
IEEE Wireless Communications • December 2002 771536-1284/02/$17.00 © 2002 IEEE

Agent A

SMART HOMES

INTRODUCTION
The MavHome smart home project is a multidis-
ciplinary research project at the University of
Texas at Arlington focused on the creation of an
intelligent and versatile home environment. Our
goal is to create a home that acts as a rational
agent, perceiving the state of the home through
sensors and acting on the environment through
effectors (in this case, device controllers). The
agent acts in a way to maximize its goal, which is
a function that maximizes comfort and produc-
tivity of its inhabitants and minimizes operation
cost. In order to achieve these goals, the house
must be able to reason about and adapt to its
inhabitants. In particular, a smart home agent
must be able to accurately predict mobility and
other activities of its inhabitants. Using these
predictions, the home can accurately route mes-
sages and multimedia information, and can auto-
mate activities that would otherwise be manually
performed by the inhabitants.

MavHome operations can be characterized by
the following scenario. At 6:45 a.m., MavHome
turns up the heat because it has learned that the
home needs 15 minutes to warm to optimal tem-
perature for waking. The alarm goes off at 7:00,
which signals the bedroom light to go on as well
as the coffee maker in the kitchen. Bob steps into
the bathroom and turns on the light. MavHome
records this interaction, displays the morning
news on the bathroom video screen, and turns on
the shower. While Bob is shaving, MavHome

senses that Bob is two pounds over his ideal
weight and adjusts Bob’s suggested menu. When
Bob finishes grooming, the bathroom light turns
off while the kitchen light and menu/schedule
display turns on, and the news program moves to
the kitchen screen. During breakfast, Bob notices
that the floor is dirty and requests the janitor
robot to clean the house. When Bob leaves for
work, MavHome secures the home, and starts
the lawn sprinklers despite knowing the 70 per-
cent predicted chance of rain. Later that day,
MavHome places a grocery order for milk and
cheese. When Bob arrives home, his grocery
order has arrived and the hot tub is ready.

A number of capabilities are required for this
scenario to occur, including data collection,
activity prediction, wireless communication
between multiple cooperating agents, and multi-
media technologies. All of these capabilities
must be seamlessly connected in a modular
architecture. In this article we present such an
architecture that supports the MavHome smart
home project, and then focus on several predic-
tion capabilities that are needed to realize the
types of activities described above.

In particular, machine learning techniques
are required to predict inhabitant movement
patterns, tasks, and typical interactions with the
house, and to use that information in automat-
ing house decisions, routing information, and
optimizing inhabitant comfort, security, and pro-
ductivity. This article introduces three such algo-
rithms. The first predicts the mobility of the
inhabitant using ideas from information theory.
The second builds on a sequence matching algo-
rithm to predict inhabitant interactions with the
smart home, and the third identifies significant
patterns of inhabitant activity that could be auto-
mated by the home. We validate these algo-
rithms on synthetic data sets as well as on activity
data collected from real device usage histories.

MAVHOME ARCHITECTURE

The MavHome architecture is a hierarchy of
rational agents that cooperate to meet the goals
of the overall home. Figure 1 shows the architec-
ture of a MavHome agent. The technologies
within each agent are separated into four coop-
erating layers. The decision layer selects actions

SAJAL K. DAS, DIANE J. COOK, AMIYA BHATTACHARYA, EDWIN O. HEIERMAN III,
AND TZE-YUN LIN, UNIVERSITY OF TEXAS AT ARLINGTON

ABSTRACT
The goal of the Managing an Adaptive Versa-

tile Home (MavHome) project is to create a
home that acts as a rational agent. The agent
seeks to maximize inhabitant comfort and mini-
mize operation cost. In order to achieve these
goals, the agent must be able to predict the mobil-
ity patterns and device usages of the inhabitants.
In this article, we introduce the MavHome pro-
ject and its underlying architecture. The role of
prediction algorithms within the architecture is
discussed, and three prediction algorithms that
are central to home operations are presented. We
demonstrate the effectiveness of these algorithms
on synthetic and/or actual smart home data.

THE ROLE OF PREDICTION ALGORITHMS IN THE
MAVHOME SMART HOME ARCHITECTURE

The goal of the
MavHome project is
to create a home
that acts as a rational
agent. The agent
seeks to maximize
inhabitant comfort
and minimize
operation cost. To
achieve these goals,
the agent must be
able to predict the
mobility patterns and
device usages of the
inhabitants.

This work was supported
by National Science
Foundation ITR grant
IIS-0121297.

