
Pergamoa
Information Systems Vol. 23, No. 7, pp. 439-462, 1998

0 1998 Elsevier Science Ltd. All ri@s reserved

PII: 803Ofi-4379(98)00022-2
Printed in Great Britain

0306-4379/98 S19.00 + 0.00

ACCESSING EXTRA-DATABASE INFORMATION: CONCURRENCY
CONTROL AND CORRECTNESS+

NARAIN GEHANI’ , KRITHI RAMAMRITHAM~, JAYAVEL SHANMUGASUNDARAM~ and
ODED SHMUELI~

‘Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ 07974, USA
2Department of Computer Science and Engineering, Indian Institute of Technology, Powai Mumbai 400076, India

3Department of Computer Sciences, University if Wisconsin-Madison, Madison, WI 53705, USA

*Computer Science Department, Technion, Technion City, Haifa 32000, Israel

(Received 15 July 1996; in final revised form 6 May 1998)

Abstract - Traditional concurrency control theory views transactions in terms of read and write
operations on database items. Thus, the effects of accessing non-database entities, such as the system
clock or the log, on a transaction’s behavior are not explicitly considered. In this paper, we are
motivated by a desire to include accesses to such e&a-data items within the purview of transaction
and database correctness. We provide a formal treatment of concurrency control when transactions
are allowed access to extra-data by discussing the inter-transaction dependencies that are induced
when transactions access extra-data. We also develop a spectrum of correctness criteria that apply
when such transactions are considered and outline mechanisms to enforce these criteria. Furthermore,
we show that allowing databases to view data which has been traditionally kept hidden from users
increases the database functionality and in many cases can lead to improved performance.
0 1998 Elsevier Science Ltd. All rights reserved

Key words: Transactions, Concurrency Control, Correctness Criteria

1. INTRODUCTION

Traditional concurrency control theory views transactions in terms of reads and writes on
database items. Our goal in this paper is to examine the concurrency and correctness issues that
arise when we take into consideration all the data that is used or can be used by transactions,
not just what is in the database. Roughly speaking, “extra-data” implies information that is not
part of an enterprise’s database schema, but is nevertheless useful and may affect what ultimately
appears in the “proper database”. Such data lives in the shaded zone between the database and
the application software; it is our goal to shed some light on its use and the ensuing implications.

Thus, for example, we are concerned with data that has always been accessed by the transac-
tions but not included traditionally in serializability theory, e.g., the system clock, communication
channels, and scratch-pads. We also examine information that can be useful for transactions, such
as those that are maintained by lock and recovery managers, e.g., the log and information about
transactions waiting for locks (some systems already allow log accesses for tuning and control
purposes).

Allowing databases to view such “extra-data” can increase database functionality and can lead
to improved performance. For example, if transactions were allowed to access the log, they could
answer queries about the operations performed by previously committed transactions. In this
case, the functionality of transactions is enhanced because they access an extra-data item (the
log). Also, with access to data such as the predicted behavior of other transactions (e.g., their
expected execution times or data access patterns) and transaction management information (e.g.,
the number of transactions waiting to perform operations on a particular object) transactions can
be designed for improved performance. For example, knowing how many transactions are waiting
for a particular data item may allow a transaction to consider alternatives which are likely to
reduce its response time.

tHecommended by Amr EL Abbadi

439

440 NARAIN GEHANI et al.

We elaborate on the benefits of accessing extra-data by (1) showing that there are in fact a
number of instances where extra-data can be viewed and manipulated as first-class data items;
(2) examining the properties of such extra-data from the viewpoint of the transactions and their
correctness; and (3) providing a formal treatment of concurrency control when transactions are
allowed access to extra-data.

We use the term database with its traditional meaning and use the term extended database to
refer to the database plus the extra-data objects. We introduce an important new concept, that
of extra-data independent transaction programs. Intuitively, transactions executing these programs
perform correct database state transitions, in the conventional sense, despite their extra-data
accesses. We treat four main correctness requirements: (1) extra-data independence of transaction
programs (2) serializability over the extended database (3) serializability only over the database
and (4) other application specific correctness criteria. For each of the above, we illustrate its
usefulness and flexibility in achieving user’s goals. This analysis sheds light on the role, usefulness
and pitfalls in using extra-data.

In many databases, in accordance with protection and security considerations, transactions are
allowed access to data on a need-to-know basis. Clearly, when transactions are allowed access
to information that is usually within the purview of the transaction management system, the
protection and security ramifications of such accesses must also be examined. This, however, is
outside the scope of this paper.

The rest of the paper is organized as follows. Section 2 contains examples of extra-data and
a discussion of the characteristics of extra-data. Section 3 has a brief introduction to the for-
malism used to describe the correctness properties of transactions accessing extra-data. Section 4
introduces the concept of extra-data independent transaction programs. Section 5 illustrates the
different correctness notions with concrete examples and Section 6 compares the correctness no-
tions. Section 7 addresses some practical issues concerning the correctness notions. Section 8
summarizes the paper and discusses outstanding issues.

2. EXTRA-DATA: CHARACTERISTICS AND CORRECTNESS

In this section we first give an informal definition of extra-data and discuss the characteristics
of extra-data. Motivation for letting transactions access extra-data is also provided via several
examples which show that potential for improvement in functionality and performance exist when
transactions are allowed access to extra-data.

2.1. Characteristics of Extra-Data

Extra-data can be defined as data that is typically not considered to be part of the database.
It can be classified into four categories:

1. Data values modified by some entity outside the database system. The system clock is a
prime example of this.

2. Data values modified by the transaction management system in response to some request
initiated by a transaction. Information about waiting transactions, concurrency control in-
formation such as the serialization graph, and the log are examples here.

3. Data values pertaining to (and modified by) the transactions themselves. Estimates of a
transaction’s (remaining) execution time and data requirements are examples.

4. Data private to a specific set of transactions. A scratch pad used by a set of cooperating
transactions to coordinate their activities is an example of this case.

Figure 1 depicts the components of an extended database. The shaded area denotes the extra
data. Note that not all data in the first two categories may be considered as extra-data since only
those that can be accessed by transactions are considered to be extra-data.

Accessing Extra-Database Information 441

1 information modified bv en tities

database objects

Fig. 1: The Extended Database

It is important to note that unlike database items, extra-data items need not be persistent and
cannot always be exclusively accessed (read and updated) by user transactions.

Clearly, updates to a particular type of extra-data will be restricted based on the type. For
instance, whereas no transaction can update “system updated” or “transaction-management up-
dated” extra-data, a transaction might be allowed to update extra-data pertaining to itself and
not others. These observations have certain important implications for concurrency control. For
instance, while it may be possible to delay the writing of extra-data items belonging to categories
(2) and (3) for concurrency control reasons, this is not possible for extra-data items in category
(1). Such delays must be carefully evaluated for their effects on other transactions. For instance,
if transactions’ commitment or abortion could be delayed (for correctness reasons) purely because
of their access to extra-data, performance can degrade. Thus, it is important to weigh the pros
and cons of transactions’ access to extra-data before their use is permitted in general. Our goal in
this paper is to understand the concurrency control and correctness issues related to such accesses
to extra-data since in reality transactions do access data outside the database.

Given a database system that allows transactions to access extra-data, the following additional
questions become relevant:

What are the operations defined on extra-data objects?

What are the semantics of these operations ? In particular, how do the semantics of the
operations defined on an object affect the transactions that invoke these operations?

What are the correctness requirements imposed on the transactions when they access these
extra-data objects? We will focus on two types of correctness-related issues corresponding
to what is referred to as safety and liveness in concurrent systems:

- When transactions are allowed to access extra-data, what type of guarantees can be
provided about the values returned by transactions and about the state of the database
when they terminate?

- When transactions access extra-data, will it affect their liveness, namely, termination,
properties?
Under normal circumstances, every transaction will terminate, i.e., abort or commit.
Clearly, this property of transactions must be preserved even when they access extra-
data.

442 NARAIN GEHANI et al.

These questions are answered in the following sections. In preparation for that, we now present
some examples of extra-data and give a simple illustration of the correctness implications of ac-
cessing extra-data.

2.2. Examples of Extra-Data

l The System Log. Traditional database systems hide recovery data from the user. Eliminating
this restriction, that is, storing such data as just another object that can be accessed by any
user has many benefits [12, 41. Users can pose queries on the log that cannot be specified in
traditional database systems and queries that were not envisioned by the system designers.
For example, (1) Find all users issuing transactions that changed item x between Jan 1, 1993
and Jan 31, 1993. (2) Which transactions are most likely to run on the last business day of
the month?

l Predicted Transaction Behavior.

- Knowledge of the set of possible values a transaction will write to a data item. If a
transaction knows the set of possible values it will write to a data item, it can proclaim
this to other transactions, which may then be in a position to proceed without waiting
for this transaction to relinquish its lock on the data item [7].

