
Mobile Networks and Applications 2 (1997) 115–127 115

Bit-Sequences: An adaptive cache invalidation method
in mobile client/server environments

Jin Jing a, Ahmed Elmagarmid b,∗, Abdelsalam (Sumi) Helal c and Rafael Alonso d

a Mobile Communication Operations, Intel Corporation, 2511 NE 25th Avenue, Hillsboro, OR 97124, USA
b Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA

c MCC, 3500 West Balcones Center Drive, Austin, TX 78759-6509, USA
d David Sarnoff Research Center, CN 5300, Princeton, NJ 08543, USA

In this paper, we present Bit-Sequences (BS), an adaptive cache invalidation algorithm for client/server mobile environments. The
algorithm uses adaptable mechanisms to adjust the size of the invalidation report to optimize the use of a limited communication
bandwidth while retaining the effectiveness of cache invalidation. The proposed BS algorithm is especially suited for dissemination-
based (or “server-push”-based) nomadic information service applications. The critical aspect of our algorithm is its self-adaptability and
effectiveness, regardless of the connectivity behavior of the mobile clients. The performance of BS is analyzed through a simulation
study that compares BS’s effectiveness with that of a hypothetical optimal cache invalidation algorithm.

1. Introduction

In mobile and wireless environments, caching of fre-
quently-accessed data is critical for reducing contention
on the narrow bandwidth channels. Classical cache inval-
idation strategies in these environments are likely to be
severely hampered by the disconnection and mobility of
clients. It is difficult for a server to send invalidation mes-
sages directly to mobile clients because they often discon-
nect to conserve battery power and are frequently on the
move. For the client, querying data servers through wireless
up-links for cache invalidation is much slower than wired
links because of the latency of wireless links. Also, the
conventional client/server interactions cannot scale to mas-
sive numbers of clients due to narrow bandwidth wireless
links.

In [5], Barbara and Imielinski provided an alternate ap-
proach to the problem of invalidating caches in mobile en-
vironments. In this approach, a server periodically broad-
casts an invalidation report in which the changed data items
are indicated. Rather than querying a server directly re-
garding the validation of cached copies, clients can listen
to these invalidation reports over wireless channels. The
broadcast-based solution is attractive because it can scale
to any number of mobile clients who listen to the broadcast
report.

However, a major challenge for broadcast-based solu-
tions is to optimize the organization of broadcast reports.
In general, a large report can provide more information
and is more effective for cache invalidation. But a large
report also implies a long latency for clients while check-
ing the report, given a limited broadcast bandwidth. The
Broadcasting Timestamp (TS) [5] is a good example of an
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algorithm that limits the size of the report by broadcasting
the names and timestamps only for the data items updated
during a window of w seconds (with w being a fixed para-
meter). Any client who has been disconnected longer than
w seconds cannot use the report before establishing an up-
link for cache verification. Unfortunately, the effectiveness
(reliability) of the report under TS cannot be guaranteed
for clients with unpredictable disconnection time. The ef-
fectiveness can be measured by the number of cached data
items whose status can be accurately verified by the report.

In general, there is a tradeoff between the size and the
effectiveness of broadcast reports. The tradeoff is particu-
larly subtle for the clients which cannot continuously listen
to the broadcast. In this paper, we address the report size
optimization problem. That is, given an effectiveness re-
quirement, how can we optimize the report structure? We
present three optimization techniques.

First, for applications where cached data items are
changed less often on the database server, we use the
bit-sequence naming technique to reference data items in
the report. In the bit-sequence naming, each bit in a bit-
sequence (or bit-vector) represents one data item in the data-
base. Second, instead of including one update timestamp
for each data item, we use an update aggregation technique
to group a set of data items and associate the set with only
one timestamp in the report. The client disconnected af-
ter the timestamp can use the bit-sequence to identify the
updated items. Third, we use a hierarchical structure of
bit-sequences technique to link a set of bit-sequences so
that the structure can be used by clients with different dis-
connection times. In this paper, we present a new algorithm
called Bit-Sequences (BS) that use these three techniques.

The proposed BS algorithm can be applied in applica-
tions where the frequently cached and referenced data items
are predictable. In these applications, both the servers and
the clients do not need to frequently synchronize the map-
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ping of bits in the sequence (or vector) to the names of data
items in the database. The static mapping does not have to
be explicitly included in the report. The bits in the sequence
are used to represent those data items in the database that
are frequently cached and referenced by the majority of
clients. The BS algorithm can also be used in applications
where clients can continuously listen to the broadcast re-
port for cache invalidation or the static bit mapping is not
possible. In these applications, a dynamic mapping from
data items to bits is explicitly included in the report along
with the bit sequence structure.

The main contributions of this paper include the follow-
ing:

1. When a static bit mapping scheme is implicitly as-
sumed, the BS algorithm can approach the “optimal”
effectiveness for all data items indicated in the re-
port regardless of the duration of disconnection of the
clients. However, such optimization can be achieved
only at the cost of about 2 binary bits for each item in
the report

2. The BS algorithm can also be applied to optimize other
broadcast-based cache invalidation algorithms in which
the dynamic bit mapping has to be included explicitly.
The optimization reduces the size of the report by about
one half while maintaining the same level of effective-
ness for cache invalidation.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the Bit-Sequences (BS) algorithm. Sec-
tion 3 discusses the relationship between invalidation ef-
fectiveness and bit mapping in the use of the BS algorithm.
In section 4, we examine, through simulation experiments,
how the BS algorithm compares to the “optimal” algorithm
for cache invalidation. Section 5 discusses related research.
Concluding remarks are offered in section 6.