IEEE Wireless Communications • December 200278

for the agent to execute based on information
supplied from other layers. The information
layer gathers, stores, and generates knowledge
useful for decision making. The communication
layer includes software to format and route
information between agents, between users and
the house, and between the house and external
resources. The physical layer contains the basic
hardware within the house including individual
devices, transducers, and network hardware.
Because the architecture is hierarchical, the
physical layer may actually represent another
agent in the hierarchy.

Perception is a bottom-up process. Sensors
monitor the environment (e.g., lawn moisture
level) and, if necessary, transmit the information
to another agent through the communication
layer. The database records the information in
the information layer, updates its learned con-
cepts and predictions accordingly, and alerts the
decision layer of the presence of new data. Dur-
ing action execution, information flows top down.
The decision layer selects an action (e.g., run the
sprinklers) and relates the decision to the infor-
mation layer. After updating the database, the
communication layer routes the action to the
appropriate effector to execute. If the effector is
actually another agent, the agent receives the
command through its effector as perceived infor-
mation and must decide the best method of exe-
cuting the desired action. A specialized interface
agent provides interaction capabilities with users
and with external resources such as the Internet.
As shown in Fig. 1, agents can communicate with
parent/child agents or with other agents at the
same level in the hierarchy.

Several smart home-related projects have
been initiated by research labs. The Georgia
Tech Aware Home and MIT Intelligent Room
include an impressive array of sensors to deter-
mine user locations and activities within an actu-
al house. The Neural Network House at the
University of Colorado Boulder employs a neu-
ral network to control heating, lighting, ventila-
tion, and water temperature in a manner that
minimizes operating cost. The interest of indus-
trial labs in smart home and networked appli-
ance technologies is evidenced by the creation of
Jini, Bluetooth, and Session Initiation Protocol
(SIP) standards, and by supporting technologies
such as Xerox PARC’s Zombie Board,
Microsoft’s Easy Living project, the Cisco Inter-
net Home, and the Verizon Connected Family
project. MavHome is unique in combining tech-
nologies from databases, artificial intelligence,
mobile computing, robotics, and multimedia
computing to create an entire smart home that
acts as a rational agent.

LOCATION PREDICTION

Seamless connectivity is an absolute necessity for
designing an intelligent environment such as
MavHome. To satisfy these connectivity require-
ments, the smart home needs to track down an
inhabitant both inside and within surrounding
areas. This is the primary scope of the location
management problem in a smart home, which
exhibits some similarities with that of a typical
wireless infrastructure network such as the land-
mobile phone system. Wireless terminals are
usually integrated in the sensors deployed in a

� Figure 1. MavHome agent architecture.

House agent

Agent architecture

Physical

Sensors
Actuators
Networks
Agents

Communication

Routing
Multimedia

download

Information
Data mining
Action prediction
Mobility prediction
Active database

Decision

MDP/policy
Reinforcement

learning
Multiagent systems/

communication

Agent Agent Agent Network/mobile network
Rooms/
robots

Agent Agent Agent Network/mobile network
Appliances/
robots

Transducers/
actuators

User
interface

External
resources

MavHome is unique
in combining
technologies from
databases, artificial
intelligence, mobile
computing, robotics,
and multimedia
computing to create
an entire smart
home that acts as a
rational agent.

IEEE Wireless Communications • December 2002 79

smart home environment and are to be worn by
the inhabitants.

The MavHome coverage area is partitioned
into zones or sectors. Location management
involves two types of activities. When MavHome
needs to contact an inhabitant, the system initiates
a search for the target terminal device by polling
all zones where it can possibly be found. All termi-
nals listen to the broadcast page message, and
only the target sends a response. The paging pro-
cess becomes particularly inefficient if a large
number of zones cover the entire smart environ-
ment. Unfortunately, due to inherent restrictions
of the sensor technology such as infrared, these
situations are sometimes unavoidable.

To control the location uncertainty of the
inhabitant, MavHome must rely on time-to-time
location update by the terminal device. This
technique limits the search space for the next
paging at the cost of a few location updates.
Most paging algorithms can place high reliance
on the latest update information, using the last
known position and its surroundings as the most
probable current positions [1–3]. Had probabilis-
tic profile information been available for the
inhabitant, it is also possible to modify the search
space accordingly as proposed for some cellular
phone systems [4].