- Estimate of execution time and data requirements of transactions. These will be useful
for dealing with transactions in real-time database systems [ll]. For example, if it is
possible for a transaction to realize that there is not enough time left for it to com-
plete execution or that a feasible schedule is not possible, it could instead invoke an
alternative, with a lower computational requirement.

l Concurrency Status of Data Items. Knowing how many transactions are waiting to access
a data item will allow a transaction to consider alternatives that are likely to reduce its
response time.

l Information about Waiting l+ansactions. In conjunction with the previous item, access
to information about waiting transactions can avoid/prevent deadlocks. For example, a
transaction can check before it performs an operation on a data item whether the operation
can proceed without delay. If not, and if the transaction is willing to wait, it will check for
possible deadlocks among waiting transactions and if a deadlock is possible, the transaction
can take alternative actions.

a The System Clock. Many transactions possess functionality that depends on the time at
which they execute. Examples occur in business applications and in real-time systems.

l Limited Information Sharing. Consider two transactions, executing on behalf of two designers
who cooperate while making changes to a design object. They maintain a scratch-pad in
which they keep notes about changes made by each. A designer makes an intended change
only if the other has not already made it. This scratch pad is accessible only by these
designers and is not part of the database, i.e., it can be seen as an extra-data object.

2.3. Accessing Extra-Data - Correctness Implications

Both the control flow within a transaction as well as a transaction’s data manipulation prop-
erties may be modified by its extra-data accesses. What a transaction is allowed to do with the
extra-data that it reads depends on the correctness requirements imposed on the transactions. For
instance, a transaction can use it to optimize its actions - but we may require that the semantics
of the transformation performed by the transaction be independent of the optimization. This may
require including the extra-data items within the scope of concurrency control, as will be discussed
later.

More liberal is the case where transactions are allowed to make changes to the database and
return values that depend on the values of the extra data. In this case again, it may be necessary

Accessing Extra-Database Information 443

to include the extra-data items within the scope of concurrency control, as will be evident from
the example given below.

Consider two transactions tl and t2 which access Joe-Status (a database item) and the system

clock (an extra-data item). Both tl and t2 execute the following program.

read(Time);

read(Joe_Status);
print (“Joe is” Joe-Status “at time” Time);

Thus both transactions tl and t2 read the current time, check Joe’s status (whether he is
dead or alive) at that time and report it to the user. If we now consider another transaction t3
which changes Joe-Status from “alive” to “dead” (represented as writetS (JoeStatus) below) and
a system event which periodically updates the clock (represented as write,,,(Time) below), then
the following interleaving of actions is possible.

readt, (Time); write,,, (Time); readtz (Time); readtz (Joe-Status); w&et, (Joe-Status);
readt, (Joe_Status); printt, ; printt, ;

If tl read the clock at 3:00 am and the system increments the time by 1 minute during each
update, then we would get the following output from transactions tl and t2.

tl: Joe is dead at time 3:00 am
t2: Joe is alive at time 3:Ol am
The above schedule is serializable over the database items (the serialization order is t2, t3, tl)

and it is thus apparent that the extra-data item (the clock) should be brought within the scope of
concurrency control. However, the clock is not a normal data item in the sense that it is updated by
a non-transaction entity. In fact, in the above example, the operations performed by transactions
on the clock do not by themselves conflict with each other but conflict indirectly through the
system update to the clock. Thus new mechanisms for concurrency control should be devised to
deal with such properties of extra-data. These issues are treated in detail in subsequent sections.

3. PRELIMINARIES AND DEFINITIONS

In this section we introduce a simple formalism based on the ACTA transaction framework [2].
We also define some of the terms used in the rest of the paper and give formal definitions of certain
correctness properties involved when transactions access extra data.

3.1. l?ansactions, Operations, Events, and Histories

A transaction accesses and manipulates objects in the extended database, i.e., objects in the
database as well as extra-data objects, by invoking operations specific to individual objects. The
operations invoked by a transaction t are determined by its corresponding transaction program.

Definition 1 A transaction t is an instance of a transaction program tp if the operations performed
by t are determined by the program tp.

It is assumed that operations are atomic and that an operation always produces an output
(return value), that is, it has an outcome (condition code) or a result. The result of an operation
on an object depends on the current state of the object. For a given state s of an object, we use
return(s,p) to denote the output produced by operation p, and state(s,p) to denote the state
produced after the execution of p. We also assume that when an operation is performed on an
object, no other object is affected.

Definition 2 Invocation of an operation on an object is termed an object event. The type of
an object defines the object events that pertain to it. We use pt[ob] to denote the object event
corresponding to the invocation of the operation p on object ob by transaction t. (For simplicity
of exposition assume that a transaction does not contain multiple p’s. When “what the ob is” is
clear, we will simply say pt.)

444 NARAIN GEHANI et al.

Definition 3 Committing or aborting a transaction and committing or aborting an operation
performed by a transaction are all termed as transaction management events. committi and abor&,
denote the commit and abort of transaction ti respectively. commit[pt, [ob]] and abwtlpt, [ob]] denote
the commit and abort of operation p performed by transaction ti on object ob, respectively. The
effects of an operation p invoked by a transaction ti on an object ob are made permanent in the
database when pti [ob] is committed and are obliterated when pti [ob] is aborted.

Deflnition 4 A history is a partially ordered set of events invoked by transactions. Thus, object
events and transaction management events are both part of a history X. The set of events invoked
by a transaction t is a partial order denoting the temporal order in which the related events occur
in the history. The transaction’s partial order is consistent with the history’s partial order.

We write (c E ?t) to indicate that the event c occurs in a history N. -+ denotes precedence
ordering in a history 3c and + denotes logical implication.

3.2. Conflicts between Operations

Definition 5 Let Fob) denote the projection of the history with respect to the operations on obt.
Two operations p and q on an object ob conflict in a state produced by ‘R(Ob), denoted by

conflict(Tdob) , p, q) , if

(state@ 0 3c cob), q) # state(q 0 F&““), p)) V

(return(Ydob), q) # (return(po’fl(ob), q)) V

(retum(3C (Ob), p) # (retum(q 0 T&ob), p))

(o denotes functional composition.) Thus, two operations conflict if their effects on the state
of an object are not independent of their execution order (first clause) or their return values
are not independent of their execution order (second and third clauses). Operations p and q
are said to conflict on object ob, denoted conflict(ob,p, q) if there exists a history N such that
conflict(7dob),p, q). The notion of conflict will be used to define different types of correctness when
transactions access data as well as extra-data concurrently.

3.3. Atomic and Non-Atomic lhnsactions

Traditional databases deal predominantly with atomic transactions. Thus, when a transaction
commits, all the operations performed by the transaction commit and when a transaction aborts,
all the operations performed by the transaction abort. However, as we saw in the previous section,
when transactions modify the extra-data items too, we have to take into account the fact that
the execution of a transaction may not be atomic over the extended database. While the failure
recovery semantics of extra-data items accessed by transactions is usually comparable to that of
database items (for example, updates to the page space map tables, which are extra-data items,
are normally logged [9], see Section 5.1.3), the recovery of extra-data items after transaction aborts
may not be possible. The reason for this is twofold. In some cases, when a transaction aborts, we
may require that the operations performed by (or due to) the transaction on the extra-data items
be persistent (for example, when the log is an extra-data item). In other cases, the extra-data item
may also be modified by entities outside the transaction management system.

Thus, it is possible that certain operations on extra-data items are committed even when the
invoking transaction aborts. This is formalized below.

Let Ut be the set of operations performed by a transaction t. This set is partitioned into three
disjoint subsets, Ut, Pt and Lt. Z.4, consists of those operations performed by t whose effects are
to be undone when t aborts. Pt consists of those operations performed by t whose effects are to

tfi(ob) = $3, 0 . . . o pa o pr, indicates both the order of execution of the operations, (pi precedes pi+l), aa well as
the functional composition of operations. Thus, a state s of an object produced by a sequence of operations equals
the state produced by appl ing the history 7&‘*)
state so(s = state(so ?@*y)).

corresponding to the sequence of operations on the object’s initial
F or

implicitly assuming illitial state se.
b rev&y, we will use 7-&O*) to denote the state of an object produced by 71@*),

Accessing Extra-Database Information 445

be made persistent even if t aborts. Lt consists of those operations performed by t on data items
which exist only for the lifetime of t (e.g., operations on a scratch pad). The operations in & have
no impact on the atomicity of t since the data items on which they are performed cease to exist
on t’s termination. The axioms relating the commit and abort of t to the commit and abort of the
operations in Ut and Pi are given below.

0 30b3p(commit(pt(ob]] E 7-l Apt[ob] E Ut) =+ wmmitt E 2

If an operation in Z..it is committed, t must commit.

0 cornmitt E 3t * VobVp(pt[ob] E 3c A pt[ob] E Ut =S commit[pt[ob]] E X)

If t commits, all the operations in Ut are committed.

0 3ob3p(abort[pt[ob]] E ?-l Apt[ob] E Ut) * abortt E 7t

If an operation in Ut is aborted, t must abort.