2. The Bit-Sequences algorithm

2.1. Caching management model

A mobile computing environment consists of two dis-
tinct sets of entities: mobile hosts and fixed hosts [3,5,9].
Some of the fixed hosts, called Mobile Support Stations
(MSSs), are augmented with a wireless interface in order
to communicate with the mobile hosts, which are located
within a radio coverage area called a cell. A mobile host
can move within a cell or between two cells while retaining
its network connections. There is a set of database servers;
each covers one or more cells.

Each server can only service users who are currently
located in its coverage. A large number of mobile hosts
reside in each cell; issuing queries requesting to read the
most recent copy of a data item. We assume that the data-
base is updated only by the servers. The database consists
of N numbered data items (or pages): d1, d2, . . . , dN and
is fully replicated at each data server. The data item (or

page) is the basic update and query unit by the server and
client.

Each server periodically broadcasts invalidation reports.
To answer a query, the client on a mobile host listens to
the next invalidation report and use the report to conclude
whether its cache is valid or not. If there is a valid cached
copy that can be used to answer the query, the client returns
the result immediately. Invalid caches must be refreshed via
a query to the server.

2.2. Optimization techniques

In the Bit-Sequences (BS) algorithm, three techniques
are used to optimize the size of the report structure while
retaining the invalidation effectiveness:

• bit-sequence naming,

• update aggregation, and

• hierarchical structure of bit-sequences.

To reference data items in the database, a technique
called bit-sequence naming is applied in the BS algorithm.
The server broadcasts a set of bit sequences. Each bit in a
bit-sequence represents a data item in the database. The po-
sition of bits decides the indexes of numbered data items.
For example, the nth bit in a size N of sequence repre-
sents data item dn. Therefore, the naming space for N
items is reduced to N bits from N log(N ) bits. It should
be noted that without the order information, at least log(N )
bits are needed to identify an item in a set of size N . The
bit-sequence naming can be applied when both client and
server agree upon the mapping of bits to the names of data
items in the server database. The client can find the data
item that each bit represents in its cache based on the po-
sition of the bit in the sequence.

To indicate the update status of data items, another tech-
nique called update aggregation is used. In the broad-
cast report, each sequence is associated with only one
timestamp. A bit “1” in a sequence means that the item
represented by the bit has been updated since the time spec-
ified by the timestamp. A bit “0” means that that item
has not been updated since the specified time. Note that
the timestamp is not necessarily the exact time when the
items represented by “1” bits were updated. Instead, the
timestamp specifies the time when all these items were up-
dated. This technique, therefore, helps reduce the report
size by associating a single timestamp to a set of updated
items rather than a timestamp to each item. For example,
for a size m sequence, 32×(m−1) bits are saved, assuming
that each timestamp is represented by 32 bits (4 bytes or
a DWORD type variable). A client that disconnected after
the timestamp can use such information in the sequence to
make invalidation decision.

The update aggregation not only reduces the size of the
report, but also decreases the invalidation precision of cache
invalidation. For example, a sequence with a three day-old
timestamp may not be very useful for the client who dis-
connected just three hours ago. Many updates indicated in
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the sequence actually happened before the client discon-
nected. If the client uses the bit sequence, many valid data
items will be falsely invalidated. To adapt to variable dis-
connected clients, a technique called hierarchical structure
of bit sequences is applied. In this technique, log(N ) bit
sequences with different timestamps and sizes are linked
together for N data items covered in the report. From the
set of bit sequences, each client uses one bit sequence with
the timestamp which is equal to or most recently predates
the disconnection time of the client for cache invalidation.

The total size of these bit sequences can only be 2N +
bT log(N ) bits (where bT is the size of each timestamp). In
this hierarchical structure, the highest-ranking sequence in
the structure has N bits which corresponds to N data items
in the database. That is, each item is represented by one
bit in this sequence. As many as half the bits (N/2) in the
sequence can be set to “1” to indicate that up to the latest
N/2 items have been changed recently (initially, the num-
ber of “1” bits may be less than N /2). The timestamp of
the sequence indicates the time after which these N/2 items
have been updated. The next sequence in the structure will
contain N/2 bits. The kth bit in the sequence corresponds
to the kth “1” bit in the highest sequence (i.e., both rep-
resent the same data item). In this sequence, N/22 bits
can be set to “1” to indicate the last N/22 items that were
recently updated. The timestamp of the sequence indicates
the time after which these N/22 items were updated. The
following sequence, in turn, will contain N/22 bits. The
kth bit in the sequence corresponds to the kth “1” bit in
the preceding sequence. In the current sequence, N/23 bits
can be set to “1” to indicate the last N/23 items that were
recently updated. The timestamp of the sequence indicates
the time after which these N/23 items were updated. This
pattern is continued until the lowest bottom sequence in
the structure is reached. This sequence will contain only
2 bits; these correspond to the two “1” bits in the preced-
ing sequence. Of the two bits in the lowest sequence, one
can be set to “1” to indicate the last item that was recently
changed. The timestamp of the sequence indicates the time
after which the item was updated.

2.3. The algorithm

Now, we will describe the BS algorithm that applies the
optimization techniques described above. For simplicity,
we assume that there areN data items in the database where
N is the n power of 2, that is, N = 2n for some integer n.
We also assume that each item is statically (or implicitly)
mapped to one bit in the highest sequence (note that the
1-to-1 mapping is actually not necessary in the use of the
BS algorithm; we will elaborate on this later). Let Bn de-
note the highest sequence, Bn−1 the next sequence, ..., and
B1 denote the lowest sequence, where n = log(N ). The
timestamp of bit sequence Bk is represented by TS(Bk).
The total number of bits in Bk is denoted by |Bk| and the
total number of “1” bits in Bk by ΣBk.

Figure 1. A Bit-Sequences example.

