
Information Systems 29 (2004) 207–234

Concurrency control strategies for ordered data broadcast in
mobile computing systems$,$$,$$$

Kam-Yiu Lam*, Edward Chan, Hei-Wing Leung, Mei-Wai Au

Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, PR China

Received 24 October 2001; accepted 11 July 2002

Abstract

Although data broadcast has been shown to be an efficient method for disseminating data items in mobile computing

systems, the issue on how to ensure consistency and currency of data items provided to mobile transactions (MT), which

are generated by mobile clients, has not been examined adequately. While data items are being broadcast, update

transactions may install new values for them. If the executions of update transactions and the broadcast of data items are

interleaved without any control, mobile transactions may observe inconsistent data values. The problem will be more

complex if the mobile clients maintain some cached data items for their mobile transactions. In this paper, we propose a

concurrency control method, called ordered update first with order (OUFO), for the mobile computing systems where a

mobile transaction consists of a sequence of read operations and each MT is associated with a time constraint on its

completion time. Besides ensuring data consistency and maximizing currency of data to mobile transactions, OUFO also

aims at reducing data access delay of mobile transactions using client caches. A hybrid re-broadcast/invalidation report

(IR) mechanism is designed in OUFO for checking the validity of cached data items so as to improve cache consistency

and minimize the overhead of transaction restarts due to data conflicts. This is highly important to the performance of

the mobile computing systems where the mobile transactions are associated with a deadline constraint on their

completion times. Extensive simulation experiments have been performed to compare the performance of OUFO with

two other efficient schemes, the multi-version broadcast method and the periodic IR method. The performance results

show that OUFO offers better performance in most aspects, even when network disconnection is common.

r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Concurrency control; Data broadcast; Real-time data and mobile transactions processing

1. Introduction

The research in mobile computing has attracted
a lot of attention in recent years. Owing to the
intrinsic constraints of mobile computing systems,
such as asymmetric bandwidth, limited power
supply and unreliable communication, the design

ARTICLE IN PRESS

$A preliminary version of the paper appeared in the

Proceedings of 2000 International Conference on Management

of Data (COMAD’2000), Pune, India, December 2000.
$$The work reported in this paper was supported in part by

the City University of Hong Kong under the strategic grants

numbers 7001117 and 7001069.
$$$Recommended by P. O’Neil.

*Corresponding author. Tel.: +852-2788-9807; fax: +852-

2788-8614.

E-mail addresses: cskylam@cityu.edu.hk (K.-Y. Lam);

csedchan@cityu.edu.hk (E. Chan).

0306-4379/04/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 3 0 6 - 4 3 7 9 (0 2) 0 0 0 4 5 - 5

of an efficient and cost-effective mobile computing
system poses many challenges [1–5]. One of
the most important issues is how to efficiently
disseminate consistent data items from a data-
base server to transactions, called mobile transac-

tions (MT), which are generated by mobile
clients [2,3]. In recent years, various efficient data
dissemination methods were proposed [1,6–9].
Most of them are based on data broadcast in
which a broadcast server periodically and
continuously broadcasts data items to a popula-
tion of mobile clients through a mobile network.
The main advantage of data broadcast is that
the broadcast of a data item can meet the data
requirements of several mobile transactions,
resulting in an efficient use of the limited
mobile bandwidth. Under data broadcast, mobile
transactions do not need to inform the broadcast
server before accessing a data item. They can get
the data item from the ‘‘air’’ while it is being
broadcast.
Since many data items in a mobile computing

system are used to record the real-time information

in the system, e.g., the current traffic conditions of
the roads, the last traded prices of stocks, and
news updates, their values could be highly
dynamic [10]. Updates, which are generated from
external devices, capture the most current infor-
mation for the system and refresh the values of the
data items [11,12]. Allowing execution of updates
to be interleaved with data broadcast is important
in maintaining the ‘‘freshness’’ of the data items
[11]. Accessing outdated (stale) data items is
undesirable and may significantly affect the
usefulness of the information to mobile clients
[2,12,13]. However, if concurrent execution of
updates and data broadcast is allowed, the
problem of concurrency control must be ad-
dressed. Otherwise, the resulting execution sche-
dule between the mobile and update transactions
may be non-serializable [14] and consistency of
data items provided to mobile transactions cannot
be guaranteed.
The result of providing inconsistent data

items to a mobile client could be very serious.
Consider the case that a mobile client may ask
the exchange rates of US dollars to UK pounds in
New York and London at the same time. If

the returned results are inconsistent, i.e., they are
representing the information at different time
points, the mobile client may make a wrong
trading decision. Similarly, if the information of
the last traded price of a stock is not consistent
with the stock index, i.e., there is a rise in the last
traded price of the stock while the stock index
drops, the mobile client does not know which one
is correct and neither piece of information will be
useful.
Unfortunately, conventional concurrency

control protocols, such as two-phase locking,
optimistic concurrency control method and
timestamp ordering [14], are not suitable to mobile
computing systems as the overheads for setting
locks and detecting data conflicts in a mobile
environment could be very expensive [15].
Therefore, new concurrency control methods,
which take into considerations the data properties
and the characteristics of the systems, are
needed.
In this paper, we study the problem of broad-

casting consistent data items to read-only mobile

transactions while allowing updates to be
performed concurrently at the broadcast server.
It is assumed that each mobile transaction is
associated with a deadline on its completion time.
Although it is not a hard real-time deadline, it is
important to meet the deadline. Otherwise, the
usefulness of completing a transaction will be
greatly affected.
The problem of providing consistent data

items for executions of mobile transactions
has received growing interest in recent years
[4,15–17]. An efficient and pioneering method is
by broadcasting multiple versions of data items
[18]. Consistent data items are provided to
mobile transactions by requiring mobile transac-
tions to read data items committed at the
same point of time, i.e. the last broadcast
cycle. The basic multi-version (MV) broad-
cast method is extended in [17,19] for systems
with client caches where multiple versions of
data items are maintained. By reading cached data
items, which are committed at the same time,
the data access delay can be much reduced
and at the same time data consistency is
maintained.

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234208

Another efficient method for concurrency con-
trol between read-only mobile transactions and
update transactions is a data re-broadcast scheme
called update first with ordering (UFO) [16].
Although UFO can provide the most updated
values of data items to mobile transactions (high
currency) and at the same time maintain the
serializability of execution between update and
mobile transactions, it is designed for mobile
transactions with unordered operations, i.e., the
operations in a transaction can be performed in
any order. In this paper, we extend the UFO
method to ordered UFO (OUFO) for mobile
transactions whose data requirements are ordered.
In addition, we have designed an invalidation
report (IR) scheme in OUFO to ensure data
consistency of cached data items and at the same
time reduce the restart overheads of transactions
as a result of data re-broadcast. (The second
problem is a serious performance problem in the
original UFO.) We have performed extensive
simulation experiments to compare the perfor-
mance of OUFO with the MV broadcast method
[17,19] and the periodic invalidation method (IR)
where IRs are broadcast from the broadcast server
to mobile clients to validate the accessed data
items of the mobile transactions [17]. The follow-
ing summarizes the main contributions of the
paper:

(1) OUFO, which is an extension of the original
UFO, is proposed for mobile transac-
tions whose read operations are ordered.
In the design of the algorithms, we aim
to meet transaction deadlines, providing con-
sistent data items to mobile transactions
and maximizing data currency to the transac-
tions.

(2) A hybrid re-broadcast/invalidation scheme is
designed in OUFO to ensure data consistency
at the client caches and at the same time
minimize the cost of transaction restart due to
data conflict. The effect of network disconnec-
tion on OUFO is investigated and its perfor-
mance under a frequent disconnection
environment is studied.

