con-
sidered user profiles in designing paging algorithms. They
assumed that probabilistic information about a profile is read-
ily available either with the user or at the billing database.

2.2. Static update schemes

The following two approaches to location update, based on ei-
ther partitioning of cells into location areas (LA) or selection
of a few designated reporting cells, have been characterized as
static or global techniques [4]. These are static schemes be-
cause the cells at which a mobile updates are fixed. They are
also global in the sense that all or a batch of mobiles always
originate their update messages from the same set of cells.

2.2.1. LA partitioning
The update scheme most widely adopted by current cellu-
lar systems (such as GSM [21]), follow the idea presented
in [28]. The service area under an MSC is partitioned into lo-
cation areas (LA), that are formed by non-overlapped group-
ing of neighboring cells. A mobile must update whenever it
crosses an LA boundary. Its location uncertainty is reduced
by limiting the search space to the set of cells under the cur-
rent LA. All the cells under the LA are paged upon a call
arrival, resulting in an assured success within a single step.
The base stations must broadcast the LA-id (along with the
cell-id) to aid the mobiles in following the update protocol.
Consequently, a global LA assignment is induced for all sub-
scribers. An obvious drawback of this scheme is that the up-
date traffic originates only in the boundary cells of the LAs,
thereby reducing the bandwidth availability for other calls.

Xie et al. [35] have shown how to partition cells into opti-
mal location areas. Assuming that the relative cost of paging
vs. update and how the paging cost varies with LA size are
known, their solution is dictated by the call arrival rate and
mobility of the user. Two variants of the method are pro-
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posed. The pure static variant uses the average call arrival
rate and mobility index for all users. Thus, a mobile behaving
as a potential outlier would transmit frequent uninformative
update messages by crossing LA boundaries. In contrast, a
somewhat dynamic variant of this primarily static scheme al-
lows different LA assignments for different mobiles, based on
individual call arrival and mobility patterns. This alleviates
the localization problem of the update traffic to some extent,
although at the cost of the computational complexity involved
in choosing, maintaining and uploading a wide range of LA
maps to individual mobiles. Kim and Lee [17] have taken the
dynamism further by optimizing on the signaling costs that
reflects the mobile’s direction of movement and regional cell
characteristics.

2.2.2. Reporting center selection
An alternative approach due to Bar-Noy and Kessler [3] does
not impose any partition on the cellular map, but designates
some cells as reporting cells where the mobiles must update
upon entering. On arrival of a call, the mobile is paged in the
vicinity of the reporting cell it has last updated at. Choosing
an optimal set of reporting cells for a general cellular net-
work has been shown to be NP-complete. Optimal or near-
optimal solutions for special types of cellular topologies (e.g.,
tree, ring and grid), and an approximation technique for solu-
tions to general graphs have been presented. But the scheme
is built upon a number of simplifying assumptions such as
square shape for cells and LAs, and a fluid flow model of user
mobility.

The basic drawbacks of a static or global scheme, even if
reduced by this approach, still lingers. For example, a user
can generate uninformative update messages by hopping in
and out of reporting cells. As suggested by Sen et al. [29],
considering per-user mobility is the first step towards dealing
with these problems. Following the spirit of reporting cen-
ter selection, they impose a selective update scheme tuned to
individual users over an LA-based cellular network. Such a
technique lies in between the static update schemes and the
dynamic ones, described next.

2.3. Dynamic update schemes

Under these schemes, the mobile updates based only on the
user’s activity, but not necessarily at predetermined cells.
These are local in the sense that mobiles can make the
decision whether to update or not without gathering any
global or design specific information about the cell planning.
Three major schemes fall under the dynamic category, viz.
(i) distance-based, (ii) movement-based and (iii) time-based,
which are named by the kind of threshold used to initiate an
update.

2.3.1. Distance-based
Under the distance-based scheme [1,4,14,20], the mobile is
required to track the Euclidean distance from the location of
the previous update and initiates a new update if the distance
crosses a specified threshold,D. Although the distance would

ideally be specified in terms of a unit such as mile or kilome-
ter, it can also be specified in terms of the number of cells
between the two positions. So the location uncertainty is re-
duced by limiting the search space to the set of cells falling
within a circular region of radius D around the last known
cell.

One can think of these cells effectively forming an LA
centered around the last known position of that specific user.
However, it is difficult to measure the Euclidean distance be-
tween two locations, even if the traversed distance is made
available from the vehicle. Irrespective of its characterization
among local ones, implementing a distance-based scheme
calls for some global knowledge about the cell map. In or-
der for the mobile to identify the cells within the distance
threshold, the system has to load these cell-ids as a response
to its update message. Madhow et al. [20] described how to
find an optimal threshold D̂ by minimizing the expectation of
the sum of update and paging costs until the next call. Con-
sidering the evolution of the system in between call arrivals
under a memoryless movement model, an iterative algorithm
based on dynamic programming is used to compute the opti-
mal threshold distance. A similar approach due to Ho and
Akyildiz [14] computes the optimal threshold distance, D̂,
under a two-dimensional random walk user mobility model
over hexagonal cell geometry. The random walk is mapped
onto a discrete-time Markov chain, where the state is defined
as the distance between the mobile’s current location and its
last known cell. The residing area of the user contains D̂ lay-
ers of cells around its last known cell, which is partitioned
into paging areas according to the given delay constraint.

2.3.2. Movement-based
The movement-based scheme [2,4] is essentially a way of
over-estimating the Euclidean distance by traversed distance,
when the distance is considered only in terms of the num-
ber of cells. The mobile needs to count the number of cell
boundary crossings and update when the count reaches a cer-
tain threshold,M . It is truely a local scheme since there is no
longer any need for any knowledge about cell neighborhood.
The penalty paid is an increased number of updates that it trig-
gers counting local movements between different cells, even
though the distance threshold is not being crossed.

2.3.3. Time-based
Under the time-based [4,27] scheme, the mobile sends peri-
odic updates to the system. The period or time threshold, T ,
can easily be programmed into the mobile using a hardware or
software timer. While this makes it a truely local and attrac-
tive solution for implementation, the cost due to redundant
updates made by stationary mobiles has to be accommodated.
A mobile is paged by searching all possible cells reachable
by the user within the elapsed time from the last known cell.
Thus, the search space evolves as a function of the elapsed
time, user mobility, and possibly the last known cell.

Bar-Noy et al. [4] have compared the time-based, move-
ment-based and distance-based update schemes in terms of
the paging cost with varying update rates. Two types of user
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movement models, viz. independent and Markovian, are used
on a ring cellular topology. It has been observed that the
distance-based scheme performs the best consistently. The
result is intuitive because the distance threshold directly puts
an upper bound on the location uncertainty, whereas in both
time and movement-based schemes the uncertainty imposed
by user mobility interacts with it.