Each client checks the invalidation and uses a bit se-
quence among the sequence set with the most recent
timestamp that is equal to or predates the disconnection
time of the client in order to invalidate its caches. The
data items represented by these “1” bits in the sequence
will be invalidated. If there is no such sequence (i.e., the
disconnection time precedes the timestamp of the highest
sequence), the report will not be used, and the client has to
establish an up-link for cache invalidation.

Example 1. Consider a database consisting of 16 data
items. Figure 1 shows a Bit-Sequences (BS) structure re-
ported by a server at time 250. Suppose that a client listens
to the report after having slept for 80 time units. That is,
the client disconnected at time 170 (= 250− 80), which is
larger than TS(B2) but less than TS(B1). The client will use
B2 to invalidate its caches. To locate those items denoted
by the two “1” bits in B2, the client will check both B3 and
B4 sequences, using the following procedure. To locate the
second bit that is set to “1” in B2, check the position of the
second “1” bit in B3. We see that the second “1” bit in B3

is in the 5th position; therefore, check the position of the
5th “1” bit in B4. Because B4 is the highest sequence and
the 5th “1” bit in B4 is in the 8th position, the client con-
cludes that the 8th data item was updated since time 170.
Similarly, the client can deduce that the 12th data item has
also been updated since that time. Therefore, both the 8th
and 12th data items will be invalidated.

2.3.1. Server Bit-Sequences construction algorithm
For each invalidation report, the server will con-

struct a Bit-Sequences (BS) structure based on the update
timestamps of data items. Initially, all bits in each bit se-
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quence are reset to “0” and the timestamp of each bit se-
quence is also reset to “0”. The highest bit sequence Bn
will contain N/2 “1” bits only after at least N/2 data items
have been updated since the initial (starting) time. The
server will send the broadcast report periodically after the
initial time. From the initial time to the time when N/2
data items are updated, the highest bit sequence contains
more “0” bits than “1” bits (recall that “0” bits mean that
the data items represented by these bits have not been up-
dated since the time specified by the timestamp; clients will
keep cached data items indicated by “0” bits as valid data
items). After more than N/2 data items have been updated,
the N/2 recently updated data items will be indicated by
the bits in the highest bit sequence Bn. Therefore, after
the time when more than N/2 data items are updated, Bn
always contains N/2 “1” bits.

To construct the BS structure, the server should keep
a update linked list which contains N/2 recently updated
data items in a update timestamp order (or all updated data
items if less N/2 data items have been updated since the
initial time). The N/2 bits for these data items in Bn
will be set to “1” (the “1” bits are less than N/2 before
N/2 bits have been updated since the initial time). The
next bit sequence Bn−1 will contain N/4 “1” bits for N/4
recently updated data items (or half of “1” bits of Bn for
these recently updated data items if less than N/2 data
items have been updated since the initial time). Each bit
sequence is attached to a timestamp that is the latest time
since those items indicated by “1” bits have been updated.

In the update linked list, each data item can be denoted
by a node. The node should include the following fields:
(a) the index number of the data item (note that data items
are numbered consecutively), (b) the update timestamp,
(c) the pointer to the next node, and (d) the 1-bit position
of the data item in a bit sequence.

All the nodes are linked by the pointer fields in decreas-
ing order of update timestamps. That is, the first node in
the update linked list denotes the data item that was most
recently updated; the second node denotes that data item
that was next recently updated; and so on. When a data
item is updated, the node denoting the item is moved to
the head of the update linked list. To quickly locate the
node in the list for a data item, an additional index, called
the item-node index, that maps a data item to its node in
the update linked list can be used. Using the update linked
list and the item-node index, the server constructs the Bit-
Sequences structure by the following procedure (initially,
all bits in Bk are reset (i.e., “0”) and TS(Bk) = 0 for all
k, 0 6 k 6 n):

1. If the update timestamp of the 1st node is larger than
zero, then construct Bn:

A. While (i 6 N/2 and the update timestamp of the
ith node is larger than zero) do:
/* initially, i = 1 */

set the jth bit in Bn to “1” where j is the
index number of the ith node; i = i+ 1.

B. Assign the update timestamp of the ith node to
TS(Bn).
/* when i < N/2,TS(Bn) = 0 */

C. For i = 1 to N do:
/* update the 1-bit position of node in the update
linked list; initially, j = 1 */

if the ith bit (i.e., the ith data item) is set to
“1” in Bn, then (a) locate the node for the ith
data item in the update linked list using the
item-node index; (b) set the value “j” into the
1-bit position of the node; j = j + 1.

2. If ΣBk+1 > 2, then construct Bk for all k (0 6 k 6
n− 1):

A. While (i 6 ΣBk+1/2) do:
/* initially, i = 1 */

set the jth bit in Bk to “1” where j is the 1-bit
position of the ith node; i = i+ 1.

B. Assign the update timestamp of the ith node to
TS(Bk).

C. For i = 1 to ΣBk do:
/* update the 1-bit position of node in the update
linked list; initially, j = 1 */

if the ith bit (i.e., the ith data item) is set to
“1” in Bk, then (a) locate the node for the ith
data item in the update linked list using the
item-node index; (b) set the value “j” into the
1-bit position of the node; j = j + 1.

Note that, in the above algorithm, we use a dummy bit
sequence B0. The size and “1” bit number of the sequence
are always equal to zero. However, the server will include
the timestamp of the sequence TS(B0) into each invalida-
tion report. The timestamp indicates the time after which
no data item has been updated.

2.3.2. Client cache invalidation algorithm
Before a client can use its caches to answer the queries,

the client shall wait for the next invalidation report that
includes the Bit-Sequences structure and then execute the
following procedure to validate its caches. The input for
the algorithm is the time variable Tl that indicates the last
time when the client received a report and invalidated its
caches.