(3) Extensive simulation experiments are per-
formed to investigate how well our scheme

ensures the currency of data items and at the
same time maintains serializability of transac-
tion execution. Its performance is compared
with two other efficient schemes, the MV
broadcast method (MV), and the periodic
invalidation method (IR), under various
system settings.

The organization of the remaining parts of the
paper is as follows. Section 2 reviews related work
on broadcasting consistent data items. Section 3
introduces the system model and the assumptions
of the model. Section 4 introduces the OUFO
method together with a detailed discussion on its
correctness, properties and implementation over-
head. The problem of network disconnection on
OUFO is also discussed. Section 5 is a perfor-
mance study in which we compare the perfor-
mance of OUFO with the MV broadcast with MV
cache method and the periodic invalidation
method. We conclude the paper in Section 6.

2. Related work

Providing consistent data items to transactions
is one of the most important requirements of a
transaction processing system. However, tradi-
tional concurrency control protocols are not
suitable for mobile computing systems due to their
heavy overheads in detecting data conflicts in a
mobile environment [4,11]. To our knowledge, few
studies until now have been done in this area
although it is an important issue. One suggested
solution is to relax the consistency requirement. In
[4], a two-level consistency model is proposed.
Semantically related data are grouped together
into a cluster, and the data items inside a cluster
are mutually consistent. A certain degree of
inconsistency is allowed among data items at
different clusters.
In [15], a control matrix-based scheme is

proposed for data conflict detection and resolu-
tion. For a database of n data items, a matrix of
size n � n is used. In each broadcast cycle, the
control matrix is broadcast together with the data
items. A mobile client performs consistency
checking using the matrix before reading any data

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 209

item from the ‘‘air’’. This method can handle read-
only transactions as well as update transactions.
The write operations are performed on local copies
of the data items at the client. At the end of a
transaction, the whole transaction including all of
the read and write operations and the cycle
numbers in which they are performed will be sent
to the server for commitment.
Another method to detect the non-serializability

problem is to broadcast serialization graphs [18].
Each client maintains its local serialization
graph to ensure that the schedule of its committed
transactions is serializable with respect to
the update transactions at the broadcast
server. The main drawback of this method is
the heavy overhead in broadcasting the
serialization graphs since every data conflict at
the database server has to be broadcast. Further-
more, each client must listen to the transmission
channel continuously to maintain and update
its serialization graph. This leads to a serious
problem when disconnection occurs between a
mobile client and the broadcast server. The mobile
client cannot obtain the updated serialization
information about its transactions, making it
virtually impossible to ensure the serializability
of transaction execution when network disconnec-
tion occurs.
A method similar to the broadcast serializa-

tion graph method is the IR method [17] in which
an IR is periodically broadcast before each
broadcast cycle. The IR consists of a list of
identities of data items, which have been updated
at the broadcast server within the previous broad-
cast cycle. The validity of the data items accessed
by a mobile transaction is ensured by checking
against the IR. A transaction has to be restarted
in case any of its accessed data items is invalid.
Although the periodic IR method can maximize
the currency of the data items provided to mobile
transactions, a large number of transactions
will be restarted if the update rate of the data
items is high.
In [17,19], a MV broadcast method is proposed

in which the server broadcasts previous versions
of data items in addition to the committed versions
of the data items at the last broadcast cycle.
If a mobile transaction wants to access a data item,

it will get the latest version for its first read
operation. The subsequent read operations of
the transaction will read the data items with the
largest version number which is smaller than
or equal to the data version of the first operation.
By allowing a transaction to read an older version
of a data item, data consistency can be ensured
at the expense of currency, i.e., a mobile transac-
tion may not receive the latest value of a data item.
In order to reduce the number of versions to
be broadcast and to facilitate the checking of
consistency, update transactions will update
the database only at the end of a broadcast
cycle even though they arrive in the middle of a
broadcast cycle. The number of versions to be
broadcast for a data item is determined by the
life span of the transactions. It is defined as
the maximum number of broadcast cycles
from which a transaction may read data
items. Another important assumption of the MV
broadcast method is that at least one value (the
current one) is broadcast for each data item in
each cycle.
The MV broadcast method is subsequently

extended for systems with client caches [17,19].
In addition to broadcasting multiple versions of a
data item, the clients also maintain previous
versions of data items at their caches. The number
of versions to be maintained at a client cache is
again determined by the life spans of the transac-
tions. The same rule for accessing broadcast data
is used for accessing cached items. The efficiency
and characteristics of the MV methods as com-
pared with other methods, such as the serialization
graph broadcast, have been examined in [17]. The
MV method is very useful for systems where the
mobile clients are frequently disconnected from
the mobile network since the mobile clients may
access the cached data items while they are
disconnected.
The problem of broadcasting real-time data

items to time-constrained transactions also has
received growing research interest in recent years.
In [15], a hybrid broadcast on-demand (BoD)
model is presented as an extension of
the traditional broadcast disk model [20] for
systems where the data items have real-time
periodic properties. In the BoD model, the design

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234210

of a broadcast schedule is based on the
update periods of the data items. In [21,22],
an adaptive data dissemination model and a
time-critical adaptive hybrid data dissemina-
tion (TC-AHB) method were proposed. In
the proposed method, both on-demand and
push are employed in the design of a broadcast
schedule and up-link channels are used to
collect the on-demand data requests from mobile
transactions.

3. System model

The mobile computing system model consists
of a broadcast server, a number of mobile clients, a
database, and a mobile network as shown in
Fig. 1. The broadcast server communicates
with the mobile clients through low bandwidth
wireless channels of the mobile network.
The broadcast server maintains a database. It is
assumed that the values of the data items
are highly dynamic since they record real-
time information in the system, e.g., last traded
price of the stocks and the locations of moving
objects. The target applications are mobile
information systems, which require the retrieval
of real-time information for decision-making,
i.e., mobile stock information systems, navigation

systems and location management of moving
objects. In such kind of systems, reading outdated
data items will significantly affect the usefulness
of the information. For example, in a naviga-
tion system, a driver may generate a navigation
request, which requires access to the real-
time traffic conditions of the roads connecting its
current position to its destination. The result
of the query is important to his decision
in choosing the best path to his destination.
If the query accesses outdated data, the prob-
ability of arriving late at the destination will be
increased.
To maintain the validity of the data items,

update transactions are generated to refresh
the data values. It is assumed that the update
transactions are generated from some external
devices, or provided from a data vendor, i.e.,
Reuters. Each update transaction is associated
with a time stamp, which is its generation time.
It is used to indicate at which snapshot of the
external environment the update is generated.
The time stamp is recorded together with the
new value into the data item as its version number.
In the model, it is assumed that update transac-
tions are short transactions, consisting of one
to several write operations, e.g., stock quotes
and news updates, with a high arrival rate.
It is further assumed that a well-formed con-
currency control protocol, such as two-phase
locking [14], is used for concurrency control
amongst the update transactions at the broadcast
server.
The broadcast server periodically broad-

casts data items one by one, continuously, until
the end of a broadcast cycle. Then, the
next broadcast cycle starts immediately. The
length of a broadcast cycle may be fixed or
variable depending on the adopted broadcast
scheduling algorithm, which selects data items
for broadcast. In the last few years, many efficient
broadcast algorithms have been proposed based
on the deadlines of transactions or the access
frequencies of data items [23,8,15]. In this
paper, we assume the use of a simple flat disk for
selecting data items for broadcast. Note that the
proposed OUFO method can be applied to many
different broadcast-scheduling algorithms without

ARTICLE IN PRESS

Database
Broadcast Server

Mobile Network

.