3. Mobility tracking: A new perspective

This section starts with the motivations behind our work in
this paper, revisits three fundamental questions posed in [27,
28], followed by a summary of our contributions and novelty
of the underlying approach which help unfold the intrinsic
nature and complexity of the location management problem
in a mobile computing environment.

3.1. Motivations

Our approach to the location tracking problem is primarily
motivated by the following observations:

1. The location management problem has been formulated by
the vast majority of researchers as some static optimiza-
tion problem to minimize either paging or update cost,
or a combination thereof. The inputs to the optimization
problem are often some probability values that need to be
computed from statistics gathered from system snapshots.
In the static version of the optimization problem, an algo-
rithm works off-line to provide a solution that remains in
effect until the next run. This interval is very critical to
the performance of the technique, but is not provided by
the static optimization formulation. Educated guesses are
used in most cases. Formulating the problem as a dynamic
optimization provides a better insight into its stationary be-
havior and applicability of static versions. Better yet, it
may lead to the design of a on-line algorithm to solve the
problem.

2. Unlike the resource management problems in cellular net-
works, the location tracking problem is user oriented by
definition. Naturally, it would be wise to make use of
personal mobility and calling profiles of individual sub-
scribers for optimization purposes. Both the update and
paging techniques should be user specific to add the
“personal” touch to the personal communication service.
Knowledge representation and learning of the user profile
are, thus, two key factors.

3. The effectiveness of sequencing the paging process crit-
ically depends on early success of the deployed paging
strategy. A large number of failed paging attempts would
not only result in more call drops, but also cause overload-
ing on paging channels. The essence of designing a good
paging strategy is to enhance the predictability of a mo-
bile’s behavior making use of the user profile.

4. Since the sole purpose of the update mechanism is to aid
the paging process, there is no reason to treat them as two

independent components of location management cost. As
opposed to deciding on a paging strategy first and then op-
timizing on the update strategy, one can come up with a
collaborative pair of paging and update policies. In other
words, the update mechanism needs to keep the system
better informed about a user’s mobility, sending the maxi-
mum possible information in a compact form and avoiding
redundancy as far as possible.

3.2. Open questions

Before proceeding further, we first attempt to address and
reinterpret the three basic questions posed in [27,28]:

1. Complexity. Given a user mobility model, what is least
amount of effort necessary on the average, to track the mo-
bile? What metric do we use to quantify the effort and
what unit do we use?

2. Optimality. Given that the user mobility model is known
to both the user and the system, how to pick an optimal
paging strategy, an optimal update scheme, or an optimal
combination of paging and update policies?

3. Learning. How can the time-varying dynamic location
probabilities be efficiently estimated based on measure-
ments taken from user motion? How to pick the right mo-
bility model that does not impose fundamental restrictions
in terms of richness?

3.3. Our contributions

To the best of our knowledge, we make the first model-
independent attempt to identify and characterize the problem
complexity of location management, which is absolutely es-
sential if we are looking for an optimal solution. We relate the
complexity of mobility tracking to the location uncertainty of
the mobile, which is measurable both in the mathematical and
physical sense. From an information theoretic perspective,
Shannon’s entropy measure is an ideal choice for quantifying
this uncertainty [10,30]. Entropy captures the uncertainty of
a probabilistic source, which is also the information content
of the message (e.g., in the number of bits) it generates. The
performance of the tracking algorithm can be measured too
in the number of bits exchanged between the mobile and the
system database during updating or paging. The algorithm
certainly cannot track the mobile by exchanging any less in-
formation on the average than the uncertainty created by its
mobility, and hence, is optimal when these two amounts are
the same.

An analogy exists in the field of data compression [5],
which says that a message cannot be compressed beyond the
entropy of its source without losing any part of it. Opti-
mality is achieved if the length of the compressed message
approaches the entropy, i.e., the redundancy in the encod-
ing approaches zero. Motivated by this duality, we have de-
signed an update scheme around a compressor–decompressor
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duo. A family of efficient on-line algorithms for text com-
pression is known to show asymptotically optimal perfor-
mance [36]. Some versions of these algorithms are hardware-
implementable and are in commercial use (e.g., V.42bis com-
pression standard for modems) [34], which indicates prac-
tical viability. It has already been understood that a good
data compressor must also be a good predictor, because one
must predict future data well to compress them. Such tech-
niques based on compression have earlier been used as pre-
dictors in caching and prefetching of database and hypertext
documents [11,32], as well as for instruction prefetching and
branch prediction in processor architecture [13]. Here we
have molded them into efficient update and paging techniques
for a universal user mobility model in a cellular network en-
vironment.

4. User mobility

The user mobility model plays too important a role in design-
ing location management schemes. The underlying model
can potentially influence the analysis and simulation results
so much that observations and conclusions would merely re-
flect the nature of the model itself. Thus, there are reasons
to be skeptical and cautious about extrapolating theoretical
claims to practice. For example, Markov models are often
constructed with states dictated by the current cell in a reg-
ular geometric cellular architecture. Transition probabilities
for a typical user to move into a specific neighboring cell are
arbitrarily assumed. This is far from being practical.

4.1. Network topology

Structured graph models for a cellular network have been
quite popular among researchers engaged in solving the lo-
cation management problem. Circular, hexagonal or square
areas are often used to model the cells, while various reg-
ular graph topologies such as rings, trees, one and two-
dimensional grids are used to model their interconnection.
These models do not accurately represent a real cellular net-
work, where the cell shapes may vary depending on the an-
tenna radiation pattern of the base stations, and a cell can
have an arbitrary (but bounded) number of neighbors. Al-
though structured graphs help in the early stage of frequency
planning, they over-simplify the mobility tracking problem.
Since enforcing strict assumptions on the topology has a po-
tential to weaken the model, we refrain from making any as-
sumption about either the geometry or the interconnections
between cells.

With a GSM-like deployment in mind, let us consider
an LA-based system. The network can be represented by
a bounded-degree, connected graph G = (ϑ, ε), where the
node-set ϑ represents the LAs and the edge-set ε represents
the neighborhood (roads, highways etc.) between pairs of
LAs. Figure 1 shows a service area with eight LAs, viz.
a, b, c, d, e, f, g, h, and the corresponding graph rep-
resentation.

Figure 1. Model of a realistic cellular system.

The general graph representation is, of course, not re-
stricted to only LA-based cell planning. Some existing sys-
tems use paging strategies that work with a finer granular-
ity, and choose the individual cells to be paged next. In such
cases, our model would give rise to a graph with a larger node-
set ϑ = {a1, a2, . . . , b1, b2, . . . , c1, c2, . . .}, where a1, a2, . . .

are cells in the LA a and so on. We introduce a more general
term zone to refer to a node in our network model. A zone can
be an LA or a cell depending on the system. The important
thing is that the current zone-id should always be made avail-
able to a mobile within by frequent and periodic broadcast
messages from the BSs.