We take a novel adaptive approach to the loca-
tion management problem that is optimal in terms
of both update and paging costs. The objective of
our update scheme is to learn user mobility,
endowing the paging mechanism with a predictive
power that reduces average paging cost. Unlike
earlier schemes, this provides an online algorithm
for optimizing the paging problem, and allows
both the paging process and the update mecha-
nism to be considered. Machine learning methods
are used to automate this process.

We represent a MavHome network (along
with its neighborhood environment) by a bound-
ed-degree connected graph G = (ϑ, ε), where
node set ϑ represents the zones and edge set ε
represents the neighborhood (walls, hallways,
etc.) between pairs of zones. Figure 2 shows a
home floor plan with 15 zones and the corre-
sponding graph representation.

MOVEMENT HISTORY AND THE MOBILITY MODEL
The real power of an adaptive algorithm comes
from its ability to learn. As events unfold, a
learning system observes the history to use it as
a source of information. Referring to Bob’s sce-
nario, let us now look at Bob’s movement history
for one day within the house as shown in Fig. 2.
Table 1 shows the events that make him cross
zone boundaries. Let us deploy a pure move-
ment-based scheme that generates an update
whenever a zone boundary crossing is detected.
The system thus receives a sequence of zone ids
as input yielding the movement history mamcm-
rkdkdgoogdklrmcmamrlkdlrmamc….

The movement history of a user is represented
by a string “υ1υ2υ3…” of symbols from the
alphabet ϑ, where ϑ is the set of zones in the
house and υi denotes the zone id reported by the
ith update.

In contrast to a movement history, a mobility
model is probabilistic and extends to the future.
The tacit assumption is that an inhabitant’s

movement (favorite routes and habitual duration
of stay) is merely a reflection of the patterns of
his/her life, and those can be learned. Learning
aids decision making when reappearance of
those patterns is detected. In other words, learn-
ing works because “history repeats itself.”

The mobility model of a user is a stationary
stochastic process V = Vi, such that Vi assumes
the value υi ∈ ϑ in the event that the ith update
reports the user in zone υi. The joint distribution
of any subsequence of Vis is invariant with
respect to shifts in the time axis, that is,

Pr , , ,

Pr , , ,

V V V

V V V

n n

l l n n

1 1 2 2

1 1 2 2 1

= = … =[]
= = = … =[]+ + +

υ υ υ

υ υ υ

� Table 1. Bob’s movement history for a day.

Zone Activity

m Wake up in master bedroom

a Go to attached bathroom

m Back in bedroom

c Change in closet

m Back in bedroom

r Out of bedroom

k Go to kitchen to make breakfast

d Go to dining room to eat

k Back to the sink at kitchen

d Walk to the garage through dining room

g Start the car at garage

o Drive away through outdoor area

o Drive back through outdoor area

g Back to garage

d Enter through dining room

k To kitchen for a snack and drink

l To living room for watching TV

r On the way to bedroom

m In bedroom

c To closet for changing

m Back in bedroom

a To attached bathroom

m Back in bedroom

r On the way to more TV watching

l Back in living room

k In kitchen to cook dinner

d Eat dinner

l Back for the Tonight Show

r On the way to bedroom

m In bed for the night

a Wake up and go to bathroom

m Back in bedroom

c Change in closet

: 8

The objective of our
update scheme is to
learn user mobility,

endowing the paging
mechanism with a

predictive power
which reduces

average paging cost.
Unlike earlier
schemes, this

provides an on-line
algorithm for

optimizing the
paging problem and

allows both the
paging process and

the update
mechanism to be

considered.

IEEE Wireless Communications • December 200280

for every shift l and for all υi ∈ ϑ. The move-
ment history is a trajectory or sample path of V.

The goal of our algorithm is to construct a
universal predictor or estimator for the user
mobility model. Our proposed scheme creates a
dictionary of zone ids treated as character sym-
bols and uses the dictionary to gather statistics

based on movement history contexts, or phras-
es. Being motivated by the dictionary-based
LZ78 compression algorithm [5], our algorithm
[6] assumes the name “LeZi-update” (pro-
nounced “lazy update”), as will be clear in the
following.

THE LEZI-UPDATE ALGORITHM
The LeZi-update algorithm (see box this page)
enhances an underlying update scheme. The
algorithm captures the sampled message, or
movement history, and processes it in chunks.
Updates are encoded and reported periodically
as a sequence “C(w1) C(w2) C(w3) …,” where
the wis are segments of the movement history
and C(w) is the encoding for segment w. The
prime requirement for LeZi-update (following
LZ78) is that the wis be distinct.