Mobile Clients

Fig. 1. System model.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 211

any changes and its impacts on the broadcast
algorithms are minimal in most cases.
At each mobile client, some recently accessed

data items are maintained at the client cache.
Since the cache size of most mobile clients is
very limited, it is assumed that only a small
number of data items can be maintained at
the client cache. Caching data items at mobile
clients is important to the execution of
mobile transactions. If a mobile transaction can
find its required data items at the client cache, it
does not need to wait for them from the broadcast
cycle. This can greatly reduce the data access
delay. It is assumed that the least recently used
method is used for cached data replacement for its
simplicity and popularity.
Mobile clients issue MTs to access data

items sporadically. It is assumed that each
MT consists of a sequence of read data requests
(read operations). To simplify the discussion,
each operation requires access to one data item.
The operations in an MT are ordered and
pre-defined with precedence relationships. The
execution of the operations of an MT has
to follow the pre-defined precedence relationships.
In processing an operation, the system first
searches the cache of its initiating client for
the required data item of the operation. If the
data item cannot be found at the cache, the
MT will wait for it from the broadcast cycle.
After getting the data item, the next operation
of the MT may start. The results of a mobile
transaction will be reported to the reques-
ting mobile client only at its commit time. Thus,
if an MT has to be aborted or restarted from
beginning, the atomicity property can be main-
tained by completing an undo operation for the
transaction.
Each MT is defined with a deadline. The period

between the arrival time of a transaction and its
deadline is called its life span. It is assumed that
the deadlines of the mobile transactions are firm.
A transaction will become totally useless after its
deadline and has to be aborted. It is assumed that
the set of transactions in the system has the same
life span. It is an application-dependent parameter.
It indicates how long a transaction is allowed to
exist in the system. It may be determined based on

the dynamic properties of the data items to be
accessed by the transactions. For example in stock
trading systems, due to the highly dynamic
properties of stock data, the transactions may be
defined with tight deadlines.
In executing an MT, both data consistency

and currency are important. In this paper,
we adopt serializability as the correctness criterion
for database consistency [14] as it has been
commonly used in conventional database systems
and widely accepted in the database community.
If the serialization graph of a set of transactions is
acyclic, then the schedule is serializable. An-
other important performance requirement is to
maximize data currency provided to mobile
transactions. In a mobile computing system,
while data items are being broadcast from the
database server to mobile clients, updates may
arrive and new versions may be installed into
the database. When an MT reads a data item from
the broadcast channel, the version may not be the
latest one. In this paper, we define currency based
on the stale access rate, which is the percentage
of outdated data versions observed by the
transactions. A high stale access rate means low
currency, i.e., more outdated information is being
observed.
In our model, the broadcast process is modeled

as a long read-only transaction, called BT. The
length of a BT is defined based on the life span of
the mobile transactions such that the time required
to broadcast all its data items is equal to the life
span of a mobile transaction. Thus, the data item
set of a BT includes all the data items, which are
broadcast during the period from (current time-
�life span of a mobile transaction) to current time.
Note that the concept of BT is logical only and a
BT actually does not possess any characteristics
required for a traditional transaction, e.g., ACID
properties. The reason for treating it as a transac-
tion is to facilitate the discussion of the mechanism
and correctness of the OUFO, which will be
introduced in Section 4. Note that according
to the above definition, each MT will have its
BT for reading its required data items and no MT
will read data items from more than one BT since
the length of its BT is defined according to its life
span.

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234212

The assumptions of the system model are
summarized below:

(1) All update transactions are short transactions
and are processed at the broadcast server.

(2) The arrival rate of update transactions is high
and sporadic.

(3) All mobile transactions are read-only and the
read operations in a MT are ordered.

(4) Each mobile transaction has a firm deadline,
i.e., arrival time+life span. It is important to
complete a mobile transaction before its
deadline. Otherwise, it is useless and has to
be aborted.

(5) The result of a mobile transaction is reported
to the requesting client at its commit time.

(6) Each mobile client maintains some recently
accessed data items at its cache. It is assumed
that the least recently used method is used for
cached data replacement.

(7) The processing requirement of a mobile
transaction ensures that all the data items
accessed by an MT is consistent and at the
same time the data currency is maximized.

(8) The broadcast process is modeled as a BT
and the length of a BT is defined from the
life spans of the MTs. Each MT will have
its own BT for reading its required data
items.

4. Ordered update first with order (OUFO)

4.1. Method overview

In [16], the UFO method is proposed
for broadcasting consistent data items to mobile
transactions with unordered read operations,
i.e., each mobile transaction consists of a set of
read operations and the operations can
be executed in any order. In this paper, we
propose an extension of UFO, which we call
the OUFO for mobile transactions in which the
read operations are ordered such that the
read operations in a transaction have precedence
relationships and their execution has to satisfy the
defined precedence constraints, i.e., they must
be executed one after another. For example, the

second operation in a transaction can only
start after the completion of the first opera-
tion of the transaction. The issues of accessing
consistent cached data items and process-
ing operations under disconnection are also
addressed.
The basic principle used in OUFO to

ensure data consistency is that if a data conflict
occurs between a BT and an update transac-
tion (U), the serialization order between them
will always be U-BT. Since MTs read data
items from BTs, the serialization order between
update transactions and mobile transactions
will always be U-MT. Thus the schedules will
always be serializable. (The correctness of the
OUFO method will be discussed in more detail in
Section 4.5.1.)
Basically, the OUFO method consists of three

parts:

(1) execution of update transactions;
(2) conflict resolution between update and BTs;

and
(3) consistency check for cached data items.

4.2. Execution of update transactions

The execution of update transactions in
OUFO is the same as in the original UFO.
It is divided into two phases: the execution

phase and the update phase. During the execution
phase, the operations of an update transaction are
executed and data conflicts with other
update transactions are resolved using a conven-
tional concurrency control protocol such as
2PL. The new values from the write opera-
tions of a transaction are written in a private
workspace of the transaction instead of into
the database immediately. When all the opera-
tions of an update transaction have been com-
pleted, it enters the update phase in which
permanent updates of the database will be
performed by copying the new values from
its private workspace into the database.
Data conflict with the BT will be checked in
the update phase, which is performed in a
critical section. So, we can see that the update
transactions adopt 2PL for resolving data conflicts

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 213

with other update transactions and use an
optimistic approach [14] to detect conflicts with
the BT.
There are two important advantages in dividing

the execution of the update transactions into
two phases. Firstly, it can significantly reduce the
blocking probability and blocking delay of a BT.
If we do not divide its execution into two phases
and a BT wants to read a data item, which is
already locked by an update transaction, the
BT will be blocked until the update transaction is
committed according to the principles of 2PL [14].
At the same time, the update transaction, which
is holding the lock, may be blocked due to
data conflicts with other update transactions.
Due to transitive blocking, the blocking time
of a BT can be very long. Dividing the execution
of an update transaction into two phases
can greatly reduce the blocking probability
and blocking time of BTs since data conflicts
between update and BTs will occur only when
the update transaction is in the update phase,
which is much shorter. Secondly, the detection
of data conflicts between the update and BTs
will become much easier. At the update phase,
the system knows which data items have
been accessed by the update transaction.
By comparing the write set of the update transac-
tion with the read set of the BT, the system can
easily determine whether there is any data conflict
between them. As we see below, such new updates
during a BT will be re-broadcast to the mobile
clients.

4.3. Conflict resolution between update and BTs

Data conflict between an update transaction
and a BT will be detected when the
update transaction enters its update phase in
which a re-broadcast scheme is used to
resolve the conflict. The purpose is to reverse
the serialization order from BT-U to our
desired order, U-BT. The details of the
algorithms at both the broadcast server and
mobile clients are shown in the following sub-
sections.

4.3.1. Algorithm at the broadcast server

The following defines the algorithm at the
broadcast server. It is performed when an update
transaction enters the update phase.