1. If TS(B0) 6 Tl, no data cache need to be invalidated.
Stop.

2. If Tl < TS(Bn), the entire cache is invalidated. Stop.

3. Locate the bit sequence Bj with the most recent
timestamp that is equal to or predates the discon-
nect time Tl, i.e., Bj such that TS(Bj) 6 Tl but
Tl < TS(Bj−1) for all j (1 6 j 6 n).
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4. Invalidate all the data items represented by the “1” bits
in Bj . To determine the index numbers of these items
(i.e., the position of the bit that denotes the data item
in Bn), the following algorithm can be used:

A. Mark all the “1” bits in Bj ;

B. If j = n, then all the data items that are marked
in Bn are to be invalidated and the positions of
these “1” bits in Bn are their index number in the
database and stop;

C. For each “1” bit in Bj , mark the ith “1” bit in
Bj+1 if the “1” bit is in the ith position in Bj ;

D. j = j + 1 and go back to step B.

2.4. Invalidation precision

In the Bit-Sequences (BS) algorithm, a client will use a
bit sequence, say Bk (1 6 k 6 n), to invalidate its cache if
the client started disconnection at a time which is equal to or
larger than TS(Bk) but smaller than TS(Bk−1) (we assume
TS(B0) is equal to∞). By the definition of Bit-Sequences,
we know that as many as ΣBk data items that are indicated
by “1” bits in Bk have to be invalidated. Among the ΣBk
data items, there are at least ΣBk−1 data items that have
been updated at the server since the client’s disconnection
(where ΣBk/2 = ΣBk−1). Therefore, in the worst case,
there are at most ΣBk/2 data items that are actually valid,
but falsely invalidated.

However, the real number of falsely invalidated data
items will actually depend on several factors, such as
the last time the cached data were validated, and the
query/update patterns, etc.

To see how the disconnection/update pattern impacts the
false invalidation, assume that the client started the discon-
nection at time Td (i.e., the last time when the cached data
were validated), where TS(Bk) < Td < TS(Bk−1). The
worst case in which ΣBk/2 data items are to be falsely
invalidated can happen if and only if (1) the ΣBk/2 data
items were updated from TS(Bk) to Td, and (2) the client
validated these cached data after the updates (or before
its disconnection). Figure 2 shows the scenario. On the
other hand, if the client disconnected at the time Td before
the ΣBk/2 data items were updated, then these invalidated
data items are actually obsolete ones, and no data item is
falsely invalidated because they were updated between Td

and TS(Bk−1). Figure 3 gives the scenario.
Therefore, we expect that the actual rate of false inval-

idation to be quite low. The simulation study in the late
section will verify this observation.

3. Effectiveness vs. bit mapping

As we have defined earlier, the effectiveness of a re-
port can be measured by the number of cached data items
that can be accurately verified for a client by the use of

Figure 2. Updates vs. disconnection scenario 1.

Figure 3. Updates vs. disconnection scenario 2.

the report. Different requirements for the effectiveness
can be achieved by different bit mappings in the BS al-
gorithm. In this section, we will discuss two types of bit
mapping schemas that define two different effectiveness re-
quirements. We will also analyze the report size for each
mapping scheme.

3.1. Update window scheme (dynamic bit mapping)

Like the TS algorithm described in [6], bits in the report
can only represent data items that have been updated within
the preceding w second window. In this case, the bit map-
ping to data items is dynamically changed for each report,
and the dynamic mapping has to be explicitly included in
each report so that clients know the dynamically changed
mapping relationship. Since the mapping contains only the
update information for the last w seconds, the effectiveness
of the report will depend on the types of clients. In fact,
the report with the dynamic mapping, similar to the TS al-
gorithm, is effective only for clients who disconnected less
than w seconds ago, but not for clients who disconnected
more than w seconds ago.

The bit mapping in a report can also indicate only the
last f updated data items. In this case, the effectiveness of
the report is similar to that in the SIG algorithm in [5] (see
the analysis included in appendix A). The analysis shows
that the SIG algorithm is effective only if the number of
updated data items does not exceed f , an algorithm para-
meter. Because the data items within the f number window
may change from time to time, it is imperative that a dy-
namic bit mapping scheme should be explicitly included to
map names of data items to bits in the report.

In the TS algorithm, each report includes the name and
the update timestamp of each data item. Therefore, the
size of each report is k × (bT + log(N )) bits where k is
the number of data items in the report, bT is the bits of
each timestamp, and the log(N ) is the bits of each name
of data item (assuming that N is the maximum number of
data items in database servers and that each name is coded
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by log(N ) binary bits). In comparison, the BS algorithm
with dynamic (explicit) bit mapping uses approximately

k ×
(
2 + log(N )

)
+ bT × log(k)

bits. That is, k × log(N ) bits are used for the dynamic bit
mapping explicitly included in the report, 2k for log(k) bit
sequences (the highest sequence has k bits and the lowest
has only 2 bits), and bT × log(k) for log(k) timestamps
of the bit sequences. In practice, each timestamp or data
item can be represented by a long integer of 4 bytes. The
total number of bits used by the TS algorithm is about
(32 + 32)× k or 2× 32× k and the number of bits used by
the BS algorithm is around 2× k + 32× k + 32× log(k).
For a large k, the latter is about half of the former.

The report size in the SIG algorithm can be expressed,
as in [6], as

6g(f + 1)
(

ln(1/δ) + ln(N )
)
,

where N is the number of data items in the database, g is a
parameter used to specify the bound 2g of the probability of
failing to diagnose an invalid cache, δ is a parameter used
to specify the bound of the probability of diagnosing valid
cache as invalid, and f is the number of different items
that the SIG algorithm can diagnose. Typically, g and δ are
set to 16 and 10−7, respectively [5]. For a database with
N = 1024, the report size will approximately be

2000× f
(
or 6× 16× (f + 1)×

(
ln
(
107
)

+ ln
(
103
)))

,

which is much larger than 32 × (f + log(k)) in the BS
algorithm with the dynamic (explicit) bit mapping.