The system’s knowledge about the mobile’s
location always lags by at most the gap between
two updates. The uncertainty increases with this
gap, but larger gaps reduce the number of
updates. A natural action would be to delay the
update if the current string segment being parsed
has been seen earlier (i.e., the path traversed
since the last update is a familiar one). Although
the gap increases, it is expected that the infor-
mation lag will not affect paging much if the sys-
tem can make use of the profile generated so
far. This prefix-matching technique of parsing is
the basis of the LZ78 compression algorithm,
which encodes variable-length string segments
using fixed-length dictionary indices, while the
dictionary gets continuously updated as new
phrases are seen. We outline this greedy parsing
technique as used in our context. The mobile
acts as the encoder, while the system takes the
role of the decoder. For Bob’s movement history,
the Lempel-Ziv parsing boils down to the phras-
es m, a, mc, mr, k, d, kd, g, o, og, dk, l, r, mcm,
am, rl, kdl, rm, amc, …, where the commas rep-
resent the points of updates.

The LZ78 algorithm emerged out of a need to
find a universal variable-to-fixed length coding
scheme, where the coding process is interlaced
with the learning process. The key to the learning
is a decorrelating process, which works by effi-
ciently creating and looking up an explicit dictio-
nary. The algorithm in [5] parses the input string
υ1, υ2, …, υn, into s(n) distinct substrings w1, w2,
…, ws(n) such that for all j ≥ 1, the prefix of sub-
string wj (i.e., all but the last character of wj) is
equal to some wi, for 1 ≤ i < j. Because of this
prefix property, substrings parsed so far can be
efficiently maintained in a multiway tree or trie.

We can further improve the performance of
the algorithm by augmenting the dictionary with
the suffixes of decoded phrases on the decoder
(see the box on this page). The enhanced trie for
our example takes the shape shown in Fig. 3,
where the frequency counts of the phrases are
shown within parentheses. The symbol Λ denotes
an empty string.

As the process of incremental parsing pro-
gresses, increasingly larger phrases accumulate
in the dictionary. Consequently, estimates of
conditional probabilities for larger contexts start
accruing. Intuitively, the process would gather
the predictability or richness of higher and high-
er order Markov models. Since there is a limit to

� Figure 2. A graph model of a smart home floor plan.

a

m

c

(e)

(b)

(a)
dw

w d

Master
bedroom

(m)

Bedroom
(p)

Bedroom
(q)

Living
room (l)

Outdoor
(o)

Closet (c)

Closet (d)

Kitchen
(k)

Dining
room

(d)

Garage
(g)

b w k d

g

ol

p q e

r

d

Corridor
(r)

LEZI-UPDATE ALGORITHM
Procedure Encoder Procedure Decoder

loop loop

wait for next symbol v wait for next codeword <i,s>

if(w.v in dictionary) decode phrase := dictionary [i].s

w := w.v add phrase to dictionary

else increment frequency for every

encode <index(w),v> prefix of phrase

add w.v. to dictionary forever

w := null

forever

Enhanced Decoder

loop

wait for next codeword <i,s>

decode phrase : = dictionary [i].s

add phrase to dictionary

increment frequency for every prefix of every suffix of phrase

forever

IEEE Wireless Communications • December 2002 81

the model richness for stationary processes, the
symbol-wise model should eventually converge
to the universal model.

Each user’s location database holds a trie,
which is the symbol-wise context model corre-
sponding to the enhanced Lempel-Ziv incremen-
tal parse tree. Each node except for the root
preserves the relevant statistics that can be used
to compute total probabilities of contexts as well
as conditional probabilities of the symbols based
on a given context. A path from the root to any
node w in the trie represents a context, and the
subtrie rooted at w reveals the conditional prob-
ability model given that context. The paths from
the root to the leaves in the Lempel-Ziv trie rep-
resent the largest contexts that are not contained
in any other contexts.

Next, we assign probabilities for the occur-
rence of the symbols (zones) on the path seg-
ment to be reported by the next update. These
segments are the sequences of zones generated
when traversing from the root to the leaves of
the subtrie representing the current context. The
estimated conditional probabilities for all the
zones at the current context constitutes the con-
ditional probability distribution.