Note that at the update phase, the set of data
items to be updated by an update transaction is
already defined. By re-broadcasting the conflicting
data item, the serialization order between the BT
and the update transaction is reversed. As
described in Section 3, the set of data items in a
BT consists of those data items which are broad-
cast in the period from (current time�life span of a
mobile transaction) to current time. Thus, the set
of data items in the BT is not fixed. After the
broadcast of a data item, the data item will be
included in the BT and the first data item of the BT
will be removed. Then, the checking of data
conflict with update transactions will be performed
according to the above algorithm. A data item will
be re-broadcast if they exist in both update and
BTs.

4.3.2. Algorithm at the mobile client

The data items requested by an MT are
represented by a sequence of read operations.
Processing of an MT starts from the first read
operation in the sequence. Each data item received
from a BT is matched with the requesting data
item of the executing operation. If there is a match,
the MT will read the data item and the operation
will be processed. The matching process is
repeated for the next read operation until there is
no more operation in the sequence, and then the
transaction will commit. In case a data item, which
has been read by the MT, is re-broadcast while the
MT is waiting for other data items, the MT will be
restarted from the operation which requests that

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234214

data item. It will use the re-broadcast value for the
execution of the operation. There are two reasons
for the restart. Firstly, it is to ensure the desired
serializability order U-MT. The second reason is
to provide the most updated data values to the
mobile transactions. The algorithm at the mobile
client is shown below where it is assumed that the
MT reads all its data items from BT and there is
no cache at the client. We will discuss the case of
accessing cached data items in the next sub-
section.

Note that in order to maintain the order of
executions of the operations, if an operation has
to be aborted, the operations depending on the
aborted operation in execution order also have
to be aborted. A mobile transaction may be
restarted several times if its accessed data items
are updated several times before its completion.
However, this is the cost we need to pay
for ensuring the correctness of the results and
the ACID properties of the transactions.
To minimize the impact and costs, OUFO
maintains cached data so that a restarted transac-
tion only needs a short time to return to its restart
point.

4.4. Consistency checking for cached data items

4.4.1. Benefit of caching data items

If a mobile transaction has to read all its
requested data items directly from a BT, the
mobile transaction may need to wait for a long
time to get all its required data items. The waiting
time depends on the broadcast algorithm adopted
and the size of the database if a flat broadcast disk
is used [20]. Another potential performance
problem of OUFO is that a mobile transaction

has to be restarted if any one of its previously
accessed data items is broadcast again before the
transaction commits. Restarting a mobile transac-
tion may greatly increase its response time since it
has to wait for its required data items from the
broadcast cycle again. Even worse, it may be
rescheduled repeatedly until it misses its deadline.
To reduce the data access delay and reduce

restart overheads, a mobile client may maintain
the recently accessed data items at its cache. In
case a mobile transaction is restarted due to the
arrival of a new version of one of its accessed data
items, the restarted transaction can immediately
access its previously accessed data items from the

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 215

cache instead of waiting for them to appear in the
BT. In OUFO, an invalidation mechanism (to be
described in the next sub-section) is designed to
ensure that all the cached data items accessed by a
committed transaction are consistent. In addition,
after a mobile transaction has accessed a data
item, the data item will also be placed in the client
cache. If the cache is full, a cache replacement
algorithm, such as the Least Recently Used
method, will be invoked. It is assumed that an
auto-refreshment scheme is adopted to maintain
the validity of the cached data items. Whenever a
data item is being broadcast and the cache has a
copy of the data item, the cached copy will be
refreshed with the version currently broadcast.

4.4.2. IR-based consistency checking

Unlike getting data items directly from a BT,
where the data items are guaranteed to be the most
updated and consistent version, cached data items
can be outdated and inconsistent. The probability
of finding an invalid version at the cache depends
on how the system selects data items for broadcast
and the update rates of the data items. To check
the validity of the cached data items, an IR will be
generated periodically and interleaved with the
broadcast of data items.

4.4.2.1. Generation of IR. An IR is prepared and
periodically broadcast by the server. The period
for generating the IR is called report period. An IR
includes the latest update time stamps and
identities of the set of data items, which are
updated during the interval from (current time�

report duration) to current time, i.e., the updates
occurred during the last report duration. The report
duration is the time frame over which a report
collects the update information of the data items. It
is assumed that a data item, whose update time is
beyond the report duration, will be too ‘‘old’’ to be
useful. Each IR will be shifted by a report period
from the last report generation time. The report
duration is chosen to be much greater than the
report period, i.e., a multiple of a report period.
Using such a sliding window approach for generat-
ing the reports can help to resolve the problem of
validation under disconnection. A mobile transac-
tion can still validate its accessed data items if it has
disconnected from the network for a period not
longer than the report duration since the identity of
an updated data item will be repeated in several IRs
for a period equal to the report duration. Note that
even though a large value is used for the report
duration, the size of a report may not be very large.
Its size depends on the number of updates occurred
during the report period. In the worst case, a report
will include all the data items, which are updated in
the report duration.
For example in Fig. 2, data items x; y and z are

updated at time t3; t4 and t5; respectively. Then,
data items x and z are updated at t6 and t7;
respectively. Report R1 is generated at time t8 and
it covers the update information for the update
period from t8 to t8�report duration. The identity
and latest time stamps of x; y and z will be
included in R1. If report R2 is generated t8 plus
the report period, it will include the latest time
stamps of data items x and z:

ARTICLE IN PRESS

Report R1

 Report period

Report R2

 Update x y z x z

 t3 t8 t8 + report period

Time

Report duration

Fig. 2. Generation of the IR.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234216

4.4.2.2. Validation. It is assumed that whenever a
mobile client puts a broadcast data item into the
cache, it also records down the broadcast time of
the data item. Based on the broadcast time, the
cached data items are divided into two groups:
newest version and unknown version. A data item
belongs to the newest version group if its broadcast
time+length of the BT>current time. Otherwise,
they are classified into the unknown version group.
When a mobile transaction wants to access a

data item, the transaction can access the data item
immediately if it can be found at the cache.
Otherwise, it has to wait for the data item from the
BT. If a mobile transaction has completed all its
operations, it will check the validity of its accessed
data items. If all of them belong to the newest
version group, the transaction can commit im-
mediately. Otherwise, the mobile transaction
cannot commit until it receives an IR and has
validated its accessed data items.
Validation is done by comparing the time

stamps of the data items accessed by the transac-
tion from the cache with the time stamps of the
data items in the IR. A data item in the cache is
invalid if it is found that the time stamp of the
same data item in the validation report is greater,
i.e., a new version has been created at the database
server. For this case, the mobile transaction has to
be restarted from the operation, which has read the
invalid data item. Note that if we want to increase
the number of data items belonging to the newest
version group so as to reduce the blocking delay of
mobile transactions for the IR, we can increase the
length of the BT. Essentially, it means using a
larger set of data items in the BT for checking of
data re-broadcast with update transactions. Of
course, the tradeoff is between smaller numbers of
mobile transactions needed to validate against the
IR, and a larger number of re-broadcasts. The
decision can be based on the total re-broadcast
overhead. If it is low, a longer BT may be used.
A practical problem in implementing the peri-

odic IR is the definition of report period. This
parameter actually represents a tradeoff between
bandwidth used for broadcasting the IR (which is
a valuable resource) and the waiting time of
transactions for the report. Since the report size
is small and is not expected to consume a large

amount of bandwidth, the period for broadcasting
the report can be set to a small value in order to
reduce the waiting time for validation.

4.4.3. Data re-broadcast vs. IR

Astute readers may notice that OUFO combines
two mechanisms to ensure data consistency for
mobile transactions:

(1) data re-broadcast basically provides invalida-
tion and immediate data refreshment, and

(2) invalidation by an explicit IR.