0 abortt E 7-l s- VobVp(pt[ob] E 3-1 Apt[ob] E ut * aborqpt[ob]] E 7-l)

If t aborts, all operations in L/t are aborted.

l VobVp(pt[ob] E 7-l Apt[ob] E Pt =s commit[pt[ob]] E ?f)

An operation in Pt is committed (independent of the commitment of t).

If Pt = 4, then these axioms reduce to those of traditional atomic transactions [2]. The above
axioms take care of the case in which it may not be possible to undo certain operations performed
by (or due to) a transaction even if it aborts. Such operations are added to the set P of the
invoking transaction.

3.4. Serializability

In traditional databases, serializability and, in particular, conflict serializability, is the well-
accepted criterion for correctness. We first define serializability formally since it forms the basis
for the correctness notions discussed here. In what follows, we assume the update-in-place model.

Definition 6 An axiom A which induces (binary) C relationships between a set of transactions ‘T
in a history R is a first order logic expression of the form:

VkVtj(ti E T A tj E ‘T A X(ti, tj) + tiCtj)

where X is a first-order logic expression, possibly involving 3-1, in which the variables ti and tj
axe free. A relationship tiCtj is induced between two transactions ti and tj due to the axiom A iff
X(ti,tj) is true.

Let 2, be the set of database items and let C be the conflict (binary) relation on transactions
in 7, where 7 is the set of all transactions in the history Ifl.

Definition 7 Vtivtj (ti E 7 A tj E 7 A ti # tjA

gob E v 3~7 Q (canflict(ob,p, Q) A (pti [ob] + Qtj [ob]) A (wmmitti E ‘fl) A (cornmitt, E ‘fc)) S- tiCtj)

The C relation captures (a) the fact that two committed transactions have invoked conflicting
operations on the same object and (b) the order in which they have invoked the conflicting opera-
tions. Consequently, the C relation captures direct conflicts between committed transactions in a
history. The fact that a serialization order is acyclic is stated by requiring that there be no cycles
in the C relation. This is formalized below.

Definition 8 ?f, the history of events relating to transactions in 7, is (conflict) serializabIe iff
Vt E 7, $t C* t) where C’ is the transitive-closure of C.

446 NARAIN GEHANI et al.

Suppose tj has done a write on an object and then ti does a read on the same object. Then,
(tj C ti). Also, if we desire failure atomicity, then if tj aborts then ti must also abort. Thus, abort.
dependencies [2] between transactions may also form due to conflicting operations.

However, when we extend the notion of serializability to the extended database, we have to
take into account the fact that the execution of a transaction may not be atomic over the extended
database. Thus, even the committed operations invoked by aborted transactions will be involved
in determining the serialization ordering.

Let & be the set of extended database items and let C be the (binary) conflict relation on
transactions in 7, where 7 is the set of all transactions in the history 31.

Definition 9 VtiVtj(ti E T A tj E T A ti # tjA

30b ’ ’ 3P, Q (mflict(obYPti [Ob], Qtj [Ob]) A (pti [Ob] -_) qtj [Ob])A

(cummit[pti [ob]] E 31) A (c0mmit[qt,[0b]] E ?I)) =F t&j)

The C relation, in this case, captures the ordering in which two transactions invoked (or caused
to invoke) two conflicting committed operations on the same object. The definition of serializability
remains the same, where acyclicity is ensured with respect to this C relation.

As mentioned earlier, an application may desire correctness properties that are weaker than
serializability when an extended database is used. A discussion of such correctness properties can
be found in [lo] and some examples of their application to extra-data are presented in Section 5.4.

For the purposes of this paper, given an extended database, we can consider (1) serializability
of accesses to data items in the extended database (2) serializability of accesses to data items in
the database. That is, in (2), a cycle of C relationships formed by accesses to the database as well
as by accesses to extra-data will be ignored since only the set of C relationships induced by the
items in the database need be acyclic.

4. EXTRA-DATA INDEPENDENT TRANSACTION PROGRAMS

The reading and writing of extra-data may in principle affect both the operations performed
by a transaction as well as its flow of control. In this section, we formalize the notion of when
transaction programs are “dependent” on extra-data items. We show that by restricting the set
of allowable histories, transaction programs can be made extra-data independent. As before, this
restriction on allowable histories is specified by a set of axioms which induce C relationships between
transactions.

Let K: be a set of axioms which specify the conditions under which C relationships are induced
between transactions. For example, the set K could contain the axiom which specifies that C
relationships are introduced due to conflicts in a committed history (see Definition 7). In general,
the axioms may involve both database and extra-data items and hence C relationships may be
induced between transactions due to extra-data accesses also.

Definition 10 A history 3c relating to transactions in 7 is said to be serializable with respect to
a set of axioms K: if Vt E T,+tC*t), where C is the relation which consists of all and only the
relationships induced between transactions in 7 due to the axioms in K.

Consider a set K: which contains the axiom in Definition 7 (and possibly other axioms). Then,
any history serializable with respect to the set of axioms K will also be conflict serializable because
the set of C relationships induced due to the latter is a subset of the C relationships induced due
to the former.

Definition 11 A conventional transaction program is one whose transaction instances do not
access extra-data items.

Definition 12 A set of transaction programs TP is said to be e&m-data independent with respect
to a set of axioms K: if for each transaction program tp in ‘TP, there exists a conventional transaction

Accessing Extra-Database Information 447

program tp’ (let ‘TP’ be the set of all such tp’) such that for all legal histories ‘R serializable with

respect to the set of axioms K,

the transformation performed on the database is the same as that performed by some serial
history 31’ consisting of instances of transaction programs in 7-P’.

there is a function f mapping each instance of a transaction program tp E ‘7-P in 3t to an
instance of its corresponding tp’ in X’.

the values (if any) returned to the invoker by each instance of tp and its corresponding

instance of tp’ (as determined by the function f) are the same. The return value of a
transaction t is some function of the values returned by the operations on objects (possibly
extra-data objects) invoked by t.

tp’ satisfies the integrity constraints on the database (i.e., each tp’, when run by itself,

performs a correct database state transformation).

Observe that if tp is extra-data independent, when applied to a database state s, it yields
exactly what tp’ yields when applied to s (here the history consists of a single transaction). If tp
is extra-data independent, as far as the serializability of the changes to the database is concerned,

we can think of the actual transaction instance of tp as a “surrogate” for an instance of tp’.
In the above definition, we have assumed that the correctness criterion for the conventional

transactions (instances of tp’ s) is serializability. If we desire a weaker (stronger) correctness
criterion for the conventional transactions, then the axioms in K with respect to which extra-data
independence is defined will also be weakened (strengthened).

Henceforth, we refer to any tp’ according to the above definition for tp, as equiw(tp). (In general

there may be a number of such tp’s, for our purposes they are all equivalent.) If a set of transaction
programs 7-P is not extra-data independent with respect to a set of axioms K, then it is said to
be extra-data dependent with respect to the set of axioms Kt.

Let us consider a simple example to clarify the notion of extra-data independence. Suppose
a transaction is invoked to make a single car rental reservation. It chooses among car companies
based on the anticipated delay due to waits. The transaction uses extra-data as control information

to find the path with the shortest waiting time:

1. trans {

2. car-rental avis = get_oid(“avis”);

3. car-rental hertz = get_oid(” hertz”);

4. if (num_waiting(avis) > num_waiting(hertz))

5. hertz-> reserve(. . .);
6. else

:: }

avis->reserve(...);

This is an example of a transaction program that is not extra-data independent (with respect
to conflict serializability over the database): either an Avis car or a Hertz car is reserved.

Consider a transaction invoked on behalf of another user who intends to reserve an Avis car in
Los Angeles and a Hertz car in Houston. If we replace lines 5-7 by the following, we accomplish
this while attempting to minimize the waiting time. The operations to reserve the Avis car and
the Hertz car are assumed to be commutative.

5. hertz->reserve(. ..). avis->reserve(. ..).

6. else

7. avis->reserve(...); hertz->reserve(...);

tin the rest of the paper, when the set K is sufficiently clear from the context, we will omit the phrase “with
respect to to the set of axioms K”. Also, for the sake of clarity, when the set K corresponds to the set of axioms for
determining conflicts over the database, the phrase “with respect to the set of axioms K” will be replaced by “with
respect to conflict serializability over the database”.

448 NARAIN GEHANI et al.

This transaction program is an extra-data independent (with respect to conflict serializabil-
ity over the database) which is equivalent to the conventional transaction program obtained by
replacing lines 4-7 by the following.

hertz->reserve(...); avis->reserve(. ..).

Consider a serializable history (with respect to some set of axioms K) where all transactions are
instances of extra-data independent transaction programs. In hypothetically running the original
transaction programs serially, extra data accesses may be different or may not exist, which could
lead to a change of control flow and/or values written. But, substituting equiv(tp) for each tp
isolates its effect on the database state, from other facets as embodied in extra-data.