4.2. Movement history

The real power of an adaptive algorithm comes from its abil-
ity to learn. As and when the events unfold, a learning system
observes the history to use it as a source of information. Let
us now look at the movement history of a typical user within
the service area shown in figure 1. For simplicity, we only
record the movement at the coarse granularity of LAs. This
means that the user must be in one of the eight zones, viz.
a, b, c, d, e, f, g, h, at any point in time. Suppose the
service was turned on at 9:00 a.m., when the mobile initially
registered. Table 1 shows the time (limited to the precision of
a minute) at which the LA boundaries were crossed. Current
time is 9:00 p.m. An update message reports the current zone
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Table 1
User movement between 9:00 a.m. and 9:00 p.m.

Time a.m. p.m.
11:04 11:32 11:57 3:18 4:12 4:52 5:13 6:11 6:33 6:54 . . .

Crossing a → b b → a a → b b → a a → b b → c c → d d → c c → b b → a . . .

Table 2
Zone sequence reported by various update schemes.

Time-based (T = 1 hr) aaabbbbacdaaa . . .

Time-based (T = 1/2 hr) aaaaabbbbbbbbaabcddcaaaaa . . .

Movement-based (M = 1) abababcdcba . . .

Movement-based (M = 2) aaacca . . .

Time- and movement-based (T = 1 hr, M = 1) aaababbbbbaabccddcbaaaa . . .

to the system. Consequently, all that the system obtains from
an update scheme is a sequence of zone-id’s. The information
carried by this sequence about the user’s mobility profile de-
pends heavily on the underlying update scheme and how it is
interpreted by the system.

Let us compare and contrast the sequences generated by
the time-based and movement-based schemes. Table 2 shows
the zone sequences generated. For the time-based scheme,
two values of the threshold T have been considered, viz. 1 hr
and 1/2 hr. Both do a good job in capturing the fact that the
user resides in zones a and b for a relatively longer time as
compared to zones c and d . On the other hand, smaller values
of T must be chosen to trace in detail the routes taken by the
user. The choice of 1/2 hr performed better than that of 1 hr
in that respect, yet missed to detect the zone c in the round
trip a → b → c → d → c → b → a. In contrast, the
movement-based scheme is more apt to capture routes. Two
choices of the thresholdM , viz. 1 and 2, have been used to il-
lustrate its effectiveness. Clearly,M = 1 captures movements
in the finest detail. Yet, both are lacking in their capability to
convey the relative durations of residence.

Based on these observations we are now motivated to use
a combination of time-based and movement-based schemes
to make the movement history more informative. The
last row of table 2 shows the zone sequence obtained if a
dual mode update is deployed. This scheme generates an
hourly update starting at 9:00 a.m., as well as whenever
a zone boundary crossing is detected. In the rest of the
paper we assume such an update scheme and use this se-
quence aaababbbbbaabccddcbaaaa . . . for illustrative pur-
poses. However, without any loss of generality, we view the
movement history as just a sequence of zones reported by suc-
cessive updates.

Definition 1. The movement history of a user is a string
“v1v2v3 . . .” of symbols from the alphabet ϑ , where ϑ is the
set of zones under the service area and vi denotes the zone-id
reported by the ith update. Consequently, vi ’s are not neces-
sarily distinct.

4.3. Mobility model

A clear understanding of the distinctions between the move-
ment history and the mobility model is necessary before an
appropriate definition of the latter can be given. The move-
ment history of a user is deterministic, but a matter of the
past. The mobility model, on the other hand, is probabilistic
and extends to the future. The tacit assumption is that a user’s
movement is merely a reflection of the patterns of his/her life,
and those can be learned over time in either off-line or on-
line mode. Specifically, the patterns in the movement history
correspond to the user’s favorite routes and habitual duration
of stay. The essence of learning lies in extracting those pat-
terns from history and storing them in the form of knowledge.
Learning aids in decision making when reappearance of those
patterns are detected. In other words, learning works because
“history repeats itself”.

Characterization of mobility model as a probabilistic se-
quence suggests that it can be defined as a stochastic process,
while the repetitive nature of identifiable patterns adds sta-
tionarity as an essential property. Prior works referenced in
this paper also assume this property either explicitly or im-
plicitly.

Definition 2. The mobility model of a user is a stationary sto-
chastic process V = {Vi}, such that Vi assumes the value
vi ∈ ϑ in the event that the ith update reports the user in
zone vi . The joint distribution of any subsequence of Vi’s is
invariant with respect to shifts in the time axis, i.e.,

Pr[V1 = v1, V2 = v2, . . . , Vn = vn]
= Pr[V1+l = v1, V2+l = v2, . . . , Vn+l = vn] (1)

for every shift l and for all vi ∈ ϑ . The movement history is a
trajectory or sample path of V .

An important question is why such a general mobility
model is not as popular as the restrictive models so abundant
in the literature. The most likely reason is that the general
model allows nothing to be assumed to start the analysis.
The model has to be learned. Given that the user mobility
model defined just as a stationary process, learning is possi-
ble if and only if one can construct a universal predictor or
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Figure 2. Markov model (order-1) for movement profile.

estimator for this process. Here we illustrate an approach for
building models from history. Rigorous treatments on these
topics can be found in [12,25,26,33].

Let us first get a better feel of how commonly used models
interpret the movement history and end up imposing restric-
tions during the learning phase.

Ignorant model. The ignorant model disbelieves and disre-
gards the information available from movement history. Due
to the lack of knowledge, it assigns equal residence proba-
bilities to all the eight zones in figure 1. In other words,
πa = πb = πc = πd = πe = πf = πg = πh = 1/8 =
0.125. The assumption of uniform probability distribution
suffers from the consequence that no single paging strategy
can be adjudged better than another in terms of average pag-
ing cost [28].

IID model. The IID model assumes that Vi’s are indepen-
dent and identically distributed. Using the relative frequen-
cies of the symbols as estimates of residence probabilities, we
obtain the residence probabilities as πa = 10/23 ≈ 0.435,
πb = 8/23 ≈ 0.348, πc = 3/23 ≈ 0.13, πd = 2/23 ≈
0.087, and πe = πf = πg = πh = 0.