The main overhead of the first mechanism is
higher broadcast overhead as a result of data re-
broadcast. However, its main advantage is smaller
waiting time of a mobile transaction to get valid
data items in case any of its accessed data items are
invalid. The benefit of the second mechanism,
explicit IR, is the low broadcast overhead. How-
ever, its problem is heavy restart overhead as a
transaction has to wait for valid data items again
once any of its accessed data item is invalidated.
Fortunately, the restart overhead can be much
reduced by caching recently accessed data items at
the client cache when it is combined with data re-
broadcast. IRs determine the validity of a cached
data item while data re-broadcast maintains the
validity of a cached data item.
In OUFO, the first mechanism is applied to

recently broadcast data items while those data
items, which are broadcast a long time ago, are
validated by IRs. By carefully tuning the time
duration of when to apply the first mechanism and
when to apply the second mechanism, we can
adjust the total overhead of the OUFO method
within an acceptable level and at the same time
achieve a better performance.
Note that although data re-broadcast may

introduce a heavy broadcast overhead when the
data conflict probability between update and BT is
high, its impact on the overall system performance
is not always negative. Many of the proposed
broadcast algorithms select data items for broad-
cast based on the data requirements of the mobile
transactions, i.e., data popularity [7,8]. ‘‘Hot’’ data
items, i.e., those commonly required by the mobile
transactions, will have a higher probability to be

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 217

selected than the ‘‘cold’’ items in defining
data broadcast schedule with the purpose of
reducing the waiting time of transactions for
hot data items. In data re-broadcast, hot data
items may have a higher probability to be re-
broadcast since they have a higher probability to
be included in a BT (broadcast schedule). Re-
broadcasting the previously broadcast data items,
which are more likely to be hot data items, may at
the same time satisfy the data requirements of
other mobile transactions. Consequently, the mean
waiting time for data items from the BT may be
much reduced.

4.5. Correctness and implementation overhead

In this section, we prove the correctness of
OUFO based on the serializability theorem [14],
which has been widely used in various kinds of
database systems. We will show that all the
histories or schedules generated from OUFO are
serializable.

4.5.1. Correctness

Theorem. The schedules of the committed transac-

tions produced from OUFO method are serializable.

Proof. The proof consists of two parts. Firstly, we
will show that the serialization orders between all
committed mobile transactions and their conflict-
ing update transactions will always be U-MT, if
the mobile transactions read the conflicting data
items from the BT. In the second part, we will
prove that the serialization orders between mobile
transactions and update transactions will always
be U-MT, if the mobile transactions read the
conflicting data items from the cache.
Let MT, BT and U be mobile transaction, BT

and update transaction, respectively. If there is a
data conflict between BT and U, and the broadcast
of the conflicting data item is before the update of
the data item, the serialization between BT and U
will be BT-U. According to OUFO, the conflict-
ing data item will be re-broadcast immediately and
the serialization order will be reset to U-BT. If
the broadcast is after the update, the serialization
order will be U-BT. Since MT reads data items

from BT, their serialization order will always be
U-MT for any data conflict between MT and U
and the conflicting data item is broadcast during
the length of the BT.
If MT reads a data item, which is at the cache or

if the data item is broadcast prior to BT, the
serialization order between MT and U may be
MT-U. If MT-U, MT will be restarted after
checking with the IR. Thus, the serialization order
between MT and U will always be U-MT. For a
non-serializable schedule, the serialization graph
must be cyclic, e.g., there must be an edge such
that MT-U. This contradicts the OUFO. &

It is obvious that the currency of the data items
observed by mobile transactions can be maximized
due to the data re-broadcast and invalidation
mechanisms of OUFO since all the data items
which are broadcast within the length of a BT are
the most updated version and a mobile transaction
is not allowed to access outdated data items.

4.5.2. Implementation overheads

In this section, we discuss the implementation
overheads of OUFO. The main overheads of
OUFO at the broadcast server are:

(1) division of the execution of update transac-
tions into two phases;

(2) checking of the data sets of a BT and an
update transaction whenever an update trans-
action wants to enter the update phase;

(3) generation of the IR; and
(4) re-broadcast of conflicting data items if these

items are broadcast before the start of the
update phase of the update transaction.

Dividing the execution of update transactions
into two phases is trivial and should not incur
much additional overhead. (This is similar to the
deferred update approach [14].) The overhead for
checking conflicting data sets and the probability
of data conflict should be low as the number of
data items to be updated by an update transaction
is usually small. To speed up the checking process,
the data items to be updated may be sorted
according to their IDs.
The main overhead of the method is data re-

broadcast. The number of re-broadcast depends

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234218

on the probability of data conflict between a BT
and the update transactions. This in turn depends
on the broadcast schedule, arrival rate and the
update pattern of the update transactions. Note
that as explained at the end of Section 4.4.3, the
impact of data re-broadcast is not always negative.
It can also help to reduce the waiting time for hot
data items at the same time.
The algorithm at the mobile clients is simple.

The only additional work is to replace the old
version of a data item in case it is re-broadcast,
record down the broadcast time, and check with
the IR in case a transaction has accessed some data
items which belong to the unknown version group.

4.6. Operation under disconnection

An important property of mobile networks is
frequent disconnection, which may be voluntary
or involuntary. In voluntary disconnection, the
mobile client initiates a disconnection from the
server in order to conserve power of the mobile
machine. Voluntary disconnection of a mobile
client will only occur after the completion of its
transaction. Thus, it neither affects the mechanism
of OUFO nor creates any problem regarding the
correctness of the OUFO method. Involuntary
disconnection results from instability in mobile
network. For example, in a cellular radio network,
the strength of signal received by a mobile client is
affected by a number of factors such as the
distance between the mobile clients and the base
station, as well as the height of the surrounding
buildings. Disconnection may occur once the
signal received by the mobile client is lower than
a threshold level. Although the disconnection is
usually temporary, its impact on the consistency of
transaction execution can be serious.
The main impact of network disconnection on

OUFO is that at the time of re-broadcast a mobile
client may be disconnected from the network. For
this case, the mobile client cannot get the new
version of the data item and the serializability
order between a mobile transaction and an update
transaction cannot be reversed. If they have any
further data conflicts, the resulting schedule may
be non-serializable. Therefore, to resolve the
problem, once a mobile client has been tempora-

rily disconnected from the network, its mobile
transaction may consider all its accessed data
items to belong to the unknown version group and
have to be validated with the IR. Of course, if the
disconnection is very long, i.e., greater than the
report window size, a mobile transaction will not
be able to identify the validity of its accessed data
items from the IR. For this case, all the cached
data items will be considered invalid. Discarding
all the cached data items for this case should not
significantly affect the system performance since
they are quite ‘‘old’’ and it is likely that most of
them are already outdated. Furthermore, once the
next IR has been received, the validity of all the
cached data items can be identified. Therefore, the
impact of disconnection on OUFO is small.

4.7. Broadcast index structure and doze mode

operation

An important issue in the design of data
broadcast algorithm is how to minimize the tune
in time for getting broadcast data since this will
affect the power consumption rate of mobile
machines. As suggested from previous works on
the design of data broadcast algorithm, an index
for the organization of the broadcast cycle can be
inserted at the head of each broadcast cycle. Each
mobile client tunes into the index first. Based on
the broadcast index, it can determine what data
items are included in a cycle and when the required
data items of its mobile transaction will be broad-
cast. Before the broadcast of the data items, it may
turn to doze mode in order to minimize the power
consumption of the mobile machine and wake up
just before the broadcast of its required data items.
The re-broadcast mechanism of OUFO will

affect the efficiency of broadcast index since the
broadcast of a data item may be delayed due to re-
broadcast. In order to minimize the impact of data
re-broadcast on the broadcast schedule, we can set
a maximum broadcast bandwidth for data re-
broadcast, i.e., 5%, in each broadcast cycle.
Therefore, the maximum additional delay of a
data item from its original broadcast schedule will
be bounded by this maximum broadcast band-
width, i.e., is equal to 5% of a broadcast cycle.