Consider a transaction program tp written in a programming language with expressive power
equivalent to that of Turing Machines. It is then undecidable whether an equiv(tp) exists. So, in
general, we cannot delegate the task of verifying the existence of equiv(t) to an automatic tool.
An alternative is to have the user supply equiv(tp) and an equivalence proof (with respect to a
set of transaction programs 7-P and a set of axioms K). This is similar to having the user certify
a transaction program as doing a “correct” state transformation in the traditional formulation of
concurrency control theory. We return to the problem of proving the extra-data independence of
transaction programs in Section 7.

5. CORRECTNESS NOTIONS WITH CONCRETE EXAMPLES

It should be obvious by now that different types of correctness notions can be applied in the
context of extra-data. We first list possible correctness notions and then illustrate them with
concrete examples of extra-data.

1. Ensure extra-data independence of transaction programs.

Given our definitions in Section 4, this implies that we should define an appropriate set of
axioms K with respect to which transaction programs are extra-data independent. Further,
we have to ensure that the C relationships induced between transactions due to the axioms
in K: form an acyclic relation, i.e., we have to ensure serializability with respect to the set
of axioms Ic. Note that serializability with respect to the set of axioms K: may, by itself,
specify a correctness criterion (like, for example, serializability over the extended database).
We return to this issue in Section 6.

Extra-data independence of transaction programs assures view serializability [l] (though
not necessarily conflict serializability) of instances of the conventional transaction programs
which are equivalent to the transactions which access extra data. View serializability is
ensured because, as per Definition 12, we require that the net transformation performed on
the database by transactions which access extra-data is the same as the net transformation
performed by some serial execution of instances of the conventional transaction programs.

2. Achieve serializability of accesses to the extended database in the presence of extra-data de-
pendent transaction programs.

We need to ensure that the C relationships due to conflicts over accesses to the extended
database are acyclic. Since transaction programs need not be extra-data independent, trans-
actions may produce results that reflect the fact that they accessed extra data.

3. Achieve serializability of accesses to (just) the database in the presence of extra-data depen-
dent transaction programs.

Changes to the database may depend on the transactions’ accesses to extra-data. Intuitively,
by serializability with respect to just the database data, we mean that if transactions are
run serially and whenever an extra-data access is performed in this serial execution the same
values as in the actual execution are “magically” supplied, then transactions will produce the
same final database state as in the actual execution. Since the extradata conflicts are not

Accessing Extra-Database Information 449

considered in determining which transactions conflict, transactions may produce database
changes that are affected by extra-data accesses. Also, this correctness criterion does not
guarantee consistency of the extended database (assuming consistent transactions) since the
extra data items can be accessed in a non-serializable fashion.

4. Achieve some application specific correctness criterion in the presence of extra-data dependent

transaction programs.

Some applications may desire correctness criteria in which extra-data items must be brought
within the scope of concurrency control but in which requiring serializability over the ex-
tended database would result in a loss of performance (through loss of concurrency). In this
case, serializability is ensured over just the database and some weaker application dependent
correctness criterion is ensured over the extended database. Note that in this case, we still
require serializability over the database and the weaker correctness criterion is specified only

for the extended database.

Note that we are using new (extra-data independence of transaction programs) and old (se-

rializability, weaker correctness criteria) techniques to deal with the correctness of transactions
with extra-database accesses. In other words, correctness of concurrent accesses to extra data can
be dealt with in ways similar to traditional concurrency control, i.e., using serializability as the
correctness criterion (and possibly exploiting the semantics of operations) or using a correctness

criterion weaker than serializability. In addition, in many situations, the transaction programs are
required to be extra data independent. The latter is a new property.

5.1. Extra-Data Independent nansaction Programs

In this section, we discuss six examples where we require the extra-data independence of trans-

action programs.

5.1.1. Work Queues

Consider a transaction program tp’ which performs operations opl , opz, and 0~3, in sequence,

on each data item in a set D. tp’ may access database items not in D, indicated by ‘...’ in the
code below.

trans tp’ {
for all d E D {opl(d); . . . }
for all d E D {m(d); . . . }
for all d E D {ops(d); . . . }

1

We now show how tp’ can be implemented as a transaction program tp which uses extra-data

items in such a way that it has the potential for better performance in a parallel environment.
That is, tp’ will be equiv(tp).

We proceed to construct tp as follows: tp is implemented as a nested transaction program which

consists of three (sub)transaction programs tpl, tpz and tp3. Each tpi performs the equivalent of

the it” for loop in the text for tp’. Instances of tpl, tpz and tp3 (call them tl, t2 and t3 respectively)
operate in a pipelined fashion with respect to the data items in D, i.e., after tl does opl on a data
item d, t2 does opz on d and then t3 does opg on d.

Proper control of the transactions’ actions is achieved via work queues q1 and q2, which are

extra-data items of category 4 (see Figure 1). q1 has two operations defined on it: insert1 and
removel. Similarly for q2. A remove operation on a queue blocks if the queue is empty. tl inserts
the id of the data item on which it just completed opl into 41. t2 removes the id in the front of
queue q1 and after doing opt, it inserts the id into q2. t3 removes an id from q2 and performs op3
on the corresponding data item. When q1 and q2 are empty and tl , t2, and t3 have completed their
ongoing operations, they all commit together. If any of them aborts, all abort. The programs for
the (sub)transactions are given below.

450 NARAIN GEHANI et al.

trans tpl { trans tp2 {
for all d E D { P = D;

OPI (d) ; while P # 4 {
insertl(d); removel(d);
. . . opz(d);

1 insert2(d);

1 P = P - {d};

trans tp3 {
P = D;
while P # 4 {
remove2(d);

0~3(4;

P = P - {d};
. . .

1
I

Since each remuve operation blocks if the queue on which the operation is performed is empty,
we have

Vd E D(insertl(d) + remouel(d))
Vd E D(insert2(d) + remove2(d))
Since we want the operations opl, opz and ops to be performed in sequence on an object in D,

we define the following C relationships (here ti refers to an instance of the transaction program

tPi>.
(tl C tz) if 3d(insertlt, (d) + remouelt,(d)).
(t2 C t3) if 3d(insert2t, (d) + removeat, (d)).
The above axioms along with the axiom for conflicts over the database items (see Definition 7)

make up the set K with respect to which extra-data independence is achieved. Thus transaction
program tp, consisting of subprograms tpl , tp2 , and tp3, has the same effect as tp’ on D.

What this example shows is that it is possible to realize a given transaction program in such a
way that even though the implementation uses extra-data items, its behavior with respect to the
rest of the transactions and the effect on the database will be the same as the original transaction
program. The motivation here is to rewrite the transaction programs in a way that allows us
to execute components of the transactions in parallel thereby improving the performance of the
system. The queues allow the transaction components to synchronize their activities so as to
achieve the desired functionality.

5.1.2. A Car Reservation Example

Consider a modified version of the car rental transaction from Section 4. Instances of the
transaction program tpi first read the data items to determine the number of free Hertz cars
and Avis cars respectively. They then reserve one Hertz car and one Avis car in different orders
depending on which has a larger number of free cars. This is done so that reservations are made
first with the rental company most likely to run out of free cars.

trans {

car-rental avis = getnid(“avis”);
car-rental hertz = get_oid(” hertz”);

. . .
if (num_available(avis) > numavailable(hertz))

hertz->reserve(. ..).
avis->reserve(...);

else
avis->reserve(...);
hertz->reserve(...);

. . .

In this case, it is not necessary to have an exact number of the number of cars available and an
approximate value would do. Thus, to improve the performance of the above transaction program,
we could have a transaction program tpk which is invoked periodically to read the number of cars

Accessing Extra-Database Information 451

available and write them to extra-data items nzlm_ovis and numhertz. Then transaction program
tpi could be written as a transaction program tpj which reads from the extra-data items rather
than accessing the corresponding database item, thus reducing conflicts. The transaction programs
tpj and i!pk are extra-data independent (with respect to serializability over the database) in which
eqGv(tpj) is tpi and equiv(tpk) is the null transaction program. Thus, the functionality of the
transaction programs is not changed and hence the consistency of the database is ensured.

This example illustrates how the concept of extra-data independence can be used to allow lower
degrees of isolation in concurrency control without affecting the consistency of the database or the
functionality of transactions in any way. If we believe that a transaction program tpl does not
require exact values of a data item X, then we can prove it as follows: Create a hypothetical
transaction program tp3 which periodically accesses the value of X and writes it into an extra-data
item x. Now tpl could be modified to read the value x instead of X (call this modified transaction
program tpz). Now tpl does not require exact values of the data item X iff tpz and tp3 are extra
data independent (with respect to serializability over the database).

5.1.3. Page Space Map Tables

Page space map tables [9] are commonly used in databases to indicate the location of free space
in pages. These tables are normally accessed by transactions, though they are not considered as
database items and brought within the scope of correctness and concurrency control. Here, we
identify the correctness criterion relevant to this extra-data item and the impact this criterion has
on concurrency control.