Markov model. The simplest possible Markov model as-
sumes that the process S is a time-invariant Markov chain,
defined by

Pr[Vk = vk | V1 = v1, . . . , Vk−1 = vk−1]
= Pr[Vk = vk | Vk−1 = vk−1] (2)

= Pr[Vi = vi | Vi−1 = vi−1] (3)

for any arbitrary choice of k and i.
Zones e, f, g and h, never being visited, acquire zero

probability mass. The effective state space is thus reduced to
the set {a, b, c, d}. The one-step transition probabilities

Pi,j = Pr[Vk = vj | Vk−1 = vi ],
where vi, vj ∈ {a, b, c, d}, are estimated by the relative
counts. From figure 2, the probability transition matrix
P = ((Pi,j )) is given by

P =



2/3 1/3 0 0
3/8 1/2 1/8 0
0 1/3 1/3 1/3
0 0 1/2 1/2


 .

The Markov chain is finite, aperiodic and irreducible, and thus
ergodic. Let � = [πaπbπcπd ]T be the steady-state probabil-
ity vector. Solving for � = �×P with πa+πb+πc+πd = 1,
we obtain πa = 9/22 ≈ 0.409, πb = 4/11 ≈ 0.364,

Table 3
Contexts of orders 0, 1 and 2 with frequencies.

Order-0 Order-1 Order-2

a(10) a | a(6) b | c(1) a | aa(3) a | ba(2) a | cb(1)
b(8) b | a(3) c | c(1) b | aa(2) b | ba(1) d | cc(1)
c(3) a | b(3) d | c(1) a | ab(1) a | bb(1) d | cd(1)
d(2) b | b(4) c | d(1) b | ab(1) b | bb(3) b | dc(1)

c | b(1) d | d(1) c | ab(1) c | bc(1) c | dd(1)

πc = 3/22 ≈ 0.136, πd = 1/11 ≈ 0.091. Also, πe =
πf = πg = πh = 0.

Finite-context model. The ignorant model is incapable of
learning and cannot lead to any adaptive technique. The IID
model takes the first step towards learning from movement
history. For example, 〈a, b, c, d, e, g, h〉 is an optimal uncon-
ditional paging strategy that can be derived based on the IID
model. However, if we know that the mobile has made the last
update in zone d , neither a nor b is a more likely candidate for
paging in comparison to c or d . Unfortunately, the IID model
does not carry any information about the symbols’ order of
appearance and falls short in such situations. The Markov
model carries a little more information about the ordering, at
least to the extent of one symbol context. To be more precise,
let us adopt the terminology order-1 Markov model to refer
to this particular model. The same nomenclature designates
the IID model as the order-0 Markov model. To maintain this
convention, the concept of order has to be extrapolated even
to the negative domain without much real meaning. We call
the ignorant model an order-(–1) Markov model.

The construction of higher order Markov models is illus-
trated by enumerating all order-2 contexts in the sequence
“aaababbbbbaabccddcbaaaa” and the symbols that appear
in those contexts with their respective frequencies. Table 3
enumerates the contexts with symbol frequencies for orders
0, 1 and 2. An entry of “v | w(f )” implies that the sym-
bol v ∈ ϑ appears with frequency f in the context w ∈ ϑ∗,
where ϑ∗ is the regular grammar notation for a sequence of
zero or more symbols from set ϑ . Null contexts have not been
shown explicitly. In other words, f is the number of matches
of “w.v” in the history, where the dot represents concatena-
tion. A dictionary of such contexts can be maintained in a
compact form by a trie or digital search tree, as shown in
figure 3. Every node represents a context, and stores its last
symbol along with the relative frequency of its appearance at
the context of the parent node. Naturally, a node can have at
most |ϑ| children. The root, at level 0, represents a null con-
text. Level l stores the necessary statistics for an order-(l−1)
Markov model.
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Figure 3. A trie for all contexts up to order-2 in the sequence “aaababbbbbaabccddcbaaaa . . .”.

It is now intuitively clear how higher order Markov models
carry more detailed information about the ordering of sym-
bols in a sequence. Applied to the update sequences, they
capture a lot of information about the user’s favorite routes.
For example, according to the order-1 model, the probability
of the route “abcbcd” being taken is 9/22 × 1/3 × 1/8 ×
1/3 × 1/8 × 1/3 = 1/4224 ≈ 2.37 × 10−4. However small
this may seem, such a zigzag route is highly unlikely to be
taken by any sensible person, and should have been assigned
a zero probability. Under the order-2 model, this route turns
out to be an impossible event, as expected.

The possibility of Markov models based on higher order
finite contexts adds hope as well as confusion to the pursuit
of a general mobility model. Does an increase in the order
of context always make the model richer? There should be a
limit to the richness, because the sought after general model
has to be the richest. At what order k do we stop? Should we
use an order-k model only, or consider all models of orders
0 through k inclusive? And, what is the figure of merit for
richness anyway?

5. Location uncertainty and entropy

It seems impossible to answer the fundamental questions
posed in the previous section without a quantitative compari-
son of the candidate models. Of course, we need a fair basis
for such comparison, and uncertainty is a potential choice.
The rule of thumb is that the lower the uncertainty under a
model, the richer the model is. Consequently, we need to for-
malize the notion of uncertainty we have been talking about
since the beginning.

5.1. Basic terminologies

We have defined user mobility earlier as a stochastic process
V = {Vi}, where the Vi’s form a sequence of random vari-
ables. The traditional information-theoretic definitions of en-
tropy and conditional entropy of random variables, as well as
entropy rate of a stochastic process are given below [10,30].

Definition 3. The entropy Hb(X) of a discrete random vari-
able X, with probability mass function p(x), x ∈ X , is de-
fined by Hb(X) = − ∑

x∈X p(x) logb p(x). The limiting
value limp→0 p logb p = 0 is used in the expression when
p(x) = 0. The base of the logarithm depends on the unit
used. As we usually measure information in terms of bits,
using b = 2 we write

H(X) =
∑
x∈X

p(x) lgp(x). (4)

Since p(x) ∈ [0, 1], we see that H(X) � 0.

Definition 4. The joint entropy H(X, Y ) of a pair of discrete
random variables X and Y with a joint distribution p(x, y),
where x ∈ X and y ∈ Y , is defined by

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) lgp(x, y). (5)

Also the conditional entropy H(Y | X) is defined as

H(Y | X)=
∑
x∈X

p(x)H(Y | X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y | x) lgp(y | x) (6)

= −
∑
x∈X

∑
y∈Y

p(x, y) lgp(y | x). (7)

Definition 5. The per symbol entropy rate H(V) for a sto-
chastic process V = {Vi}, is defined by

H(V) = lim
n→∞

1

n
H(V1, V2, . . . , Vn) (8)

if the limit exists. The conditional entropy rate H ′(V) for the
same process is defined by

H ′(V ) = lim
n→∞H(Vn | V1, V2, . . . , Vn−1) (9)

if the limit exists.
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5.2. Comparison of models

First we try to compare different models based on the two
entropy rates H(V) and H ′(V). Let us consider the three
special cases of context models of orders −1, 0 and 1. Let
us use the notation Pr[V1 = v1, V2 = v2, . . . , Vn = vn] =
p(v1, v2, . . . , vn) for all vi ∈ ϑ .