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 219

However, setting a maximum re-broadcast
bandwidth on the other hand will affect the
correctness of OUFO since the conflict order
cannot be reversed in case there is a conflict
between an update transaction and a BT after the
maximum re-broadcast bandwidth is reached. To
ensure the correctness of OUFO, once the max-
imum re-broadcast bandwidth has been reached,
the broadcast server may broadcast two additional
pieces of information in the broadcast cycle.
Firstly, the system broadcasts a signal periodically
to inform the just awaken mobile clients that re-
broadcast has stopped so that the currently
executing mobile transactions need to check with
the next IR for their accessed data items. The
period for broadcasting the signal should be very
short such that all mobile transactions will be
informed before its commitment. Secondly, for
any conflict between an update transaction and a
BT, the broadcast server may broadcast the
identities of the conflicting items instead of the
values of the items as in the original OUFO. For
those mobile clients, which are not in doze mode,
they can determine the validation of the cached
data items and the data items accessed by their
transactions based on the broadcast data identity.
Since the identity of is very small, the broadcast of
the identities should not significantly affect the
broadcast schedule. After ensuring the currency of
its accessed data items, a mobile transaction may
commit immediately without waiting for the IR.
Since the value of the maximum re-broadcast

bandwidth will affect the power consumption in the
mobile machines, it should be chosen based on the
probability of data conflicts (number of re-broad-
cast), the amount of power saved in the doze mode
as compared to the power consumption level in the
active mode, and the total power supply of the
mobile machines. If the power supply is not a highly
critical issue, a larger maximum re-broadcast band-
width may be used in order to gain the advantages
of the re-broadcast mechanism of OUFO.

5. Performance studies

In this section, we report our simulation studies
on the OUFO method as compared to two other

efficient methods: the MV broadcast method (MV)
and the periodic IR method. The reason for
comparing OUFO with these two methods is that
they represent two extremes between the tradeoff
of concurrency and currency. As shown in [17],
MV provides a high concurrency but a low
currency while the IR provides a high currency
but a low concurrency. Another reason for
choosing MV is that it has a similar model
assumption as OUFO, i.e., it assumes that the
mobile transactions have deadlines. (Note that
although shown in the performance results in
Section 5.3, the performance of OUFO is better
than MV in many aspects, we have no intention to
claim that OUFO is better than MV. They are
proposed for different types of systems. MV is for
mobile computing systems where currency may
not be a critical issue. Its main purpose is to
tradeoff currency for consistency. What we would
like to achieve in the simulation experiments is to
investigate the performance characteristics of
OUFO. Comparing with other methods, which
are similar in assumptions, can make the analysis
easier and useful.)
Following the definition in [17], the update

transactions in MV will be written into the
database at the end of a broadcast cycle. In MV,
the number of versions to be broadcast is the
number of versions created within the period of
(current time�life span of a mobile transaction) to
current time. Similar to the experiment setting in
[17], 50% of the client cache is reserved for new
versions of the data items and the remaining 50%
are for old versions. The client cache uses the least
recent policy for cache replacement. Note that
although in [19] it was found that if old versions of
data items were put in the secondary storage, the
performance could be better, this way of storing
the old versions may not be practical in many
mobile machines, e.g., palm and handheld PC,
since they do not have any secondary memory.
The implementation of IR is similar to the
invalidation scheme used in OUFO except that
the generation of the IRs is fixed at the end of each
broadcast cycle and all update transactions are
performed at the end of a cycle.
We have implemented a simulation model using

the CSIM-18, which is a simulation language

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234220

based on the C programming language, to model
the three methods, OUFO, MV and IR. Extensive
simulation experiments have been performed to
investigate the impact of different factors, such as
update rate, data access pattern of the update
transactions, cache size, database size, and net-
work disconnection, on the performance of the
three methods.

5.1. Simulation model

Since we assume that the major bottleneck of
the system is the mobile network, in modeling the
overhead of OUFO in the simulation model, we
concentrate on its overhead on the mobile net-
work, i.e., the overhead in broadcast of IRs and
data re-broadcast. Basically, the model consists of
three main entities and three processes as shown in
Fig. 3. The three main entities are the broadcast
server, the air media and the mobile clients. Two
of the three processes are at the broadcast server:
the broadcast process and the server update
process. The last main process is the client process
at each mobile client for simulating the mobile
transactions.

Broadcast server: The database is located at the
broadcast server. In order to simplify the set of
model parameters, it is assumed that the data
items have the same sizes. If they have different
sizes, the broadcast time of the data items will be

different. Each item has a unique identifier and an
update time stamp indicating its last update time.

Air media: Air media is a collection of air
channels. In our experiments, we assume that both
scheduled broadcast items and re-broadcast items
share the same broadcast channel.

Mobile clients: There are a large number of
mobile clients in the system, which generates read-
only transactions. Each client generates one
mobile transaction at a time and will generate
the next mobile transaction after an exponentially
distributed think time upon the completion of a
mobile transaction.

Broadcast process: The broadcast process de-
fines the broadcast schedule, e.g., the selection of
data items from the database for broadcast. We
assume a flat broadcast disk model to simplify the
model and analysis. Thus, a broadcast cycle
includes all the data items in the database.

Server update process: The server update process
generates update transactions. The data items to
be updated by an update transaction are assumed
to follow the Zipf distribution, which is commonly
used in many previous studies in the area [1,17,19].
The server update process resolves data conflicts
among the update transactions using 2PL.

Mobile client process: The mobile client process
generates firm deadline mobile transactions. A
transaction will be aborted once its deadline has
been missed. If the transactions have soft dead-
lines, they will exist in the system even if they have
missed their deadlines. It is expected that the
performance of OUFO will be similar if we use
soft deadline transactions. Although the restart
rate may be higher as a transaction may exist
longer in the system, the restart overhead will be
similar to the case with firm deadline transactions
since the clients maintain recently accessed data at
their caches. Restarted transactions can easily find
their required data at the cache and do not need to
get them from broadcast cycles again.
Each transaction consists of a sequence of

operations and each operation requires access to
one data item. It is assumed that the data access
pattern of the operations follows the Zipf distribu-
tion. Once generated, the mobile transaction will
try to access the required data item of its first
operation from the cache. If it does not find the

ARTICLE IN PRESS

• • •

Database

Update
Item

Data

Broadcast items

Update Item

Broadcast
Process

Update
Database

Server Update
 Process

Mobile CLients

Fig. 3. Simulation model.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 221

data item at the cache, it will listen to the
broadcast cycle continuously for the data item.
After getting its required data item, the transaction
will access the CPU for computation. Then, it will
process its next operation. When a mobile
transaction has completed all its operations, it
will commit.

5.2. Model parameters and performance measures

5.2.1. Model parameters

Table 1 lists the model parameters and their
baseline values. Some of the parameter values are
chosen based on the values used in previous
studies in the area [17,19]. The purpose is to
facilitate comparison with results from related
works. Note that the main purpose of the
simulation study is not to investigate the perfor-
mance of the proposed method for a particular
mobile computing application. Instead, it is to
investigate the performance characteristics of the
proposed method as compared with other related
methods. In the simulation experiments, we vary
the parameter over a wide range of values to get a
more complete picture on the performance of the
proposed method.