We use the enhanced trie in Fig. 3 to illus-
trate a blending strategy known as exclusion.
Assume that Bob’s predicted location is need-
ed; no LeZi-style path update message has
been received since receiving the last amc in
the sequence. The contexts that can be used are
suffixes of amc, with the exception of itself.
First, we need to find all possible paths that can
be predicted at these contexts. A list of all such
paths are shown in Table 2, with their respec-
tive frequencies. (The unconditional probabili-
ties of occurrence of these phrases are then
computed by blending. The phrase m, for exam-
ple, appears in the contexts of all the orders 0,
1, and 2. We start from the highest order, i.e.,
the context mc). The phrase m occurs only once
out of three possible occurrences of this con-
text, the other two producing null prediction.
Thus, we can predict the phrase m with proba-
bility 1/3 at context mc and fall back to the
lower order with probability 2/3. Now m occurs
once at context c, out of a total of three occur-
rences of the context. Thus, m can be predicted
with probability 1/3 at the order-1 context. Due
to two occurrences out of three producing null
predictions, we need to escape to lower order
with probability 2/3. Finally, m shows up four

times out of 33 possible phrases, leading to a
probability value 4/33. The blended probability
of phrase m is thus 1/3 + 2/3 {1/3 + 2/3 (4/33)}
= 0.6094. Since the phrase is made of only one
symbol, m, the whole probability is assigned to
that symbol.

We have shown here that location learning is
one prediction task essential for intelligent envi-
ronments. The LeZi-update algorithm builds
user profiles to perform this prediction based on
the LZ78 compression algorithm. The effective-
ness of this algorithm is apparent for wireless
service providers [6], and we are now in the pro-
cess of demonstrating its use for intelligent envi-
ronments such as MavHome [9].

INHABITANT ACTION PREDICTION

In the MavHome environment, the intelligent
agent representing the house needs to predict
the inhabitant’s next action in order to automate
the routine and repetitive tasks for the inhabi-
tant. Patterns observed in past inhabitant activi-
ties can be used to aid the agent decisions for
controlling devices throughout the home. In this
section we describe this second role of predic-
tion in the MavHome architecture and present a
sequence matching approach to performing
inhabitant action prediction based on collected
histories of actions.

Prediction is a heavily researched area in arti-
ficial intelligence. The ONISI system [7] and the
UNIX command prediction algorithm [8] employ
pattern matching. IDHYS [9] represents an

� Figure 3. The trie for the enhanced LZ symbol-wise model.

Λ(33)

m(8) a(3)

r(1)c(3)

m(1)

m(2)

d(4)

k(1)

g(2)

l(1)

o(2) l(3)

g(1)

c(3)

m(1)

r(4)

l(1) m(1)

k(4)

d(2)

c(1) l(1)

� Table 2. Phrases and their frequencies at con-
texts mc, m, and Λ.

mc (order-2) m (order-1) ΛΛ (order-0)

m|mc(1) m|c(2) m(4) c(2) kdl(1)

Λ|mc(2) Λ|c(2) mc(2) cm(2) d(2)

mcm(1) r(2) dk(1)

mr(1) rl(1) dl(1)

a(1) rm(3) g(2)

am(1) k(2) o(1)

amc(1) kd(1) og(1)

l(3)

We have shown here
that location learning

is one prediction
task essential for

intelligent
environments.

The LeZi-update
algorithm builds user

profiles to perform
this prediction based

on the LZ78
compression

algorithm.

IEEE Wireless Communications • December 200282

approach to action prediction based on the Can-
didate Elimination algorithm.

Our proposed Smart Home Inhabitant Pre-
diction (SHIP) algorithm matches the most
recent sequence of events with sequences in col-
lected histories. SHIP considers matches of
length three or greater, and returns matches of
sufficiently high value based on the match fre-
quency (number of occurrences of the pattern in
the history) and match length (length of the
matched sequence).

In the SHIP algorithm, the inhabitant com-
mands are encapsulated using actions and match-
es. When the inhabitant issues a command to a
device, it is recorded as an action in the inhabi-
tant history. A match identifies a sequence in his-
tory that matches the immediate event history (a
sequence ending with the most recent event).
The SHIP’s predicted action corresponds to the
action that followed the matched sequence most
frequently in the inhabitant history. A match
queue is maintained to ensure a match time that
is close to linear.

The SHIP algorithm consists of two steps.
First, the match queue is updated when a new
action is recorded. At time t in state s we com-
pute lt(s, a), the length of the longest sequences
that end with action a in state s and match the
history sequence immediately prior to time t. In
addition, we define a frequency measure f(s, a)
that represents the number of times the action a
has been taken from the current state. In the
second step, the matches in the queue are evalu-
ated based on match length and frequency.