Therefore, using the BS algorithm with a dynamic (ex-
plicit) bit mapping, the size of the report is close to half
of that in the TS algorithm (and much smaller than that in
the SIG algorithm) while retaining almost the same level
of effectiveness for cache invalidation. The bit saving is
achieved by the optimization in the update aggregation and
the hierarchical structure techniques. In the next section,
the effectiveness of the BS algorithm will be shown – us-
ing simulation – to be very close to the effectiveness of a
hypothetical “optimal” algorithm.

3.2. Hot set scheme (static bit mapping)

In the previous section, we used a strict one-to-one map-
ping to demonstrate how the BS algorithm works. The ex-
ample in that section uses a static (implicit) bit mapping.
In general, the BS algorithm with static mapping is able to
maintain the effectiveness of the report for the data items
covered to all clients regardless of the length of their dis-
connection.

In practice, the strict one-to-one mapping may not be
feasible because of the large size of the database in the
server. On the other hand, it is also not necessary to have
the strict one-to-one mapping. In fact, from the clients’
point of view, only data items that are cached and often
referenced are of interest. For many database and applica-
tions, the hot spot (i.e., the set of data items most cached

and referenced) is changed less frequently. For these appli-
cations, the BS algorithm with the static mapping can be
applied to reference these data items and can adapt to the
changes of the disconnect times of the clients and variable
update rates in database servers.

In the BS algorithm with static bit mapping, the size of
the report can be expressed as a function of the number
of data items: 2k + bT log(k), where k is the total number
of data items covered in the report and bT is the size of a
timestamp. For a large k, the size approaches 2k (and less
than 3k). For example, when k = 1,000 and bT = 32, the
size is about 2300 bits (= 2× 1,000 + 32× 10). Therefore,
the effectiveness of the report is achieved at the cost of
about 2 bits (less than 3 bits) for each data item covered in
the report.

3.3. Hybrid BS scheme (static and dynamic bit mappings)

Another way to improve the effectiveness without in-
creasing the size of report is to use coarse granularity tech-
nique. That is, one bit can be used to represent a block
of data items rather than a single data item. If any item
in the clock is updated, the bit that represents the block
is set to “1”. Clients have to invalidate all cached data
items represented by the coarse granularity bit, if the bit
is set to “1”. In general, therefore, the coarse granularity
technique is suitable for the data set that is less frequently
changed.

The effectiveness of coarse granularity technique can be
improved further when a hybrid BS scheme of bit map-
pings is used. Specifically, the BS with dynamic bit map-
ping can be used to indicate the updated data items in the
last w seconds while the BS with static and coarse granu-
larity bit mapping can be used to cover all other hot data
items (i.e., those data items that are mostly cached and ref-
erenced often, except the recently updated data items that
are included in the dynamic BS scheme). The advantage
of using the hybrid scheme is that the coarse granularity
bits in the static BS scheme will not be set to “1” imme-
diately even though some items in the data set (indicated
by the bits) have recently been updated. In other words,
clients do not need to invalidate most of the data items
covered by the coarse granularity bits even though some
data items covered in the coarse bit set have been updated
recently.

The hybrid BS scheme with the coarse granularity tech-
nique has been studied and analyzed in [13]. The hybrid BS
scheme enables the static BS scheme to cover more data
items without increasing the size of the report and to be
effective for all clients regardless of their disconnect times.
A similar hybrid approach has also been described in [17].
The approach in [17] uses an up-link message to check the
status of cached data items other than the recently updated
data items. In contrast, the hybrid BS scheme uses the sta-
tic BS scheme in the broadcast report to check the status
of these items.
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In summary, the effectiveness of the report can be af-
fected by different bit mapping schemas and the techniques
used in the BS algorithm can be used to optimize the size
of the report for different effectiveness requirements.

4. Performance analysis

The performance analysis presented here has been de-
signed to show how the invalidation precision of the BS al-
gorithm can approach that of an “optimal” algorithm where
all invalidated data items are actually stale ones. Recall
that the techniques used in the BS algorithm may invali-
date some items that are actually valid in order to reduce
the size of the report. We compared the BS and the hy-
pothetical “optimal” algorithms under different workload
parameters, such as disconnect time, query/update pattern,
and client buffer size, etc.

The performance metrics in the study is the cache hit
ratio of clients after reconnection. The cache hit ratio is
computed by dividing the sum of the queries that are an-
swered using client caches by the sum of the total queries
in the simulation. These queries include only the first ten
queries after each wake-up, as we are interested in how the
cache hit ratios would be affected by the use of invalidation
report after reconnection.

For simplicity, we model a single server system that ser-
vices a single mobile client. The assumption is reasonable
because we only measure the cache hit ratios of clients af-
ter wake-up and the broadcast report can be listened by any
number of clients for cache invalidation. At the server, a
single stream of updates is generated. These updates are
separated by an exponentially distributed update interarrival
time. The server will broadcast an invalidation report pe-
riodically. We assume that the cache pool in the server is
large enough to hold the entire database. The size of client
cache pools is specified as a percentage of the database size.
The cache pools are filled fully with cached data before the
disconnection of the client. Each mobile host generates
a single stream of queries after reconnections. After the
stream of queries, the client may be disconnected with an
exponentially distributed time.