5.2.2. Performance measures

The primary performance measures are miss

rate, mean response time and stale access rate. Miss
rate is defined as the number of mobile transac-
tions, which miss their deadlines (aborted) divided
by the total number of mobile transactions
generated. It indicates the capability of meeting
the timing requirements of the mobile transac-
tions. Note that unlike conventional real-time
systems, in addition to meeting the deadline
constraints, it is also important to minimize the
mean response time. Stale access rate is defined as
the number of stale data accesses, e.g., reading a
data value, which is different from that of the
latest updated value, divided by the total number
of data accesses. It is an important measure for the
currency of the data items observed by the mobile
transactions. Of course, it is preferred to minimize
the stale access rate.
In addition to the primary measures, we also

measure other statistics, such as the cache hit rate,
broadcast overhead, restart rate and broadcast hit

rate, to investigate the performance characteristics
of the methods. Broadcast overhead captures the
amount of broadcast bandwidth consumed by the
methods. Broadcast overhead in OUFO is the
percentage of bandwidth used for re-broadcasting
data items due to data conflicts and the overhead

ARTICLE IN PRESS

Table 1

Model parameters ad their baseline values

Parameter Baseline value

Database size 1000 data items

No. of mobile clients 100

Broadcast rate 20 data items/s

Cache size 50 data items

Cache replacement scheme LRU

Data access distribution (both mobile and update transactions) Zipf distribution

Degree of skew in access distribution 1.0

Offset between the data access distribution of mobile and update transactions 10%

No. of operations in a mobile transaction 1–4

No. of write operations in an update transaction 1–2

Invalidation report generation period (for OUFO and IR only) 50 s

Report duration 1000 s

Life span of a mobile transaction 200 s

Mean think time of a mobile client 10 s

Mean inter-arrival time of update transactions 0.1–4 s

Disconnection probability 0.01 and 0.1

Disconnection time 100ms

K-Y. Lam et al. / Information Systems 29 (2004) 207–234222

for broadcasting the IR. In MV, the broadcast
overhead is the percentage of broadcast bandwidth
used for broadcasting all versions of data items,
except the newest version. Restart rate is defined as
the number of restarts of mobile transactions over
the total number of mobile transactions com-
pleted. In OUFO and IR, a mobile transaction
may be restarted after checking with an IR or it
has accessed an invalid data item. In OUFO, a
mobile transaction may also be restarted if any of
its accessed data item is re-broadcast. Broadcast
hit rate is calculated as the number of data items

obtained directly from the broadcast cycles by the
mobile transactions divided by the simulation
length. If broadcast hit rate is high, the average
waiting time for data items from the broadcast
cycles will be smaller.

5.3. Performance results and discussion

5.3.1. Impacts of update workload

Figs. 4–10 show the impact of update interval
on the performance of the three methods, OUFO,
MV and IR, when different skew coefficients (0.5

ARTICLE IN PRESS

0

30

60

90

120

150

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV coef=0.5 MV coef=1.0

IR coef=0.5 IR coef=1.0

OUFO coef=0.5 OUFO coef=1.0

M
ea

n
 r

es
p

o
n

se
 t

im
e(

se
c)

(D
ea

d
lin

e=
20

0
se

c,
 o

ff
se

t=
10

%
)

Fig. 4. Impact of update workload on mean response time at different skew coefficients.

0%

10%

20%

30%

40%

50%

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV coef=0.5 MV coef=1.0

IR coef=0.5 IR coef=1.0

OUFO coef=0.5 OUFO coef=1.0

M
is

s
ra

te
(D

ea
d

lin
e=

20
0

se
c,

 o
ff

se
t=

10
%

)

Fig. 5. Impact of update workload on miss rate at different skew coefficients.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 223

and 1.0) are used for the Zipf distribution which is
adopted by both update transactions and mobile
transactions. An offset of 10% is set between the
Zipf distributions for the mobile transactions and
the update transactions so that they do not have
exactly the same set of hot data items. Note that
increasing the skew coefficient decreases the num-
ber of hot data items. As shown in Figs. 4 and 5,
the mean response time and miss rate of the three

methods decrease gradually with an increase in
update interval, respectively. This is consistent with
our expectation. Increasing the update interval
reduces the update workload and the data conflict
probability between the update and mobile trans-
actions. The consequence will be lighter re-broad-
cast workload in OUFO, lower MV broadcast
overhead in MV, and smaller number of restarts in
IR. These can be observed in Figs. 6 and 9.

ARTICLE IN PRESS

0%

10%

20%

30%

40%

50%

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV coef=0.5 MV coef=1.0

IR coef=0.5 IR coef=1.0

OUFO coef=0.5 OUFO coef=1.0

B
ro

ad
ca

st
 o

ve
rh

ea
d

(D
ea

d
lin

e=
20

0
se

c,
 o

ff
se

t=
10

%
)

Fig. 6. Impact of update workload on broadcast overhead at different skew coefficients.

0%

10%

20%

30%

40%

50%

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV coef=0.5 MV coef=1.0

IR coef=0.5 IR coef=1.0

OUFO coef=0.5 OUFO coef=1.0

C
ac

h
e

h
it

 r
at

e
(D

ea
d

lin
e=

20
0

se
c,

 o
ff

se
t=

10
%

)

Fig. 7. Impact of update workload on cache hit rate at different skew coefficients.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234224

As depicted in Figs. 4 and 5, the performance
(mean response time and miss rate) of OUFO is
consistently much better than that of MV and IR
although its broadcast overhead is higher as shown
in Fig. 6 especially when the update workload is
heavy. The better performance of OUFO as
compared with MV is mainly due to (1) a higher
cache hit rate (as shown in Fig. 7) and (2) a much
higher broadcast hit rate as shown in Fig. 10. The
better performance of OUFO as compared with

IR is due to lower restart rate as shown in Fig. 9
and higher broadcast hit rate as shown in Fig. 10.
In MV, multiple versions of a data item are
maintained at the client cache. This can seriously
reduce the number of different data items at the
client caches, leading to a much smaller cache hit
rate. The broadcast of multiple versions of data
items also seriously increases the broadcast over-
head. The much better broadcast hit rate in OUFO
as compared to MV and IR is due to the

ARTICLE IN PRESS

0%

5%

10%

15%

20%

25%

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV coef=0.5 MV coef=1.0

IR coef=0.5 IR coef=1.0

OUFO coef=0.5 OUFO coef=1.0

S
ta

le
 a

cc
es

s
ra

te
(D

ea
d

lin
e=

20
0

se
c,

 o
ff

se
t=

10
%

)

Fig. 8. Impact of update workload on stale access rate at different skew coefficients.

0

0.3

0.6

0.9

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV coef=0.5 MV coef=1.0

IR coef=0.5 IR coef=1.0

OUFO coef=0.5 OUFO coef=1.0

R
es

ta
rt

 r
at

e
(D

ea
d

lin
e=

20
0

se
c,

 o
ff

se
t=

10
%

)

Fig. 9. Impact of update workload on restart rate at different skew coefficients.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 225

rebroadcast mechanism in OUFO. Although re-
broadcasting a data item introduces additional
broadcast overhead, at the same time, it increases
the broadcast hit rate especially when the data
access patterns of update and mobile transactions
are similar, i.e. both are Zipf distributions. A re-
broadcast item may be waiting by other mobile
transactions. Thus, the average waiting time for
data items will become smaller. As shown in
Figs. 7 and 10, the cache hit rate of IR is slightly
higher than that of OUFO but its broadcast hit
rate is very low (close to zero) indicating that the
mobile transactions obtain most of their required
data from the cache instead from data broadcast.
Due to the long waiting time for data items, the
restart rate of IR is much higher than that of
OUFO. Note that the cost of transaction restart in
IR is much higher. A restarted transaction has to
wait for its data items from the broadcast cycle
again since the cached copy is invalidated.
In addition to smaller miss rate and mean

response time, another important advantage of
OUFO over MV is that it can provide a higher
data currency to the mobile transactions as shown
in Fig. 8. The stale access rate of OUFO remains
zero while the stale access rate of MV is up to 25%
when the workload is heavy and the skew
coefficient is equal to 0.5. This indicates that
many mobile transactions observe ‘‘old’’ values
under MV.