The following operations are defined on page space map tables for freeing and reserving space
in pages: resenle(page,begin_offset,end_offset) reserves the area of the page page from begin-offset
to end-offset. free(page,begin_offset,end_offset) frees the area of the page page from begin-offset to
end-offset.

Here, we require the extra-data independence of transaction programs accessing the page space
map tables because the state of the database should not be dependent on the physical location of
the database items. In addition, in order to provide for transaction roll back (in case of transaction
abort), we may need to specify that a transaction can reclaim the space it freed (in the event of
it aborting) so that its changes can be undone easily [9]. Thus, we require that if a transaction
ti uses up the space freed by transaction tj, then ti should abort whenever tj aborts (SO that the
space freed by tj is now free). Thus ti has an abort dependency [2] on tj.

Note that there are no C relationships induced due to accesses to the extra-data item (because
the page space map table is not used in any way which might affect the state of the database)
but instead, an abort dependency is induced. In normal implementations of the page space map
tables, a transaction tj can use the space freed by a transaction ti only if ti has committed 191.
Thus, this induced abort dependency is taken care of and only serializability over accesses to the
database items need be ensured.

5.1.4. Proclamation Locking

Consider the following example in which 2PL is used for concurrency control. Suppose a
transaction tl holds a write lock on a data item and another transaction t2 desires to read that
data item. Under 2PL, t2 would be made to wait. However, suppose tl gives t2 (or any other
transaction) an indication of all the possible values it might write, then t2 might be able to proceed
with its computations using this information, thus increasing the degree of concurrency. This is
the idea underlying proclamations [7]. tl proclaims the set of possible values that may be written
so that transactions such as t2 may be able to proceed without waiting. These proclamation data
items can be treated as extra data items with the required correctness criterion being the extra-data
independence of transactions. A detailed proof of the extra-data independence of proclamation
transactions appears in [5].

452 NARAIN GEHANI et al.

5.1.5. Seriakzability in Multi-Databases

Another example of extra-data independent transaction programs occurs in the multi-database
concurrency control scheme proposed in [3]. Here, to ensure the serializability of transactions that
access multiple (autonomous) database sites, the following scheme is used. Every site has a special
“ticket” that all global transactions that visit the database at that site are expected to write.
In this case, the ticket is an extra-data item since only transactions visiting that site can access
it. Here we require the extra-data independence of transaction programs because the execution
of the transactions accessing the ticket should correspond to some serial order of the equivalent
transactions not accessing the ticket.

Extra-data independence of transaction programs in achieved in this case by defining a set of
axioms K: which achieve conflict serializability over the extended database. This is because when
each transaction is serialized over accesses to the tickets and the database items, the effect of the
transactions on the extended database is the same as the effect of running the transaction programs
in some serial order. Also, since the tickets are not read in the transaction program (they are only
written to), the database state is not affected by the values of the extra-data items. Thus, an
execution of transactions accessing the extended-database performs the same transformation on
the database as the execution of conventional transactions that do not access the extra-data items.
A formal proof of the extra-data independence of transaction programs for this example is given
in Section 7.1.

5.1.6. Audit Queries on Logs

Logs of operations performed by transactions are normally written for transaction recovery
purposes [l]. These logs can also serve as an audit trail to track the progress of transactions in the
transaction management system. In this example, we explore the use of the log as an audit trail.

Consider the case where we have two disjoint sets of transaction programs, say TP, and
TP,, operating on the extended database in which the log is the extra-data item. TP, is the set
of transaction programs which operate on the database and write log records for each operation
performed. 7Pe is the set of “audit” read-only transaction programs which access data items in
the extended database.

In this case, we would require the extradata independence of the transaction programs in
TP, because the transformations on the database should not be affected by the log records. This
extra-data independence could be achieved by just ensuring serializability over the database, with
no restrictions on updating the log (a formal proof of this is given in Section 7.1). However, for the
read-only transactions in 7-P,, we would have to ensure a correctness criterion like Serializability
over the Extended Database in order to ensure consistent reads.

In this example, we have assumed that the set of transactions which read from the extra-
database and which write to the extra-database are disjoint. Thus, it is easy to prove the extra-
data independence of transaction programs. In Sections 5.2 and 5.4.1, we deal with examples in
which transactions can both read and write log records and study the associated correctness.

5.2. Serializable Accesses to the Extended Database

Here we remove the extra-data independence requirement imposed on transaction programs,
but require that the transactions be serializable with respect to the extended database. For con-
creteness, we consider the database log as an example of extra-data which can be accessed by
transactions in the course of their execution [4]. Both committing and aborting transactions write
log records. Transactions can also read the log to perform queries. We require serializability of all
the data items in the extended database, in this case, the database plus the log.

Let us assume that the commitment or abortiont of a transaction results in the writing of a
single log itemS containing all the relevant information about the transaction. The operation of

tlkansactions can abort for one of many reasons, including unilateral aborts.
tin intention list baaed transaction processing systems, a single log record is usually written for each transaction.

The more general case in which many log records may be written for a single transaction is treated in Section 5.4.1.

Accessing Extra-Database Information 453

writing this log item is committed irrespective of whether the invoking transaction commits or
aborts. Conceptually, the log can be considered as a linear object that grows in one direction.
Each item in the log has an id (its LSN; i.e., log sequence number).

uppendt, (k) denotes the appending of a log item pertaining to transaction ti; when the operation
completes, the id of the appended log item is returned in Ic. The value of k is one larger than the
id of the previously appended log item.

readti (k) denotes the read operation on log item k by transaction ti; this item should already
exist in the log for the read to be successful. Otherwise, the read fails and the transaction which
invoked the read aborts. k is given as an input to the operation read.

last(k) can be used to determine the id of the last item in the log. This id will be returned in
k when last completes.

Here are the correctness requirements imposed on read and last operations:

l readt, (k) E H + 3ti # tj (appendt, (k) + readtj (k))

This states that tj reads log record k after the write of record k by some ti.

l lasttj (k) E H + 3ti # tj (appendt, (k) + lastt, (k)A &IL, l(appendt, (k) + awndt,(l)

A appendt, (I) + lasttj (k)))

This states that if the last operation executed by tj returns k, then the kth record should
have been written by some transaction ti and no other transaction has written since.

Since we require conflict serializability over accesses to the log items, C relationships are induced
due to conflicting operations on the log. Specifically, V ti,tj ti # tj (ti c tj) if:

1. 3 k, k’ (uppendt, (k) + appendt, (k’))

Since both aborting transactions and committing transactions write to the log, transactions
append to the log in the same order in which they commit or abort. Also, every transaction,
once it begins execution, will commit or abort. Thus, when a transaction ti appends an entry
into the log, a transaction tj that has not yet committed or aborted, i.e., tj is a transaction
in progress, will write its log entry after ti’s entry. Since tj updates the log after ti updates
it, (ti C tj) , that is, tj must appear after ti in the serialization order.

2. 3 k3Z 2 0 (appendt, (k) + readtj (k + I))

This states that if tj reads log record k+l, 1 > 0, then tj should occur later in the serialization
order than the transaction ti which caused the log record k to be written.

3. 3 k (uppendt,(k) + lasttj(k))

This states that if tj, via the last operation, “knows” that the last log record to be written
was the kth record (written by transaction ti) then transaction ti should precede tj in the
serialization order.

4. 3k, k’ (lasti, (k) + appendt, (k’))

A transaction tj that has not yet committed or aborted when a transaction ti performs the
last operation will write its log entry after ti executes last. That is, ti observes the queue
before tj updates it and hence tj will have to follow ti in the C ordering.

Since we require serializability over the extended database, we need to consider the C relation-
ships that result not only from the invocation of the operations on the database objects but also
from the invocation of operations on the log. The modifications that a transaction t performs
on the log (through the append operations) are persistent irrespective of whether t commits or
aborts (thus the append operation belongs to the set P as defined in Section 3.3). Serializability
is achieved by ensuring that the C relation defined on committed operations is acyclic. This is
the safety-related correctness property that must be satisfied usually, and is still the case when
accesses to the log are considered. The practical implication of the above axioms on transaction

454 NARAIN GEHANI et al.

management is the following: When an operation is performed on the log, the system must note

the C relationships induced by the operation, in light of the above axioms, and must ensure that
the C relation is acyclic.

Traditionally, if there are cycles in the C relation, not all transactions involved in the cycle can
commit, i.e., cycles are broken by transaction aborts. But with transactions being able to access
the log, we must worry about the liveness of the transactions because aborting and committing
transactions that access the log form C relationships which may create cycles which cannot be
broken. The proof of the following theorem allays any fears in this regard by giving an algorithm
which the transaction management system can use to ensure that transactions will always be able
to terminate (commit or abort) without creating cycles which cannot be broken.

We assume here that the changes done by a transaction can be undone upon its abort without
forming further C relationships. This is a valid assumption if transactions perform read and write
operations on data [l].

Theorem 1 Given a set of existing C relationships defined on committed operations, it is always
possible to force transactions’ operations, including those on the log, to occur in an order such that
C’ (defined on committed operations) will be acyclic.