To allow for gradual changes in inhabitant
patterns over time, the value of a matched pat-
tern can be multiplied by a user-specified decay
factor. The user also has the flexibility to weight
the match length and match frequency factors
that affect a match value. Because an inhabitant
pattern is likely to contain small variations
between occurrences, an inexact match is
employed to find sequence matches. The user
can specify an inexact threshold which represents
the maximum percentage of mismatches that
may occur in a matched sequence.

To test the predictive accuracy of the SHIP
algorithm, we equipped devices in several homes
with X10 controllers and collected action histo-
ries for these households with different numbers
of people, types of activities, and spans of time.

For more precise experiments we created a syn-
thetic data generator that simulates several pos-
sible activity scenarios. With each type of activity
is associated a Gaussian probability distribution
over start times and durations from which actual
event histories can be generated.

The graph in Fig. 4 shows the percentage of
correct predictions for two of the data sets. For
this experiment a decay factor of 0.0 is used, and
the match frequency and length weights are set
to 1.0. These data sets reflect activities collected
over a maximum period of 30 days. Data set 1
captures 747 activities of four inhabitants with 11
devices, and data set 2 represents 3000 activities
of one inhabitant using 16 devices.

As the figure shows, the accuracy of the algo-
rithm generally improves as the amount of train-
ing data, calculated as a percentage of the total
history, increases. The greatest predictive accu-
racy for data set 1 is 33.3 percent, and for data
set 2 53.4 percent. The accuracy rate reflects
greatly improved performance over a random
guess. As a separate test, we measure the predic-
tive accuracy made by one of the top three
matches identified by SHIP. In this case, the
predictive accuracy is over 80 percent. These
results indicate that the SHIP algorithm is effec-
tive for predicting inhabitant actions in a smart
home, particularly if the top several matches are
considered.

DISCOVERY OF SIGNIFICANT PATTERNS

The SHIP algorithm is useful in identifying likely
activities of a smart home inhabitant. This infor-
mation can be used to automate interactions
with the home, removing the need for manual
control of devices. A wrong prediction, however,
can be annoying or detrimental if the inhabitant
must undo the action executed by the house or
repair damage caused by a faulty decision.

Instead of identifying and automating each
inhabitant pattern, we describe here a predic-
tion algorithm, called Episode Discovery (ED),
that identifies significant episodes within an
inhabitant event history. A significant episode
can be viewed as a related set of device events
that may be ordered, partially ordered, or
unordered. A significant episode occurs at some
regular interval or in response to other signifi-
cant episodes called triggers. The goal of the
intelligence framework in our problem domain
is to mine the input stream in order to discover
the significant episodes. Actions can then be
automated based on the significance of the dis-
covered pattern as well as the predictive accura-
cy of the next event.

Our approach is based on the work due to
[11] for mining sequential patterns from time-
ordered transactions. Our home automation
problem differs from previous research in that
the input sequence does not consist of explicit
transactions, but merely interactions with home
devices. Unlike the previous sequence mining
problem, the significant episodes in an intelli-
gent environment may be ordered (sequential)
or unordered (member of a set). In addition,
many of the episodes in our environment will
occur on a regular basis (daily, weekly) and need
to be recognized for this regularity. In our

� Figure 4. SHIP predictive accuracy results.

Fractional size of training data set

A
cc

ur
ac

y
(%

)

1/7 2/7 13/7 4/7 5/7 6/7 7/7
0

10

20

30

40

50

60

Data set 1
Data set 2

IEEE Wireless Communications • December 2002 83

MavHome scenario, the following device activity
sequences occur on a regular basis and should
be detected by our algorithm:
• HeatOn (daily)
• AlarmOn, AlarmOff, BedroomLightOn, Cof-

feeMakerOn, BathRoomLightOn, Bath-
RoomVideoOn, ShowerOn, HeatOff (daily)

• BedroomLightOff, BathRoomLightOff, Bath-
RoomVideoOff, ShowerOff, KitchenLightOn,
KitchenScreenOn (daily)

• CoffeeMakerOff, KitchenLightOff, Kitchen-
ScreenOff (daily)

• HotTubOn (daily)
• HotTubOff (daily)
• SprinklerOn (weekly)
• SprinklerOff (weekly)
• VCROn (weekly)
• VCROff (weekly)
• OrderGroceries (weekly)
Other activities, such as robot activation, would
not be identified by ED as significant because
they do not occur with any predictable regularity.