Order-(–1) model. Vi’s are independent and uniformly dis-
tributed, i.e., with distribution p(v) = πv = 1/8, ∀v ∈ ϑ .
Due to independence, p(vn | v1, . . . , vn−1) = p(vn), and
therefore, p(v1, v2, . . . , vn) = {p(v1)}n. Thus, H(V) =
H ′(V) = lg 8 = 3 bits.

Order-0 model. Vi’s are independent and identically distrib-
uted with distribution p(v) = πv ∀v ∈ ϑ . Due to indepen-
dence, p(vn | v1, . . . , vn−1) = p(vn), and therefore,

H(V)=H ′(V)
=

∑
v∈ϑ

−p(v) lgp(v)

=
∑
v∈ϑ

−πv lgπv

= 10

23
lg

23

10
+ 8

23
lg

23

8
+ 3

23
lg

23

3
+ 2

23
lg

23

2

≈ 1.742 bits,

from equation (6).
Order-1 model. Vi’s form Markov chain, which means that
p(vn | v1, . . . , vn−1) = p(vn | vn−1) = Pvi ,vj . Substitut-
ing p(v) = πv in equation (6), we get

H ′(V)= −
∑
i

πi

(∑
j

Pi,j lgPi,j

)

= 9

22

(
2

3
lg

3

2
+ 1

3
lg 3

)

+ 4

11

(
3

8
lg

8

3
+ 1

2
lg 2 + 1

8
lg 8

)

+ 3

22

(
3 × 1

3
lg 3

)
+ 1

11

(
2 × 1

2
lg 2

)
≈ 1.194 bits.

The πv values come from the solution of � × P = �.

A few observations are in order. First, at most three bits are
sufficient to span the message space of eight alternatives. All
three bits of uncertainty exist in order-(−1) model. Thus, the
model itself is not at all informative, and is the one that maxi-
mizes entropy rate. Order-0 and order-1 models show gradual
improvement in richness with decreasing entropy rate. Sec-
ond, the two kinds of entropy rateH(V) and H ′(V) are equal
due to the independence in order-(−1) and order-0 models.
The question is whether this is true for models of order-1 or
higher. An important result that follows from the earlier defi-
nitions clarifies this issue [10].

Result 1. For any set {V1, V2, . . . , Vk} of k discrete random
variables with a joint distribution

p(v1, v2, . . . , vk) = Pr[V1 = v1, V2 = v2, . . . , Vk = vk]
∀i (vi ∈ ϑ)

the joint entropyH(V1, V2, . . . , Vk) is given by

H(V1, V2, . . . , Vk) =
k∑
i=1

H(Vi | V1, V2, . . . , Vi−1). (10)

Suppose the random variables Vi’s are taken from V . Equa-
tion (10) reveals an interesting relationship when k − 1 is
the highest order context under consideration. Substituting
k = 3, for example, we get

H(V1, V2, V3) = H(V1)+H(V2 | V1)+H(V3 | V1, V2).

The additive terms on the right-hand side consist of the in-
formation carried by levels 1, 2 and 3 (root at level zero) of
the trie in figure 3. Higher order context models are, thus,
more information-rich as compared to the lower order ones.
Another way to look at it is that the lower order models mis-
lead the algorithm designer by projecting an under-estimate
of uncertainty. To see that the trie holds all the necessary pa-
rameters to compute H(Vi | V1, V2, . . . , Vi−1), we expand
using equation (6) to find

H(Vi | V1, V2, . . . , Vi−1)

=
∑
ϑi−1

p(v1, . . . , vi−1)

×
{∑

ϑ

p(vi | v1, . . . , vi−1) lgp(vi | v1, . . . , vi−1)

}
.

(11)

The probabilities p(v1, . . . , vi−1) and p(vi | v1, . . . , vi−1)

are estimated from the relative frequencies preserved in the
trie. Since the conditional entropy computation for order-i
requires the joint distribution for all orders up to (i − 1), we
need to maintain models of all orders up to a suitably large
value. Note that order-1 model is an exception due to the
simplicity in computing the vector � from matrix P.

As a part of illustration, let us compute the conditional en-
tropies for contexts of orders 0, 1 and 2 from figure 3. We
have H(V1) = 1.742 as before. However,

H(V2 | V1)= 10

23

(
2

3
lg

3

2
+ 1

3
lg 3

)

+ 8

23

(
3

8
lg

8

3
+ 1

2
lg 2 + 1

8
lg 8

)

+ 3

23

(
3 × 1

3
lg 3

)
+ 2

23

(
2 × 1

2
lg 2

)
≈ 1.182.
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The deviation from the value 1.194 obtained before is due to
the fact that we consulted the steady-state distribution from
order-0 instead. Similarly,

H(V3 | V1V2)= 6

23

(
1

3
lg 3 + 2

3
lg

3

2

)
+ 3

23

(
3 × 1

3
lg 3

)

+ 3

23

(
2

3
lg

3

2
+ 1

3
lg 3

)

+ 4

23

(
1

4
lg 4 + 3

4
lg 43

)
≈ 0.707.

Finally, H(V1, V2, V3) ≈ 3.631, and by taking the running
average, we arrive at an estimate of H(V) = (1.742 +
1.1818 + 0.707)/3 ≈ 1.21. As the order increases, this run-
ning average estimate should converge to the true value of the
per-symbol entropy rate, if it exists.

A natural question arises regarding the highest order k,
which dictates the height of the trie. The answer comes from
the following result [10].

Result 2. For a stationary stochastic process V = {Vi}, the
conditional entropy H(Vn | V1, . . . , Vn−1) is a decreasing
function in n and has a limit H ′(V).

Clearly, the marginal improvement in model richness starts
to die out soon. Intuitively, the largest meaningful order has
something to do with largest chain of dependency observed in
the movement history. This may come from the longest route
taken by the user or the longest stay at a zone (reported by the
time-based update scheme only). This becomes evident when
we look at the left-hand side of equation (10). This is the joint
entropy of a sequence of the k random variables. According
to equation (8), the per-symbol entropy rate would then repre-
sent the running average of conditional entropy rates, giving
rise to the following result [10]:

Result 3. For a stationary stochastic process V , both the lim-
its in equations (8) and (9) exist and are equal, i.e.,

H(V) = H ′(V). (12)

For a universal model, all we now need is a way to auto-
matically arrive at the appropriate order dictated by the input
sequence. Fortunately, this is exactly what a class of com-
pression algorithms achieves.