Proof. At the beginning of transaction execution, the statement of the theorem vacuously holds
(since there are no committed operations). We will show that the statement is invariant by showing
that the C relation continues to be acyclic during the termination (commit/abort) of transactions.

Let us consider a transaction ti that desires (or is forced to) abort, i.e., append to the log
and undo all other operations performed on the database items. In this case, the only committed
operation of ti is the single append to the log and hence no cycles can be introduced by ti. Now let
us consider a transaction tj which desires to commit. If there does not exist an active transaction
tk such that tk C tj and the commitment of tj will not create any cycle in the C relation defined on
committed operations, then tj can proceed to commit. Otherwise tj can abort like in the previous
case. cl

It is important to realize that when transactions are allowed access to the log and serializability
remains the correctness criterion, it may delay the commitment or abortion of other transactions.
Specifically, because of Axiom 4, once a transaction ti performs last, no other transaction can
commit or abort until ti commits. Such a delay can affect performance. However, if one were to
relax the correctness criterion, say by requiring something akin to the lower degrees of isolation
of traditional databases, then this negative impact can be reduced or eliminated. Specifically, one
could opt for non-repeatable reads of the log. We return to this issue in Section 5.4.

When other extra-data objects are accessed by transactions and serializability remains the
correctness criterion, the semantics of these other objects should be specified just as we dealt
with the log and then we must show that safety and liveness properties of transactions are kept
intact. It should also be noted that in this correctness criterion, as long as the history resulting
from concurrent transaction executions is serializable, correctness is considered to be preserved.
The extra-database is, for purposes of concurrency control, treated like any other data item and
serializability is applied without differentiating between database items and extra-data items. One
implication of this is that techniques for improving performance, such as exploiting the semantics
of operations [14], can be applied to both database and extra-data items.

5.9. Serializable Accesses to the Database

In this section, we give some examples of cases where we require serializability over only the
database in the presence of extra-data dependent transaction programs.

Consider a modified version of the first car rental transaction from Section 4. Here, the available
credit is updated where the amount depends on the car rental company chosen.

Accessing Extra-Database Information 455

trans {

car-rental avis = get_oid(“avis”);

car-rental hertz = get_oid(” hertz”);

. . .

if (num_waiting(avis) > num_waiting(hertz))

hertz->reserve(. ..).

master-card->credit_reserve(lOO);

else

avis->reserve(. ..).

master-card-xredit_reserve(75);

. . .

The application writer may not care from which company the car is rented as long as exactly
one car is rented (even though the credit reservation amounts, 75 or 100, depend on the extra-
data). Thus, in this case, we do not require extra-data independence of transactions and are only
interested in the serializable execution (with respect to database items) of transactions. Hence, we
only need to consider the C relationships induced due to conflicts on database items and achieve
acyclicity over this relation. This ensures that the database is always in a consistent state as far
as applications are concerned.

For another example, consider two transactions ti and tj that access disjoint parts of the
database but what one transaction accesses is dependent on what the other accesses. The transac-
tions communicate via communication channels that can be modeled as extra-data items which are
read and written by the transactions. That is, ti writes into the channel the ids of the data items
it has accessed and tj reads these, and vice versa. Here, we do not require the transactions to be
extra-data independent (which they are not) but just require serializability over the database.

There is a subtle difference here from serializability in that if we look at the resulting serial
schedule and rerun the programs corresponding to ti and tj we will not necessarily get the same
overall state changes because of accesses to the extra-data and the extra-data dependence of ti and
tj. However, if we rerun ti and tj so that the values returned by the operations on the extra-data
items are the same as when they originally ran, then the rerun will produce the same database
state as the original schedule. Thus, this notion of serializability differs from that in [13] where
serializability over a subset of data items (in this case, the database items) implies that if we rerun
the programs according to the serial schedule, we would get the same overall state for that subset
of data items.

5.4. Application Specific Correctness of Accesses to Extra-Data

Thus far, we have worked with serializability as the basic correctness criterion for transactions
accessing extra-data. But, as we alluded to at several places, it might be appropriate to relax
serializability, as has been suggested even for transactions accessing just the database. The added
motivation for this in the context of extra-data access is that access to extra-data items, such as
the log, which lie in the processing path of every transaction must be allowed with minimal or no
impact on performance. Since relaxing correctness requirements is one way to achieve this, serious
consideration must be given to it.

Let us now consider some weakened isolation requirements [6] that have been suggested and
adopted in practice for transactions accessing the database. In the context of read/write objects,
degree-2 isolation ignores conflicts resulting from a read followed by a write. Such a requirement
leads to lack of repeatable reads. Degree-l isolation ignores, in addition, conflicts resulting from
a write followed by a read. This permits the read of an object, writes on which have not yet
committed, without forming a C relationship between the writing and the reading transaction.
Degree-O isolation ignores all dependencies. Let us consider an example applying these ideas to
extra-data.

456 NARAIN GEHANI et al.

l Suppose the transaction management system updates the wait-for-graph on behalf of a trans-
action that waits for a lock on an object. Another transaction, which desires to know the
length of time it will be forced to wait under current circumstances, views the wait-for-graph.
Under degree-l isolation, it will be allowed to proceed without forming any additional C
relationships.

In this case, the extra-data item of interest is not directly updated by the transactions. If such
transactions do not require the repeatable read property as guaranteed by standard concurrency
control mechanisms such as locking, then they can afford to allow update operations to take place
following their reads without incurring serialization ordering requirements.

In the following sections, we consider in detail cases in which correctness requirements weaker
than serializability suffice for extra-data items.

54.1. The Log - Multiple Entries per Transaction

If we consider the log as extra-data, the removing of Axiom 4 of the log semantics in Section
5.2 has the effect of foregoing the repeatable read requirement since two invocations of last may
now identify two different log records as the last record in the log. This eliminates the perfor-
mance penalty mentioned at the end of Section 5.2 while still providing a well-understood form of
correctness (corresponding to degree-2 isolation).

In normal practice, the log is implemented in such a way that each operation performed by
transactions is logged separately and so there may exist multiple log records for a single transaction.
Let us consider such a log which can be accessed by transaction through the following operations:

append(Inf o) writes the information in Info as the next log record.
read_first(tj, Info) returns the first log record written by tj in Info.

read_nezt(tj, Info) returns the next log record (i.e., the log record after the log record read by
the previous read_nezt(tj, _) or ~edfirst(tj, _) operation) written by tj.

read_begin(tj, Info) returns the first log record in the log and the transaction tj which wrote
the log record.

read_succ(tj,Info) returns the next log record (i.e., the log record immediately after the log
record read by the previous read-begin or read_succ operation) in the log and the transaction tj
which wrote the log record.

A read operation fails if there is no log record that can be returned.
With the operations on the log defined as above, if we were to require serializability, ,then it

would have a negative impact on the degree of concurrency allowed since the operations performed
by different transactions have to be logged without any interleaving. In this context, an acceptable
correctness criterion is that all transactions which read a log record written by a transaction t
should be serialized after t. This condition is formally specified below.

In a history 3t, (ti C tj), i # j, if

l 3Info (read-fir&, (ti, Info) E R)

l 3Info (read-begintj (ti, Info) E x)

l 3Info (read-succt, (ti, Info) E x)

Besides the C relationships induced by the above axioms, the C relationships induced due to
conflicts on the database items must also be taken into account. We require the acyclicity of the
relation involving these C relationships on the committed operations as our correctness criterion.
With our correctness criterion specified, we now need to guarantee the liveness of transactions
(that is, all transactions should be able to commit or abort). This could be proved in a manner
similar to the proof of liveness in Section 5.2.

Accessing Extra-Database Information 457

54.2. The System Clock

Suppose transaction ti accesses the system-maintained current time. A subsequent update of
the current time by the system clock will not affect ti if degree-2 isolation is in effect. More
generally, suppose we want transactions to possess the temporal causality property which requires
that if two transactions read the clock in a certain order with an intervening system update to the
clock, their serialization should reflect the order of the reads. We are also not concerned about the
extra-data dependence of transactions. In this case, the correctness criterion can be formalized in
terms of C relationships as follows:

t$tj, i # j, if 3k(readti + write,ys,k) A (witesye,k + readtj)
Here the reads and writes refer to the operations on the clock, where the clock is updated by

the system, a non-transactional entity. The index k in the event writesy8,k uniquely identifies the
different writes to the clock by the system. In addition to these C relationships, those arising due
to conflict on the database items are also considered and acyclicity of this C relation is ensured
over all committed operations. It is interesting to note that this correctness criterion rectifies the
anomaly found in Section 2.3 dealing with Joe’s status. However, this criterion is weaker than
serializability in the sense that we allow for non-repeatable reads to the clock.