To mine the data, the input sequence is parti-
tioned into transaction-like collections of events
by sliding a window over the event history and
viewing the collection of events within the win-
dow as an unordered set. The minimum descrip-
tion length (MDL) principle is used to evaluate
potential sequences. The MDL principle targets
patterns that can be used to minimize the
description length of the database by replacing
each instance of the pattern with a pointer to
the pattern definition. This evaluation measure
thus identifies patterns that balance frequency
with pattern length. As a result, automating
these sequences will significantly reduce the
amount of necessary interaction between an
inhabitant and the environment. Another feature
of ED is that patterns are evaluated for day,
week, and month regularity as well as MDL
value. Significant episodes will then be selected
based on the overall evaluation measure, and
used as the basis for activity prediction and
home automation.

The episode discovery problem is defined as
follows. Let E be the set of all device events. An
event occurrence O is a pair (e, t) relating an
event e to an integer time value t. An event
sequence S is an ordered sequence of event
occurrences. We define an episode ε as a set of
event occurrences, and a candidate itemset I as a
set of events and episodes, I = ({e1, e2, e3, en},
{EE1, EE2, …, EEm}), where each event ei has an
occurrence in each of the episodes EEj, for 1 ≤ i ≤
n and 1 ≤ j ≤ m. A significant episode L is an
episode that meets or exceeds the evaluation
threshold, and an event sequence description D is
a description of an event sequence using signifi-
cant episodes and event occurrences. ED oper-
ates as follows:
1 Construct an event sequence S from input O.
2 Partition S into episodes using a sliding win-

dow of length w.
3 Create candidate itemsets from the episodes.
4 Compute compression values for each of the

candidate itemsets.
5 Using a greedy approach, identify the candi-

date itemset that minimizes the description
length of the set of episodes as a significant
episode.

6 Remove all of the episodes associated with the
candidate itemset from the remaining candi-
date itemsets.

7 Remove all candidate itemsets that have an
empty episode set.

8 Repeat steps 4–7 until the list of candidate
episodes is empty.
An online incremental version of ED has

been implemented using C++. To validate this
algorithm, a synthetic 28-day data set was gener-
ated reflecting our MavHome scenario. To
make the problem more challenging, noisy
events were included, episodes were overlapped,
and the times of the event occurrences were
varied each day. Using a 15 minute time win-
dow, ED discovers the 11 significant episodes
described by the scenario. Using a 12 hour win-
dow, the daily and weekly occurrences are
detected as separate significant episodes. These
results show that ED can be used to aid in the
automation of device interactions, as described
by our MavHome scenario.

CONCLUSIONS

In this article we present the MavHome smart
home architecture, which allows a smart home
(or other intelligent environment) to act as a
rational agent. As a rational agent the home
receives input from sensors and selects an
appropriate action that is executed through the
use of effectors. This architecture allows the
integration of research in machine learning,
databases, mobile computing, robotics, and mul-
timedia computing that is essential for smart
home development.

As part of the MavHome architecture, sever-
al prediction algorithms are introduced that play
critical roles in an adaptive and automated envi-
ronment such as MavHome. The first prediction
algorithm, LeZi-update, provides an optimal
approach to the location management problem
that is useful in determining the position of an
inhabitant for routing messages and multimedia
information. This novel approach uses move-
ment histories to learn likely future locations.
The second algorithm, SHIP, uses sequence
matching with inexact allowances and decay fac-
tors to determine the most likely next inhabitant
interaction with the home. Results from synthet-
ic and real collected smart home data indicate
that the predictive accuracy is high even in the
presence of many possible activities. The final
algorithm, ED, uses the principle of minimum
description length to determine which episodes
in an inhabitant history are significant. Signifi-
cance is determined based on the ability to com-
press the description length of the history as well
as periodicity. As a result, these episodes repre-
sent events that should be automated by
MavHome.

We have demonstrated the effectiveness of
these algorithms on collected data. The next step
for this effort will be to implement the architec-
ture in the context of actual smart environments.
In these contexts we will show the effectiveness
of the MavHome architecture operating as a
rational agent, and its ability to improve the
lifestyle of inhabitants in a variety of intelligent
environments.

Using a 12 hour
window, the daily

and weekly
occurrences are

detected as separate
significant episodes.
These results show

that ED can be used
to aid in the

automation of device
interactions, as

described by our
MavHome scenario.

IEEE Wireless Communications • December 200284

REFERENCES
[1] I. F. Akyildiz and J. S. M. Ho, “Dynamic Mobile User

Location Update for Wireless PCS Networks,” WL Nets.,
vol. 1, no. 2, 1995, pp. 187–96.

[2] I. F. Akyildiz and J. S. M. Ho, “Movement-Based Loca-
tion Update and Selective Paging for PCS Networks,”
IEEE Trans. Net., vol. 4, no. 4, 1995, pp. 629–38.