6. Update and paging: New algorithms

In section 2 we reasoned why the time-based and movement-
based update schemes are more localized as compared to the
distance-based scheme. Let us recall that this was due to
the system’s involvement in recomputing and uploading the
mobile’s new neighborhood after each update. The mobile
has to maintain a list of neighboring cells in a cache until
the next update. Proponents of the movement-based schemes

have also touted a caching scheme such that the new cell-id
is cached on every boundary crossing and entry into a cell
already in cache is not counted towards reaching the thresh-
old M . This is supposed to avoid some unnecessary updates
when cells are revisited.

Our proposed update scheme essentially uses an enhanced
form of caching. Discussions on richness of models in sec-
tion 4 reveals the need for gathering statistics based on con-
texts seen in the movement history. While the zone-ids are
treated as character symbols, these contexts must be treated as
phrases. A dictionary of such phrases must replace the cache.
Whereas just doubling or tripling the threshold only elimi-
nates some primary updates, our algorithm tries to hold them
back and send them together in a merged way. Being moti-
vated by the dictionary-based LZ78 compression algorithm,
originally proposed by Ziv and Lempel [36], it assumes the
name “LeZi-update” (pronounced “lazy update”).

6.1. The LeZi-update algorithm

Before describing the algorithm, let us clarify a very impor-
tant point: LeZi-update is not meant to replace the threshold-
based dynamic update schemes. Rather, it is supposed to re-
duce the update cost by working as an add-on module to the
underlying update scheme. The responsibility of generating
the movement history “v1v2v3 . . .” still lies with the primary
update scheme as before. Let us identify this process of data
acquisition as sampling. However, a real update message is
not generated for each sampled symbol. The LeZi-update al-
gorithm captures the sampled message and tries to process
it in chunks, thereby delaying the actual update for some
sampled symbols. When it finally triggers an actual update,
it reports in an encoded form the whole sequence of sam-
pled symbols withheld since the last reporting. In effect,
the movement history “v1v2v3 . . .” reaches the system as a
sequence “C(w1)C(w2)C(w3) . . .”, where the wi’s are non-
overlapping segments of the string “v1v2v3 . . .” and C(w)
is the encoding for segment w. The prime requirement for
LeZi-update (following LZ78) is that the wi’s must be dis-
tinct.

The system’s knowledge about the mobile’s location al-
ways lags by at most the gap between two updates. The un-
certainty increases with this gap, yet larger gaps reduce the
number of updates. A natural action would be to delay the up-
date if the current string segment being parsed has been seen
earlier, i.e., the path traversed since the last update is a famil-
iar one. Although the gap goes on increasing, it is expected
that the information lag will not affect paging much if the
system can somehow make use of the profile generated so far.
This prefix-matching technique of parsing is the basis of the
LZ78 compression algorithm, which encodes variable length
string segments using fixed-length dictionary indices, while
the dictionary gets continuously updated as new phrases are
seen. In figures 4 and 5, we outline this greedy parsing tech-
nique from the classical LZ78 algorithm, as used in our con-
text. The mobile acts as the encoder, while the system takes
the role of the decoder. It must, however, not be overlooked
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initialize dictionary := null
initialize phrase w := null
loop

wait for next symbol v
if(w.v in dictionary)

w := w.v
else
encode <index(w),v>
add w.v to dictionary
w := null

endif
forever

Figure 4. Encoder at the mobile.

initialize dictionary := null
loop

wait for next codeword <i,s>
decode phrase := dictionary [i].s
add phrase to dictionary
increment frequency for every

prefix of phrase
forever

Figure 5. Decoder at the system.

that the LeZi-update really makes a paradigm shift from the
existing zone-based to a new path-based update messaging.
Redesigning the message format would, thus, be necessary.

6.2. Incremental parse tree

The LZ78 algorithm emerged out of a need for finding some
universal variable-to-fixed length coding scheme, where the
coding process is interlaced with the learning process for the
source characteristics. The key to the learning is a decorrelat-
ing process, which works by efficiently creating and looking
up an explicit dictionary. The algorithm in [36] parses the in-
put string “v1, v2, . . . , vn”, where v ∈ ϑ , into c(n) distinct
substrings w1, w2, . . . , wc(n) such that for all j � 1, the pre-
fix of substring wj (i.e., all but the last character of wj ) is
equal to some wi , for 1 � i < j . Because of this prefix prop-
erty, substrings parsed so far can be efficiently maintained in
a trie [18].

Figure 6 shows the trie formed while parsing the move-
ment history “aaababbbbbaabccddcbaaaa . . .” as “a, aa,
b, ab, bb, bba, abc, c, d, dc, ba, aaa, . . .”. Commas sepa-
rate the parsed phrases and indicate the points of updates. In
addition to representing the dictionary, the trie can store sta-
tistics for contexts explored, resulting in a symbol-wise model
for LZ78. A new dictionary entry can only be created by con-
catenating a single symbol v to a phrasew already in it. Thus,
c(n) also captures the storage requirement for maintaining the
dictionary at both the mobile and system side.

It is easy to see that as the process of incremental pars-
ing progresses, larger and larger phrases accumulate in the
dictionary. Consequently, estimates of conditional probabili-
ties for larger contexts start building up. Intuitively, it would
gather the predictability or richness of higher and higher order
Markov models. Since there is a limit to the model richness
for stationary processes, the Lempel–Ziv symbol-wise model

Figure 6. Trie for the classical LZ symbol-wise model.

initialize dictionary := null
loop

wait for next codeword <i,s>
decode phrase := dictionary [i].s
add phrase to dictionary
increment frequency for every prefix of

every suffix of phrase
forever

Figure 7. Enhanced decoder at the system.

should eventually converge to the universal model. A result
from [12] states that:

Result 4. The symbol-wise model created by the incremen-
tal parsing asymptotically outperforms a Markov model of
any finite order and attains the finite-state predictability. At
any point, the effective number of states in the incremental
parsing model is O(c(n)) and the equivalent Markov order is
O(log c(n)). Moreover, for stationary ergodic sources, it at-
tains the predictability of the universal model.

For our running example, the largest order we see is 2.
However, not all the order-2 contexts get detected. The
first reason behind this is that the algorithm remains un-
aware about the contexts that cross over phrase boundaries.
Unfortunately, the algorithm has to work on one phrase at a
time. The second reason is that the decoding algorithm, as is,
logs the statistics only for the prefixes of the decoded phrases.
None of them influence the asymptotic behavior, but the rate
of convergence gets affected to a considerable extent. A sim-
ple modification on the decoder (system side) as in figure 7
improves the performance if the dictionary is augmented by
the suffixes of the decoded phrases. The enhanced trie for
the symbol-wise model is shown in figure 8. To appreciate
the effect, let us compute the conditional entropies for both
the classical and the enhanced symbol-wise models. For the
classical one,

H(V1)= 5

12
lg

12

5
+ 1

3
lg 3 + 1

12
lg 12 + 1

6
lg 6 ≈ 1.784,



132 BHATTACHARYA AND DAS

Figure 8. Trie for the enhanced LZ symbol-wise model.

and

H(V2 | V1)= 5

12

(
2 × 1

2
lg 2

)
+ 1

3

(
1

3
lg 3 + 2

3
lg

3

2

)
≈ 0.723 bits.