We compare the BS based algorithms with an “optimal”
cache invalidation algorithm that has no false invalidation to
cached data. The “optimal” algorithm assumes that clients
precisely invalidate only staled cache data without delay.
The algorithm is not implementable practically, as it re-
quires an infinite bandwidth between clients and servers for
non-delayed invalidation. We call this algorithm as BASE
algorithm and use it as a basis in order to gain an under-
standing of performance in a simplified simulation setting
and as a point-of-reference for the BS algorithm. We com-
pare the BS and BASE algorithms with variable disconnec-
tions and access patterns.

Our model simplifies aspects of resource management
in both client and server so that no CPU and I/O times are
modeled in each. Such a simplification is appropriate to an

Table 1
Simulation parameter settings.

Parameter Setting

Database size 1,000 data items
Client buffer size 5%, 15%, 25%, 35% of database size
Cache coherency 0, 0.5
Mean disconnect time 10,000 to 1,000,000 seconds
Mean update arrive time 1,000 seconds

Table 2
Access parameter settings.

Parameter UNIFORM HOTCOLD

HotUpdateBounds – first 20% of DB
ColdUpdateBounds all DB remainder of DB
HotUpdateProb – 0.8
HotQueryBounds – first 20% of DB
ColdQueryBounds all DB remainder of DB
HotQueryProb – 0.8

assessment of the effect of false invalidation on the cache
hit ratio of algorithms. All simulations were performed on
Sun Sparc Workstations running SunOS and using a CSIM
simulation package [15].

4.1. Parameters and settings

Our model can specify the item access pattern of work-
loads, thus allowing different client locality types and dif-
ferent server update patterns to be easily specified. For
each client, two (possibly overlapping) database regions
can be specified. These regions are specified by the Hot-
QueryBounds and ColdQueryBounds parameters. The Hot-
QueryProb parameter specifies the probability that a query
will address a data item in the client’s “hot” database re-
gion. Within each region, data items are selected for access
according to a uniform distribution. For the data server, the
HotUpdateBounds and ColdUpdateBounds parameters are
used to specify the “hot” and “cold” regions, respectively,
for update requests. The HotUpdateProb parameter speci-
fies the probability that an update will address a data item
in the update’s “hot” database region.

A cache coherency parameter is used to adjust the cache
“locality” of queries. The cache coherency specifies how
often cached data will be reused. If the parameter is set to
0.5, half of the queries will access cached data and the rest
of queries will follow the query access pattern specified by
the simulation parameter setting.

Table 1 presents the database simulation parameters and
settings employed in our simulation experiments. Table 2
describes the range of workloads associated with access
patterns considered in this study. The UNIFORM (query
or update) workload is a low-locality workload in which
updates or queries are uniformly distributed. The HOT-
COLD (query or update) workload has a high degree of
locality of updates or queries in which 80% of queries or
updates are performed within 20% portion of databases.
Different combinations of query and update patterns can be
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Figure 4. Basic BS vs. BASE.

used to model different application access characteristics.
For example, the HOTCOLD query and HOTCOLD update
workload is intended to model an “information feed” situa-
tion where the data server produces data to be consumed by
all clients. This situation is of interest because information
services are likely to be one of the typical applications in
mobile computing environments [10].

4.2. Experiment 1: BS vs. BASE

Figure 4 shows the experimental results that illustrate
how the cache hit ratios are affected by the false invalida-
tion introduced by the BS algorithm. The cache hit ratios
are measured after clients wake-up from disconnection and
use the BS structure to validate their cache. The first ten
queries after wake-up are counted for the computation of
cache hit ratios, so the measurement can correctly reflect
the effect of false invalidation introduced by the BS al-
gorithm on the cache hit ratios. As a point of reference,
the cache hit ratios for BASE algorithm where there is no
false invalidation of cached data are shown in figure 4.
The cache hit ratios for both algorithms are measured un-
der two different cache coherency parameters. Solid lines
depict the results when the parameter is equal to 0.5 while
dashed lines represent results when the parameter is equal
to 0. These experiments assume that clients hold 25% of
database items in their cache before disconnections.

In figure 4, the horizontal axis represents the mean num-
ber of updates during the client disconnect period while the
vertical axis is the cache hit ratio. Because a constant mean
update arrival time of 1,000 seconds is used in these ex-
periments, the mean update number is equivalent to the
disconnect time of the client (i.e., the mean disconnection
time of client is equal to the multiplication of the mean
update number and the mean update arrive time). For ex-
ample, the mean update number 1,000 implies the mean
1,000,000 seconds disconnection of client. Therefore, the
results in these experiments indicate the relationship be-
tween the cache hit ratios and the disconnections of clients.

The comparison between the BASE and BS algorithms
indicates that the basic BS algorithm adapts well to variable
disconnections, update rates, and access patterns. In most
cases, the cache hit ratios of the BS algorithm are close to
those of the BASE algorithm. However, the difference of
cache hit ratios between two algorithms increases when the
number of updates (or the disconnection) increases (e.g.,
the UNIFORM query and UNIFORM update case in fig-
ure 4). The reason for this increase is that a higher rank-
ing bit sequence will be used for cache invalidation for a
longer disconnected client (with a large number of updates
in servers during the disconnection). Figure 5 shows the
percentages of bit sequences used by clients for two dif-
ferent disconnect times (or two different update numbers)
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Figure 5. Percentages of Bit-Sequences used.

Figure 6. BS vs. BASE: varying cache sizes, UNIFORM query.
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Figure 7. BS vs. BASE: varying cache sizes, HOTCOLD query.

in the UNIFORM update and query case. A large update
number (i.e., long disconnection) means that a high rank-
ing bit sequence is used. The higher bit sequence contains
more sequent bits and in the worst case, about half of the
items represented by these bits may be falsely invalidated.
The high false invalidation, therefore, introduces low cache
hit ratios.