Another example in which clocks are accessed as extra-data items occurs in the context of real-
time databases [ll]. In this case, transactions have a correctness requirement which is stronger than
traditional serializability in the sense that we have the additional requirement that if a transaction
ti commits, it should commit before its deadline, deadline(This requirement is formally stated
below: wmmitti E ?l + wmmi& E ?ideadLine(ti)

where Xdeadline(ti) is the prefix of the history Z until time deadline(In order to satisfy
this requirement, the transaction management system accesses the clock (an extra-data item) just
before the transaction wants to commit. In case its deadline has been met, the transaction commits,
otherwise it aborts. As per our definition in Section 4, such transaction programs are extra-data
independent, where equiv(t) of a real-time transaction program t is a transaction program which
attempts to commit regardless of whether its deadline has been met or not. Thus, accessing the
clock in the case of real-time transactions does not violate the consistency of the database and
hence the clock need not be brought within the scope of concurrency control.

Also, in real-time databases, if we know that a transaction is highly unlikely to meet its deadline
it is better to abort the transaction early. This can be achieved by examining the wait-for-graph.
Under degree-l isolation, a transaction will be allowed to access the wait-for-graph without forming
any additional C relationships.

6. COMPARISON OF THE CORRECTNESS CRITERIA

In this section, we present a comparison of the correctness criteria proposed in Section 5.
This comparison determines the conditions under which one correctness criterion is weaker+ than
another. The practical use of this comparison is that weaker correctness criteria could be chosn
whenever possible so that the scheduler has more flexibility, potentially leading to an improvement
in performance.

Figure 2 gives a diagrammatic representation of the sets of histories accepted by each correctness
criterion. From this figure, we can see that Application Specific Correctness Criteria~ accept a set
of histories which is a strict superset of the set of histories accepted by Serializability over the
Extended Database. This is because Application Specific Correctness Criteria might not require
serializability over the extended database, but just serializability over the database and some
other weaker correctness criterion over the extra-database. The log example (Section 5.4.1) and
thesystem clock example (Section 5.4.2) are examples in which the AppZication Specific Correctness
Criterion is weaker than Serializability over the Extended Database.

tA correctness criterion A is said to be weaker than correctness criterion B if the set of histories accepted by A
are a strict superset of the set of histories accepted by B.

tCorrectness criteria for extra database items used in current database systems typically fall in this category. For
example, using a lower degree of isolation (degree 1 or 2) over extra database items falls under application specific
correctness criteria.

458 NARAIN GEHANI et al.

Serializability over the Database

Correctness Criterion

Fig. 2: Comparison of Histories Accepted by Correctness Criteria

It is also easy to see that Serializability over the Database is weaker than an Application Spe-
cific Correctness Criterion where the database is still expected to be accessed serializably. This
is because, Application Specific Correctness Criteria, in addition to requiring serializability over
the database, also require some restriction on extra-database accesses. On the other hand, Seti-
alizability over the Database does not impose any restrictions on extra-database accesses. The log
example (Section 5.2) illustrates a case where the correctness required is just Serializability over
the Database.

The set of histories accepted by the Extra-Data Independence correctness criterion is neither
weaker nor stronger than the other three correctness criteria (see Figure 2). This is because
in Extra-data independence, only the set of conventional transactions which correspond to the
transactions which actually execute should be serializable, but the transactions which actually
execute need only satisfy a correctness criterion specified by a set of axioms K: (see Definition 12).
The set K: can represent a correctness criterion as strong as Serializability over the Extended
Database (the Multi-database Serializability example in Section 5.1.5) or as weak as Serializability
over the Database (the Car Reservation Example in Section 5.1.2). If the set of axioms K: defines a
correctness criterion stronger than Serializability over the Database but weaker than Serializability
over the Extended Database, this corresponds to the Application Specific Correctness Criteria (see
the examples on Page Space Map Tables and Work Queues in Sections 5.1.3 and 5.1 .l respectively).

It is also theoretically possible to have a set of axioms K weaker than Serializability over
the Database that ensures the Extra-data Independence of transactions. However, this does not
seem very likely in practice because this implies that one can use a weaker correctness criterion
(in this case, some correctness criterion weaker than serializability over the database) for the
extra-data dependent transactions in order to ensure a stronger correctness criterion (in this case,
serializability over the database) for the corresponding conventional transactions.

In summary, Serializability over the Database is weaker than Application Specific Correctness
Criteria which in turn is weaker than Serializability over the Extended Database. Extra-Data
Independence is, however, neither weaker nor stronger than any of the above mentioned correctness
criteria.

Accessing Extra-Database Information 459

7. PRACTICAL CONSIDERATIONS

In this section, we discuss some of the practical aspects involved in ensuring the proposed
correctness criteria. We first deal with the issue of constructing extra-data independent transaction
programs and then address ways in which the proposed correctness criteria could be enforced.

7.1. Constructing Extra-Data Independent Transaction Programs

Constructing and proving the extra-data independence of transaction programs varies widely
in difficulty. This is because, in some cases, knowing only the read and write sets of transaction
programs is sufficient to prove the extra data independence of the programs. In other cases,
however, the semantics of transactions have to be examined and formalized in order to prove
extra-data independence. In this subsection, we investigate both possibilities.

The following theorem outlines the weakest condition under which we can determine that
a set of transaction programs is extra-data independent with respect to serializability over the
database, given information about only their read and write sets (note that these read and write
sets are properties of transaction programs, not their instances). Intuitively, we can prove extra-
data independence iff there is no “leakage” from the extra-data items into the database through
transactions.

Theorem 2 Let & be set of all objects in the extended database and 2, be the set of all objects in
the database. Let TPqr be the set of all transaction programs which execute in the transaction
processing system, where for all tp E ‘TPQ, R(tp) C E denotes the read set of tp and W(tp) 2 E
denotes the write set of tp. Given only the above information, a set of transaction programs
7-P C TP-Q.J can be said to be extra-data independent with respect to serializability over the
database iff:

1.

2.

(Vtp E ‘TP,tt - 7P) W (tp) n V = 4 and

Only instances of tmnsaction programs in TP can write to the database.

there does not exist a sequence of transaction programs of the form (tpl ; tpz; tpk), k 2 2,
such that

(4 tpi E TP,zz, 1 5 i 5 k

(b) W(tpl) n R(tpz) n (E - 2)) # 4~

(4 W(tpi) n R(tpi+l) # 4, 2 5 i 5 k - 1

(4 W(tpk) n D # 4

No transaction in TP+rl (part (a)) writes to any extra-data item (part (b)) whose value can
be propagated to the database (parts (c) and (d)).

Proof. (If Part) Assume that the above conditions hold. Then no transaction program which is
not in 7-P writes to the database (first condition). Also, no transaction program in 7-P ever reads
the value of a modified extra-data item either directly or indirectly (second condition). Thus if we
replace each program tp f TP by a corresponding extra-data independent transaction program
tp’, in which all accesses to an extra-data item are replaced by reading a constant value which
corresponds to the initial value of the extra-data item, tp’ would perform the same transformation
on the database as would tp in a serial order. Thus, by Definition 12, it is easy to see that 7-P
represents a set of extra-data independent transactions.

(Only If Part) Assume that at least one of the two conditions do not hold. If the first condi-
tion does not hold, then a transaction program in TP+Js - ‘TP could t perform some arbitrary
transformation to the database which cannot be performed by any transaction in TP. Thus, the

tNote that the existence of the possibility that a transsction could behave in a certain way is sufficient to prove
that we cannot infer extra-data independence, without having additional information

460 NARAIN GEHANI et al.

set of transactions ‘TP cannot be said to be extra-data independent. If the second condition does
not hold, then a transaction could write an arbitrary value to an extra-data item which could be
propagated back to the database through transactions. Again, the set of transactions ‘TP cannot
be said to be extra-data independent. Cl

The above result could be used to prove the extra-data independence of transaction programs
in the Multi-database Serializability example (Section 5.1.5) and the Log example (Section 5.1.6).

For cases in which the condition outlined in the above theorem is too weak to prove extra-data
independence, we would have to look into the semantics of transaction programs and data. One
useful technique in this context is data flow analysis. If transaction programs are written in an
imperative programming language, then using data flow analysis techniques, we can verify that
extra-data information does not propagate into the database (this is similar to ensuring condition 2
in the above theorem). Then, the only effect extra-data may have on instances of transaction
programs is manifested through flow of control. If we can verify that instances of transaction
programs have the same effect on the database regardless of the flow of control, then we can infer
that the transaction programs are extra-data independent with respect to serializability over the
database. This technique is useful for proving extra-data independence in the car rental example
(Section 5.1.2) and the page space map example (Section 5.1.3).

If both of the above techniques are not strong enough to prove the extra-data independence
of transactions, then the actual application-dependent semantics of data and transactions would
have to be used. This, for instance, is the case in the work queues examples (Section 5.1.1) and
the proclamation locking example (Section 5.1.4).

7.2. Enforcing Correctness Criteria

In this section, we address some of the practical issues involved in enforcing the correctness
criteria proposed in Section 5. We first discuss how C relationships can be tracked for concurrency
control and then outline concurrency control mechanisms for each correctness criterion.