An estimate for H(V) is (1.784 + 0.723)/2 = 1.254 bits.
Conditional entropy for all order-2 contexts turns out to be
zero. This is also true for the enhanced one. However, we
still have

H(V1)= 10

23
lg

23

10
+ 8

23
lg

23

8
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23
lg

23

3
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23
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2
≈ 1.742 bits.

Then,

H(V2 | V1)= 10

23

(
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5
lg

5

3
+ 2

5
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2

)

+ 8

23

(
2 × 2

5
lg

5

2
+ 1

5
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)
≈ 0.952 bits.

The estimate for H(V) is (1.742 + 0.952)/2 = 1.347 bits.

6.3. Update cost and message complexity

Had the update cost been measured in terms of the volume
of update messages in bits, the cost minimization problem
can be easily identified with compressing the movement his-
tory. However, only the number of updates contributes to the
update cost. In an off-line scenario where both the dictio-
nary and the input string are given, it is possible to find out
a parsing that minimizes the number of parsed phrases using
either a breadth-first search or dynamic programming. But,
when the history is generated on-line and the dictionary is
built adaptively, we do not have that luxury. The literature
has an asymptotic optimality result for Lempel–Ziv parsing in
terms of the total volume of update messages, while only an
upper bound on the growth rate can be derived for the number
of updates [10].

Result 5. For a stationary ergodic stochastic process V =
{Vi}, if l(V1, V2, . . . , Vn) is the Lempel–Ziv codeword length
associated with V1, V2, . . . , Vn, then

lim sup
n→∞

1

n

[
l(V1, V2, . . . , Vn)

] = H(V) (13)

with probability 1.

Result 6. The number c(n) of phrases in a distinct parsing of
a string “v1, v2, . . . , vn” satisfies

c(n) = O

(
n

logn− log logn

)
, (14)

where the base of the logarithms is |ϑ|.

The O-notation in the above equation has the usual mean-
ing that f (n) = O(g(n)) if and only if there exist positive
constants c and n0 such that 0 � f (n) � cg(n) for all n � n0.

Result 5 essentially implies that LZ78 approaches optimal-
ity asymptotically for stationary sources. This coveted prop-
erty is inherited by LeZi-update, which replaces n location-
updates of the primary update algorithm by c(n) path-updates.
Assuming that the update messages handle the path-updates
with no extra cost, the improvement in update cost from equa-
tion (14) is '(logn − log logn), where f (n) = '(g(n)) if
and only if there exist positive constants c and n0 such that
f (n) � cg(n) � 0 for all n � n0. According to the algo-
rithms in figures 4 and 5, the LeZi-update adds only one entry
to the dictionary per update. So, the size of the dictionary af-
ter n samplings is also given by c(n). The index needed for
encoding would have O(lg c(n)) = O(lg n− lg lgn) bits.

6.4. Profile-based paging

The location database of every user holds a trie, which is the
symbol-wise context model corresponding to the enhanced
Lempel–Ziv incremental parse tree. Each node except for
the root preserves the relevant statistics that can be used to
compute total probabilities of contexts as well as conditional
probabilities of the symbols based on a given context. A path
from the root to any node w in the trie represents a context,
and the sub-trie rooted at w reveals the conditional probabil-
ity model given that context. The paths from the root to the
leaves in the Lempel–Ziv trie represent the largest contexts,
which are not contained in any other contexts.

Here we describe the underlying principles behind the
probability assignments, which are motivated by the princi-
ples used in the prediction by partial match (PPM) family of
text compression schemes [5,9]. However, while the PPM
techniques for text compression are concerned with the prob-
ability of the next symbol, we are more interested in the prob-
ability of occurrence of the symbols (zones) on the path seg-
ment to be reported by the next update. These segments are
the sequences of zones generated when traversing from the
root to the leaves of the sub-trie representing the current con-
text. The estimated conditional probabilities for all the zones
at the current context constitutes the conditional probability
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distribution, based on which zones are ranked for paging.
Instead of relying completely on the conditional probability
estimates given the context of a specific order, a PPM-style
blending of these distributions is desirable [5,9]. A family of
paging algorithms may emerge based on the choice of these
blending strategies.

We use the enhanced trie in figure 8 to illustrate a blend-
ing strategy known as exclusion which is often used by the
PPM schemes. Assume that the call has arrived, and no
LeZi-style path update message has been received since re-
ceiving “aaa” at 9 p.m. The contexts which can be used
are suffixes of “aaa”, with the exception of itself, viz. “aa”
(order-2), “a”(order-1) and “(” (order-0). First, we need to
find all possible paths that can be predicted at these contexts.
A list of all such paths are shown in table 4, with their respec-
tive frequencies. The unconditional probabilities of occur-
rence of these phrases are then computed by blending. With-
out going into mathematical details, let us show how to com-
pute of a couple of such probability estimates. The phrase
“a”, for example, appears in the contexts of all the orders 0,
1 and 2. We start from the highest order, i.e., the context
“aa”. The phrase “a” occurs only once out of three possi-
ble occurrences of this context, the other two producing null
prediction. Thus, we can predict the phrase “a” with proba-
bility 1/3 at context “aa” and fall back to the lower order with
probability 2/3. Now “a” occurs twice at the context “a”, out
of a total ten occurrences of the context. Thus, “a” can be
predicted with probability 1/5 at the order-1 context. Due to

Table 4
Phrases and their frequencies at contexts “aa”, “a” and “(”.

aa (order-2) a (order-1) ( (order-0)

a | aa(1) a | a(2) a(5) ba(2) d(1)
( | aa(2) aa | a(1) aa(2) bb(1) dc(1)

b | a(1) ab(1) bba(1) ((1)
bc | a(1) abc(1) bc(1)
( | a(5) b(3) c(3)

five occurrences out of the ten producing null predictions, we
need to escape to lower order with probability 1/5. Finally,
“a” shows up five times out of twenty-three possible phrases
including the null phrase, leading to a probability value 5/23.
The blended probability of occurrence for phrase “a” is, thus,

1

3
+ 2

3

{
1

5
+ 1

2

(
5

23

)}
= 0.5319.

Since the phrase is made of only one symbol ‘a’, the whole
probability mass gets assigned to it.