We note that the difference between the BASE and BS
algorithms in the HOTCOLD update cases is not as large as
that in the UNIFORM update cases with the same update
number. This is because the actual number of different data
items that are updated in HOTCOLD update is smaller than
the number in UNIFORM update, although the total number
of updates are the same in both cases. A small number of
updated data items implies that a low level bit sequence is
used in cache invalidation, as shown in figure 5.

4.3. Experiment 2: BS vs. BASE (varying cache sizes)

Figures 6 and 7 show the cache hit ratio as a function
of client cache size that changes from 5% to 35% of the
database size. The cache hit ratio is measured with two
different update numbers: 100 and 1,000. These updates

are performed in the data servers during the disconnection
of the mobile clients.

As shown in figure 6, the cache hit ratio increases with
the increase of the cache size. Especially, when the co-
herency parameter is 0, the rate of increase of the cache
hit ratio becomes close to that of the cache size. When
the coherency parameter becomes 0.5, the rate of increase
declines slightly. This is because half of the queries are not
affected by the increased cache size. Recall that when the
coherency parameter is 0.5, half of the queries always hit
the client caches. Also, the rate of increase of the cache hit
ratio when the update number is 1,000 is a slightly smaller
than when the update number is 100. This is because fre-
quent updates reduce the chances of cache hits.

Figure 7 shows that, for the HOTCOLD query pattern,
the cache hit ratio drops fast with the decrease of cache
size. The reason is that for the HOTCOLD query pattern,
80% of the queries will be executed in the 20% region (hot
pages) of the database. When the cache size is less than
20% of database size, many of these 80% queries can not
be answered by cached data items. This is the reason that
the cache hit ratio drops quickly when the cache size is
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less than 20% and increases slowly when the cache size is
larger than 25%.

In summary, large-size client cache helps increase the
cache hit ratio for the UNIFORM query access. The in-
crease rate of the cache hit ratio for the HOTCOLD query
pattern is slowed down after the cache size is larger than
the size of hot portion of the database.

5. Related research

Many caching algorithms have been proposed recently
for the conventional client-server architecture in which
the positions and wired-network connections of clients are
fixed. A comprehensive discussion and comparison of
caching algorithms in the conventional client-server archi-
tecture can be found in [7]. The issue of false invalidation
does not exist in this architecture because, as shown in the
algorithms discussed in [7], either the server can directly
invalidate client caches or clients can query the server for
the validation of their caches. In both cases, only obsolete
caches would be invalidated.

Recently, the notion of using a repetitive broadcast
medium in wireless environments has been investigated.
The property of a data broadcast program which provides
improved performance for non-uniformly accessed data was
investigated in [1]. The authors in [2] also addressed the im-
pact of update dissemination on the performance of broad-
cast disks. The scheme for update dissemination in [2] con-
siders only continuous connectivity of clients in the broad-
cast disk environments.

The mobile computing group at Rutgers has investigated
techniques for indexing broadcast data [11,12]. The main
motivation of this work has been to investigate ways to
reduce battery power consumption at the clients for the ac-
cess of broadcast data. In our approach, the invalidation
report is organized in a bit indexing structure in order to
save the space of broadcast channels. An approach that
broadcasts data for video on demand has been addressed
in [16]. This approach, called pyramid broadcast, splits an
object into a number of segments of increasing sizes. To
minimize latency, the first segment is broadcasted more fre-
quently than the rest. An adaptive scheme of broadcasting
data was described in [10]. The adaptability is achieved by
varying the frequency of the broadcast of individual data
items according to the frequency of requests.

In [5], issues of cache invalidation using a broadcast
medium in a wireless mobile environment were first in-
troduced. The SIG, TS, and AT algorithms that use peri-
odically broadcast invalidation reports were proposed for
client caching invalidation in the environment. In the AT
or TS algorithms, the entire cache will be invalidated if
the disconnection time exceeds an algorithm-specified value
(w seconds in TS and L seconds in AT), regardless of how
many data items have actually been updated during the dis-
connection period. The actual number of updated data items
may be very small if the update rate is not high (the ac-
tual number can be approximated by λuT , where λu is the

update rate and T is the disconnection time). In the SIG
algorithm, most of the cache will be invalidated when the
number of data items that were updated at the server dur-
ing the disconnection time exceeds f (see the analysis in
appendix A). Thus, the SIG algorithm is best suited for
clients that are often disconnected when the update rate is
low while the AT and TS algorithm is advantageous for
clients that are connected most of the time.

To support long client disconnections, the idea of adapt-
ing the window size of the TS algorithm was discussed
in [4,6]. The approach in [4,6] adjusts the window size
for each data item according to changes in update rates
and reference frequencies for the item. This is different
from our proposed approach which does not need the feed-
back information about the access patterns from clients. In
the adaptive TS approach, a client must know the exact
window size for each item before using an invalidation re-
port. These sizes must therefore be contained in each report
for the client to be able to correctly invalidate its caches.1

However, no detailed algorithm was presented in [4,6] to
show how the window size information is included in the
invalidation report. For this reason, we will not compare
this approach with our approach in this paper.

The hybrid BS scheme with the coarse granularity tech-
nique have been studied and analyzed in [13]. A similar
hybrid approach has also been described in [17]. The ap-
proach in [17] uses an up-link message to check the status
of cached data items other than the most recently updated
data items. By comparison, the hybrid BS scheme uses
the static BS algorithm in the broadcast report to check the
status of these items.

The work in [8] discusses the data allocation issues in
mobile environments. The algorithms proposed in [8] as-
sume that servers are stateful since they know about the
state of the clients’ caches. The algorithms use this infor-
mation to decide whether a client can hold a cache copy or
not to minimize the communication cost in wireless chan-
nels. In contrast, servers in our algorithm (as well as the
TS, AT, and SIG algorithms) are stateless since they do not
have the state information about clients’ caches.