C relationships could be enforced in a manner similar to the Serialization Graph Testing (SGT)
[l] concurrency control technique. In this technique, a serialization graph is maintained in order
to perform concurrency control. An edge (ti, tj) exists in the serialization graph iff transaction ti
performs a conflicting operation on an object before transaction tj. Only histories which give rise to
acyclic serialization graphs are considered legal. This ensures serializability as defined in Definition
8. The Basic SGT algorithm checks to see if performing an operation would lead to a cycle in
the Serialization Graph. If so, the operation is rejected, else it is performed. In the Conservative
SGT, operations may be delayed before being scheduled in order to reduce the number of rejected
operations. Algorithms for distributed SGT [l] have also been proposed.

The Serialization Graph Testing technique could be adapted in order to enforce C relationships
induced by a set of axioms K. Here an edge (ti, tj) exists in the serialization graph iff tiCtj is
induced by the axioms in K. It is easy to see that if only acyclic serialization graphs are considered
legal, then the set of accepted histories would be serializable with respect to the set of axioms
K. The only potential problem in using the serialization graph technique to enforce serializability
with respect to a set of axioms K would be if transactions could neither be committed nor aborted
without forming a cycle in the serialization graph. In order to address this issue, we would need
to prove that all cycles in the serialization graph could be avoided by committing and aborting
transactions in some order. A proof of this propery would be similar to the proof presented in
Section 5.2. We now show by means of an example that Conservative SGT mechanisms could be
effectively used for enforcing C relationships.

Example 1 Consider the log example in Section 5.2. Suppose (tj C ti) already exists because, for
example, tj does a write of some object in the database and then ti does a read. If tj aborts (for
some reason) then since we require failure atomicity, ti must also abort (see Section 3). Suppose ti
performs the last operation and tj is yet to terminate. That is, tj will perform an append operation
later, and hence, by axiom 4 will produce (ti C tj). Thus, if we wait until tj’s append to notice
the cycle, the only way to break the cycle then is to abort ti. But instead, given Axiom 4, if we
had allowed ti to perform last only after tj terminates, then we could have perhaps committed

Accessing Extra-Database Information 461

both ti and tj. Thus, in general, ensuring that there are no C cycles can be achieved by delaying
operations whenever possible. 0

We now outline implementation techniques for the correctness criteria proposed in Section 5.

l Serializability over Database: This is the easiest correctness criterion to enforce because tradi-
tional concurrency control techniques can be directly applied [l]. This is because traditional
concurrency control is performed on just the database and serializability is the commonly
enforced correctness criterion.

l Serializability over the Extended Database: There are two main ways in which Serializability
over the Extended Database can be enforced. In the first method, concurrency control could
be performed over the extended database considering it as one large database. Here, each
access to extra-data items is caught by the scheduler, which performs concurrency control for
both the database and extra-data items. The scheduler could use traditional techniques for
ensuring serializability. In the second method, the database and the extra-database can be
considered as two separate databases and concurrency control performed for each of them.
Multi-database concurrency control techniques could be used to address conflicts which span
the separate databases.

l Application Specific Correctness Criteria: In this case too, there are two options depending on
whether we treat the extended-database as one database or two databases. In the first case,
we could use Serialization Graph Testing mechanisms in order to ensure that all accepted
histories are serializable with respect to the set of axioms X: specified as the correctness
criteria. In the second case, we could use Distributed SGT techniques to enforce the desired
correctness criterion.

l Extra-Data Independent fiansaction Programs: Let the set of axioms to be ensured in or-
der to achieve extra-data independence be K. If K corresponds to Serializability over the
Database or Serializability over the Extended Database, the corresponding techniques could
be used to achieve Extra-data independence. Otherwise, an SGT based technique (like in
Application Specific Correctness Criteria) could be used.

8. DISCUSSION

Recently, there have been many extensions to the classical work on concurrency control. One
approach extends and elaborates the structure of data items, viewing them as abstract data type
objects thus exploiting the semantics of the operations for better concurrency control [14]. Some
of the other approaches include looking at serializability over a subset of data items [13] and relax-
ing the serializability correctness criterion by imposing instead specific constraints on acceptable
schedules [8]. The work reported herein bears resemblance to these extensions in that, technically,
we also view extra-data as objects with arbitrary operations defined on them and impose some
restrictions on acceptable schedules. However, these are by-products of our main interest, that of
enlarging the set of transaction accessible data to include structures that are traditionally either
(a) hidden within, and are internal to, the database system itself or (b) local to a set of transac-
tions. We have examined the consequences of such accesses and in doing so we are forced to use
extensions to the traditional concurrency control setting. Specifically, our goal in this paper was
twofold:

l To illustrate via detailed examples that allowing transactions to access extra-data not only
improves the functionality of transactions but also has many performance benefits.

We considered extra-data items that occur in typical database systems such as the log, the
clock, and the concurrency control information. We also showed that other types of extra-
data, such as proclaimed values, and queues used for coordinating pipelined and cooperating
transactions prove very useful for structuring transactions in order to improve performance.

462 NARAIN GEHANI et al.

To investigate, in detail, the correctness issues that arise when transactions are allowed access
to extra-data.

We saw that while traditional serializability can continue to be the mainstay of correctness,
one needs to also consider extra-data independence of transactions. To precisely capture the
interactions due to extra-data access, we axiomatized the operations on extra-data items to
determine the serialization ordering requirements induced by extra-data access. These helped
characterize the different types of correctness issues that must be considered. In this regard,
we studied a variety of correctness notions.

The techniques presented in this paper are useful both for the transaction programmer as well
as the database system implementor. The transaction programmer is concerned with correctness
issues which arise when transactions access data items which are not part of the database (for
example, the system clock or the log) and the concurrency control mechanisms required to achieve
them. The database systems implementor, on the other hand, is concerned with the issues which
arise when extra-data is used to improve the performance of transactions (for example, proclama-
tion data items or work queues) or when transactions access extra-data items (for example, page
space map tables) which are hidden at the transaction programmer level.

Allowing transactions to access extra-data improves transaction functionality. On the other
hand, as we discussed at several points in the paper, performance consequences can be either
positive or negative depending on the properties of the data. One implication is that extra-data
access must be allowed only if the consequences are not detrimental to performance, and if they
are and yet extra-data must be accessed, one must apply the least restrictive correctness criterion
that fits the needs.

Acknowledgements - This research has been partially supported by the National Science Foundation under grant
IRI-9314376.

PI

PI

[31

[41

[51

PI

[71

PI

PI

PO1

PI

WI

P31

P41

REFERENCES

P.A. Bernstein, V. Hadzilacos and N. Goodman. Concurrency Control and Recovery in Database Systems.
Addison-Wesley (1987).

P.K. Chrysanthis and K. Ramamritham. Synthesis of extended transaction models using ACTA. ACM Bans-
actions on Database Systems, 19(3):459-491 (1994).

D. Georgakopoulos, M. Rusinkiewics and A. Sheth. On serializability of multidatabaee transactions through
forced local conflicts. In Proceedings of the IEEE Seventh International Conference on Data Engineering, pp.
314-323, Kobe, Japan (1991).

N. Gehani and 0. Shmueli. The LOG as Part of the Database. Bell Laboratories Technical Memorandum
(1992).

N. Gehani, K. Ramamritham, J. Shanmugasundaram and 0. Shmueli. Accessing Extm Database Information:
Concurrency Control and Correctness. Technical Report 1996-016, University of Massachusetts, Amherst,
Massachusetts (1996).

J.N. Gray and A. Reuter. ZYansaction Processing: Techniques and Concepts. Morgan-Kaufman (1992).

H.V. Jagadish and 0. Shmueli. A proclamation-baaed model for cooperating transsctions. In Proceedings of
the eighteenth International Conference on Very Large Databases, pp. 265-276, Vancouver, Canada (1992).

H.F. Korth and G. Speegle. Formal aspects of concurrency control in long-duration transaction systems using
the NT/PV model. ACM 29ansactions on Database Systems, lQ(3):492-535 (1994).

C. Mohan and D. Haderle. Algorithms for flexible space management in transaction systems supporting fine-
granularity locking. In Proc. 4th International Conference on Extending Database Technology, pp. 113-144,
Cambridge, United Kingdom (1994).

K. Ramamritham and P.K. Chrysanthis. A taxonomy of correctness criteria in database applications. In Very
Large Data Eases Journal, 5(1):85-97 (1996).

K. Ramamritham. Real-time databases. International Journal of Distributed and Parallel Databases, 1(2):199-
226 (1993).

M.R. Stonebraker. Hypothetical data bases ae views. In Proceedings A CM-SIGMOD 1981 International
Conference on Management of Data, pp. 224-229 (1981).

K. Vidyaeankar. Generalized theory of serializability. Acta Informatica, 24:105-119 (1987).

W. Weihl. Commutativity-based concurrency control for abstract data types. IEEE tinsactions on Comput-
ers, 37(12):1488-1505 (1988).