To see a little variation, let us also compute the blended
probability of the phrase “bba”. This does not occur in ei-
ther contexts of order 1 or 2. The probability of escaping the
contexts of these two orders by null prediction is 2/3 × 1/2.
However, “bba” occurs only once among twenty-three possi-
ble phrases seen at a null context. Thus the net probability of
occurrence of “bba” is

2

3

{
1

2

(
1

23

)}
= 0.0145.

Because there is only one ‘a’ as opposed to two ‘b’s in “bba”,
the individual probabilities of symbols ‘a’ and ‘b’ within
phrase “bba” are computed as 1/3 × 0.0145 = 0.0048 and
2/3 × 0.0145 = 0.0097, respectively. The probabilities of in-
dividual symbols are thus computed based on relative weights
of symbols on these phrases as shown in table 5. These are
precisely the location probabilities of the mobile terminal in
different cells. Paging order is determined by arranging the
cells in decreasing order of these location probabilities.

Probabilistic prediction is not necessarily the only advan-
tage of building the Lempel–Ziv tries. Search can also be
done on the entire trie or a context sub-trie using breadth-first,
depth-first or a combined strategy. Geographical information
about the neighborhood of LAs comes as a by-product of con-
structing these tries, especially when the movement-based up-
date scheme withM = 1 is used for sampling. A breadth-first
search pages the mobile in the neighboring zones where it is

Table 5
Probabilistic prediction of individual symbols on path until next update.

Phrase Pr[Phrase] a b c d

a 1
3 + 2

3

{ 1
5 + 1

2

( 5
23

)} = 0.5391 0.5391 0.0000 0.0000 0.0000

aa 2
3

{ 1
10 + 1

2

( 2
23

)} = 0.0957 0.0957 0.0000 0.0000 0.0000

ab 2
3

{ 1
2

( 1
23

)} = 0.0145 0.0073 0.0073 0.0000 0.0000

abc 2
3

{ 1
2

( 1
23

)} = 0.0145 0.0048 0.0048 0.0048 0.0000

b 2
3

{ 1
10 + 1

2

( 3
23

)} = 0.1104 0.0000 0.1104 0.0000 0.0000

ba 2
3

{ 1
2

( 2
23

)} = 0.0290 0.0145 0.0145 0.0000 0.0000

bb 2
3

{ 1
2

( 1
23

)} = 0.0145 0.0000 0.0145 0.0000 0.0000

bba 2
3

{ 1
2

( 1
23

)} = 0.0145 0.0048 0.0097 0.0000 0.0000

bc 2
3

{ 1
10 + 1

2

( 1
23

)} = 0.0812 0.0000 0.0406 0.0406 0.0000

c 2
3

{ 1
2

( 3
23

)} = 0.0435 0.0000 0.0000 0.0435 0.0000

d 2
3

{ 1
2

( 1
23

)} = 0.0145 0.0000 0.0000 0.0000 0.0145

dc 2
3

{ 1
2

( 1
23

)} = 0.0145 0.0000 0.0000 0.0073 0.0073

Sum 0.6662 0.2018 0.0962 0.0218
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known to have gone before. This is really a pruned version of
paging tier by tier [22]. On the other hand, a depth first search
can be spawned biased by the weights of the paths emanating
from the node and finishing in a leaf, which gives preference
to movement in specific directions. An ordering of zones is
always prepared for paging, irrespective of the criterion used
for this ordering. This list, of course, is guaranteed not to in-
clude a zone never visited before, based on the protocol that
the mobile will update if the user ends up moving to a new
location.

7. Conclusions and discussions

We have identified the uncertainty due to user mobility as the
complexity of the location management problem in a cellular
environment. Therefore, entropy is the natural measure for
comparing mobility tracking algorithms. As entropy is often-
times quantified in terms of the number of bits, we arrive at
a very intuitive definition of location uncertainty as the least
amount of message that needs to be exchanged so that the ex-
act location is known. This provides a common ground for
comparing various techniques that are proposed in the litera-
ture.

The main difference between our approach and the tra-
ditional line of research on location management in cellular
PCS networks lies in the perspective. We formulate mobil-
ity tracking as a dynamic optimization problem as opposed
to the existing static formulation specified in terms of some
known input parameters. The scope of our study extends to
the estimation of those parameters from data provided by the
underlying sampling mechanism. The update schemes pro-
posed in the literature so far are essentially a characterization
of these sampling mechanisms. While sampling is not the pri-
mary focus of this paper, we have pointed out that one can ob-
tain highly informative samples by combining the time-based
and movement-based schemes. The important issue is that
the sampled data may have enough redundancy, and need not
be sent “as is” in the update messages. Characterizing the
user movement data as a stochastic process, we have identi-
fied stationarity to be the sufficient criterion for learning the
mobility profile. Using entropy as the basis for comparing
models, we have illustrated the existence and properties of a
universal model when the profile is stationary.

We have adopted the LZ78 compression algorithm as the
basis of our update scheme. The choice was guided by two
factors, viz. the existence of an explicit symbol-wise context
model created by incremental parsing, and the tendency of
this model to asymptotically converge to a universal one. As
seen in lossless data compression [5], piecewise stationarity
of the sampled sequence should help LZ78 to achieve a high
level of performance. The use of pure LZ78 in this paper is
motivated by its simplicity in establishing the theoretical ba-
sis. Practical implementation would call for a fancier LZ78
variant which must work efficiently with limited memory and
should have the capability of forgetting beyond the recent
past. We have also outlined how a paging strategy is to be
derived out of such a model.

In the following, let us point out some implications of the
proposed LeZi-update scheme that goes beyond just efficient
location management:

• LeZi-update builds on information-based complexity, that
has been the focus of a recent trend in interdiscipli-
nary research [31]. The need for capturing the computa-
tion versus communication tradeoff in wireless networks
makes information-based complexity a very likely metric
of choice.

• This technique addresses the issue of generality of input
models in any performance evaluation problem in general,
and the universality of mobility models in particular. It
discourages making any unnecessary and extraneous as-
sumption about the model, and advocates the use of con-
strained entropy maximization to arrive at the model with
maximum allowable uncertainty [16]. In the specific case
of the user mobility model, the movement history serves
as the constraint set, while stationarity ensures existence
of a global maximum entropy.

• Decision making in an operational mobile wireless net-
work can be abstracted as computations in the data in mo-
tion model proposed in [15]. Under this model, update and
paging become fundamental operations along with com-
putations. The information passed may involve a history
of many parameters other than location, such as usage of
wireless bandwidth and resource demand. A variant of
LeZi-update could turn out to be a universal tool under
this paradigm.

• Finally, the proposed scheme is likely to be of immedi-
ate interest to wireless service providers. By maintaining
global dictionaries along with individual user profile de-
coded from updates, it will be possible to predict group
behavior. In wireless data networks, this can lead to more
efficient bandwidth management and quality of service
(QoS) provisioning based on reservation.
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