6. Conclusions

In this paper, we have introduced a new cache invalida-
tion algorithm called the Bit-Sequences (BS), in which a pe-
riodically broadcast invalidation report is organized as a set
of binary bit sequences with a set of associated timestamps.

Using simulation, we studied the behavior and perfor-
mance of BS and have shown how the algorithm adapts
itself dynamically as the update rate/pattern varies for the
data items covered in the bit mapping. We have also shown

1 Consistency problems might arise if the window size for a data item is
not included in an invalidation report. Consider that the window size is
decreased during a client disconnection period. After the client wakes
up, the absence of information regarding the new window size may cause
it to falsely conclude the data item is still valid.
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how close the invalidation precision of the BS algorithm is
compared to that of the “optimal” one (where clients inval-
idate only the data items that have actually been updated).

The paper examined how the effectiveness of reports
that use the BS algorithm can be affected by different bit
mapping schemas. The BS algorithm with static (implicit)
bit mapping was found to support clients regardless of the
length of their disconnection times and offers high levels
of effectiveness of the report for data items covered in the
report at the cost of about 2 bits/item. These bits can be
used to cover the data items that are cacheable and most
frequently referenced. The BS algorithm with dynamic (ex-
plicit) bit mapping was found to offer the same level of
effectiveness at the expense of only about half of the report
size.

Our study also revealed that the coarse granularity bit
technique enables the static BS algorithm to cover more
data items without increasing the size of the report. The
hybrid BS scheme with the coarse granularity bit technique
was also found to improve the effectiveness of the report
(i.e., less false invalidation for data items covered by the
coarse granularity bits) by including recently updated data
items in a dynamic BS scheme in the report.

Appendix A: Probability analysis of the false alarm in
SIG

In the SIG algorithm presented in [5], there is the proba-
bility of diagnosing a cache (of data item) as invalid when in
fact it is not. When the number of data items that have been
updated since the last combined signatures were cached is
equal to or less than f , the probability (which was given in
[5]) is

pf = Prob[X > Kmp] 6 exp

(
−(K − 1)2m

p

3

)
,

where f is the number of different items up to which the
algorithm is designed to diagnose; 1 6 K 6 2, m is the
number of combined signatures determined by

6g(f + 1)
(

ln(1/δ) + ln(N )
)
;

p (≈ 1
1+f (1− 1

e )) is the probability of a valid cache being
in a signature that does not match; and X is a binomial
variable with parameters m and p.

However, when the actual number nu of updated data
items at the server is greater than f , the probability pnu

f of
incorrectly diagnosing a valid cache by the algorithm will
be different from pf . Using the similar analysis procedure
as in [5], the probability can be computed as follows. To
compute pnu

f , we first compute the probability pnu of a valid
cache being in a different signature. For this to happen, the
following must be true:

1. This item must belong to the set in the signature. The
probability is 1

f+1 (notice that in the SIG approach,
each signature corresponds to a set of data items, and
each set is chosen so that an item i is in the set Si with
probability 1

f+1 ).

Table 3
The values of probability pnu

f when f = 10, 20.

nu 10 20 30 40 50

pnu
10 (m = 1, 500) 0.00048 0.33112 0.76935 0.87915 0.92678
pnu

20 (m = 2, 900) 5.55E−16 0.00174 0.07992 0.41943 0.68977

Table 4
The actual number of differing items vs. the number of items to be

invalided.

# of differing items 10 20 30 40 50 . . .

# of being invalided (f = 10) 10 263 810 909 934 . . .

# of being invalided (f = 20) 10 20 124 462 745 . . .

2. Some items that have been updated since the last time
the signature report was cached must be in the set and
the signature must be different. The probability will be(

1−
(

1− 1
f + 1

)nu
)(

1− 2−g
)
,

where nu is the number of data items that have been
updated since the last time the signature report was
cached, g is the size (in bits) of each signature (notice
that the probability that the two different values of an
item have the same signature is 2−g).

Thus, the probability pnu of a valid cache being in a
signature that does not match is

pnu =
1

f + 1

(
1−

(
1− 1

f + 1

)nu
)(

1− 2−g
)

≈ 1
f + 1

(
1−

(
1− 1

f + 1

)nu
)
.

Now we can define a binomial variable Xnu with the pa-
rameters m and pnu . Then, the probability of incorrectly
diagnosing a valid cache can be expressed as the probabil-
ity that the variable Xnu exceeds the threshold (= Kmp)
of the SIG algorithm. That is,

pnu
f = Prob

[
Xnu > Kmp

]
.

Table 3 gives a set of values of the probability which was
computed using SAS package [14] for f = 10, 20, m =
1,500, 2,900 (where m is computed by 6(f + 1)(ln(1/δ) +
ln(N )) with N = 1,000 and δ = 10−7), K = 1.4 and
nu = 10–50. The results indicate that the probability of
incorrectly diagnosing a valid cache increases quickly when
nu grows from 10 to 50.

To verify our probability analysis, we conducted a set
of simulation experiments to demonstrate the relation be-
tween the actual number of differing items and the num-
ber of items to be invalidated. In these experiments, we
used the same parameters as in the probability computa-
tion for table 3. That is, N = 1,000, δ = 10−7, and
K = 1.4. The experiments compute combined signatures
for two databases with nu (= 10–50) different items (the
total number of items in each database is 1,000) and use
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the SIG algorithm to generate the data items to be invali-
dated. The simulation results shown in table 4 also indicate
that the number of data items to be invalidated increased
quickly when the actual number of differing items exceeds
the parameter f . In these results, the set of data items to
be invalidated is always a superset of the differing items.
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