[3] Y. Birk and Y. Nachman, “Using Direction and Elapsed-
Time Information to Reduce the Wireless Cost of Loca-
tion Mobile Units in Cellular Networks,” WL Nets., vol.
1, no. 4, 1995, pp. 403–12.

[4] G. P. Pollini and C.-L., “A Profile-Based Location Strate-
gy and Its Performance,” IEEE JSAC, vol. 15, no. 8,
1997, pp. 229–32.

[5] J. Ziv and A. Lempel, “Compression of Individual
Sequences via Variable-Rate Coding,” IEEE Trans. Info.
Theory, vol. 24, no. 5, 1978, pp. 530–36.

[6] A Bhattacharya and S. K. Das, “LeZi-Update: An Infor-
mation-Theoretic Approach to Track Mobile Users in
PCS Networks,” Proc. ACM/IEEE Int’l. Conf. Mobile
Comp. and Net., 1999, pp. 1–12.

[7] P. Gorniak and D. Poole, “Predicting Future User
Actions by Observing Unmodified Applications,” Nat’l.
Conf. AI, 2000.

[8] B. Korvemaker and R. Greiner, “Predicting UNIX Com-
mand Lines: Adjusting to User Patterns,” Proc. Conf.
Intelligent Apps. AI, 2000.

[9] A. Roy et al., “Location Aware Resource Management in
Smart Homes,” submitted for publication, Nov. 2002.

[10] J.-D. Ruvini and C. Dony, “APE : Learning Users Habits
to Automate Repetitive Tasks,” Int’l. ACM Conf. Intelli-
gent User Interfaces, 2000, pp. 229–32.

[11] R. Srikant and R. Agrawal, “Mining Sequential Patterns,”
Proc. 5th Int’l. Conf. Extending Database Tech., 1996.

BIOGRAPHIES
SAJAL K. DAS (das@cse.uta.edu) received a B.Tech. in 1983
from Calcutta University, an M.S. in 1984 from the Indian
Institute of Science, and a Ph.D. in 1988 from the Universi-
ty of Central Florida. Currently he is a professor of comput-
er science and engineering and director of the CReWMaN
Center at the University of Texas at Arlington. His research
interests include wireless networks, mobile and pervasive

computing, parallel/distributed processing, performance
modeling, and simulation. He has published over 200
papers in these areas and holds four U.S. patents.

DIANE COOK (cook@cse.uta.edu) is currently a professor in
the Computer Science and Engineering Department at the
University of Texas at Arlington. Her research interests
include artificial intelligence, machine learning, data min-
ing, robotics, and parallel algorithms for artificial intelli-
gence. She has published over 120 papers in these areas.
She received her B.S. from Wheaton College in 1985, and
her M.S. and Ph.D. from the University of Illinois in 1987
and 1990, respectively.

AMIYA BHATTACHARYA [StM] (bhatt@cse.uta.edu) is currently a
Ph.D. candidate in the Department of Computer Science and
Engineering at the University of Texas at Arlington. He
received his B.Tech. and M.Tech. degrees in 1987 and 1989,
respectively, from the Indian Institute of Technology, and his
M.S. in computer science in 1991 from the University of Cal-
ifornia, San Diego. His research interests include mobile
computing and communication systems, network protocols,
measures for performance and dependability, optimization
in dynamic systems, and the application of randomized
algorithms, online algorithms and information theory. He is
a student member of ACM and ACM SIGMOBILE.

EDWIN O. HEIERMAN III (heierman@cse.uta.edu) is a member
of the research development staff at Abbott Laboratories
Diagnostic Division, Irving, Texas. His interests are in the
areas of embedded software development, Internet appli-
ances, and knowledge discovery in databases. He received
a B.S. degree from the United States Air Force Academy in
1984 and an M.C.S degree from the University of Texas at
Arlington in 1997, and is currently pursing a Ph.D. at the
University of Texas at Arlington.

TZE-YUN LIN (tylin@cse.uta.edu) came to the United States
as an exchange student. She received her B.S. in computer
science in 1999 from Texas Christian University, Fort
Worth, Texas, and is currently an M.S. student in the
Department of Computer Science at the University of Texas
at Arlington. Her research interests include artificial intelli-
gence, machine learning, and utility reasoning.

We have
demonstrated the
effectiveness of
these algorithms on
collected data. The
next step for this
effort will be to
implement the
architecture in the
context of actual
smart environments.