Although the performance of IR is similar to
MV when the skew coefficient equals 1.0, IR is
much better than MV when the skew coefficient is
equal to 0.5. This is mainly due to a much higher
cache hit rate (Fig. 7) and a lower broadcast
overhead (Fig. 6), although its restart rate is higher
than MV (Fig. 9). The stale access rate of IR is
also much lower as compared with MV as shown
in Fig. 8 since the cache only maintains the most
update versions of the data items. Outdated
versions are invalidated by IR periodically.
Figs. 4 and 5 also show that the performance of

OUFO, IR and MV is better when the skew
coefficient is larger. The skew coefficient affects the
number of hot data items. Reducing the skew
coefficient (e.g., from 1.0 to 0.5) increases the
number of hot items. This reduces the cache hit
rate as shown in Fig. 7 and increases the average
data access delay of mobile transactions.
Figs. 11 and 12 show the performance of the

three methods when the offset of the Zipf
functions for the update and mobile transactions
is set to zero, e.g., the two types of transactions
have the same set of hot data items. Consistent
with the previous results, the performance (mean
response time and miss rate) of OUFO is
consistently better than that of MV and IR as
shown in Figs. 11 and 12. However, the perfor-
mance of IR becomes worse than MV due to large
number of transaction restarts. Although the

ARTICLE IN PRESS

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV coef=0.5 MV coef=1.0
IR coef=0.5 IR coef=1.0
OUFO coef=0.5 OUFO coef=1.0

B
ro

ad
ca

st
 H

it
 R

at
e

(D
ea

d
lin

e=
20

0s
ec

, c
o

ef
=1

.0
, o

ff
se

t=
10

%
)

Fig. 10. Impact of update workload on broadcast hit rate at different skew coefficients.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234226

restart rate of OUFO is also high when the offset is
set to be zero, the cost of transaction restarts in
OUFO is very low since a restarted transaction can
always find its previously accessed data items at
the client cache. Furthermore, increasing the
degree of overlap between the access patterns of
mobile transactions and update transactions at the
same time increases the broadcast hit rate of
OUFO.
Figs. 13 and 14 show the results when the length

of a mobile transaction is increased from 1–4

operations to 4–8 operations. As shown in
the figures, increasing the transaction length
increases the miss rate and mean response time
since a mobile transaction has to wait longer
to get all its required data items. Consistent with
the results in previous figures, OUFO gives the
best performance. Increasing the length of the
transactions, the overhead of the methods (MV
and OUFO) and the restart probability of a
transaction (OUFO and IR) will be higher.
Although the number of transaction restarts is

ARTICLE IN PRESS

0

30

60

90

120

150

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV offset=0% MV offset=10%

IR offset=0% IR offset=10%

OUFO offset=0% OUFO offset=10%

M
ea

n
 r

es
p

o
n

se
 t

im
e(

se
c)

(D
ea

d
lin

e=
20

0
se

c,
 c

o
ef

=1
.0

)

Fig. 11. Mean response time at different offsets between the Zipf distributions.

0%

10%

20%

30%

40%

50%

60%

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV offset=0% MV offset=10%

IR offset=0% IR offset=10%

OUFO offset=0% OUFO offset=10%

M
is

s
ra

te
(D

ea
d

lin
e=

20
0

se
c,

 c
o

ef
=1

.0
)

Fig. 12. Miss rate at different offsets between the Zipf distributions.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 227

also higher under OUFO when the transaction
length is longer, this does not seriously affect the
performance since the restart cost is low as a
restarted transaction can find its required data
items from the cache.

5.3.2. Impact of cache size and database size

Figs. 15–18 show the performance of the three
methods at different client cache sizes. As ex-
pected, increasing the cache size improves the

performance of the methods as shown in Figs. 15
and 16. It is mainly due to a higher cache hit rate
as shown in Fig. 17. Consistent with the results in
the last sub-section, the performance of OUFO is
significantly better than that of MV and IR as
shown in Figs. 15 and 16, e.g., smaller mean
response time and lower miss rate. The better
performance of OUFO is again due to higher
cache hit rate (Fig. 17), lower broadcast overhead
(Fig. 18) and higher broadcast hit rate. The

ARTICLE IN PRESS

0

40

80

120

160

200

240

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV (4-8 operations) MV (1-4 operations)

IR (4-8 operations) IR (1-4 operations)

OUFO (4-8 operations) OUFO (1-2 operations)

M
ea

n
 r

es
p

o
n

se
 t

im
e(

se
c)

(D
ea

d
lin

e=
30

0
se

c,
 c

o
ef

=1
.0

, o
ff

se
t=

10
%

)

Fig. 13. Mean response time at different lengths of mobile transactions.

0%

10%

20%

30%

40%

50%

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV (4-8 operations) MV (1-4 operations)

IR (4-8 operations) IR (1-4 operations)

OUFO (4-8 operations) OUFO (1-2 operations)

M
is

s
ra

te
(D

ea
d

lin
e=

30
0

se
c,

 c
o

ef
=1

.0
, o

ff
se

t=
10

%
)

Fig. 14. Miss rate at different lengths of mobile transactions.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234228

differences in their performance are greater when
the update workload is heavier. The poor mean
response time of IR is mainly due to large number
of restarts and long waiting time for data items
from data broadcast.
Increasing the database size increases the length

of a broadcast cycle as we are using a flat
broadcast disk (where a broadcast cycle includes
all the data items in the database.) At the same
time, the number of hot data items will also be
larger due to a larger database. Thus, the conflict

probability will be lower. Figs. 19–21 show the
results when the database size is increased
from 1000 to 2000 data items. It can be observed
that the performance of the methods degrades
when a larger database is used. It is because:
(1) the mobile transactions have to wait longer
for their data items if they cannot find their
required data items in the cache due to a longer
broadcast cycle; and (2) a lower cache hit rate as
the number of hot data items is larger (Fig. 21).
The performance of OUFO remains consistently

ARTICLE IN PRESS

0

20

40

60

80

100

10 30 50 70 90

Cache Size

MV update interval=0.6 MV update interval=1.0

IR update interval=0.6 IR update interval=1.0

OUFO update interval=0.6 OUFO update interval=1.0

M
ea

n
 r

es
p

o
n

se
 t

im
e(

se
c)

(D
ea

d
lin

e=
20

0
se

c,
 c

o
ef

=1
.0

, o
ff

se
t=

10
%

)

Fig. 15. Mean response time at different cache sizes.

0%

2%

4%

6%

8%

10%

10 30 50 70 90

Cache Size

MV update interval=0.6 MV update interval=1.0

IR update interval=0.6 IR update interval=1.0

OUFO update interval=0.6 OUFO update interval=1.0

M
is

s
ra

te
(D

ea
d

lin
e=

20
0

se
c,

 c
o

ef
=1

.0
, o

ff
se

t=
10

%
)

Fig. 16. Miss rate at different cache sizes.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 229

better than MV and IR in mean response time,
miss rate and stale access rate even if the database
size is larger.

5.3.3. Impact of network disconnection

In this section, we investigate how network
disconnection affects the performance of the three
methods. In OUFO, once a disconnection
has occurred, the mobile client will consider
all its cached data items to belong to the unknown
version group. All the executing mobile transac-

tions are required to validate with the IR before
they can commit. The impact of network discon-
nection does not affect the correctness of MV.
However, under MV, a mobile transaction cannot
receive new data items from the broadcast server.
This will affect the probability of finding the right
version of a data item. For IR, if network
disconnection occurs while an IR is receiving, a
mobile transaction will be required to validate its
accessed data items with the next validation report
after the reconnection.

ARTICLE IN PRESS

0%

10%

20%

30%

40%

50%

10 30 50 70 90

Cache Size

MV update interval=0.6 MV update interval=1.0

IR update interval=0.6 IR update interval=1.0

OUFO update interval=0.6 OUFO update interval=1.0

C
ac

h
e

h
it

 r
at

e
(D

ea
d

lin
e=

20
0

se
c,

 c
o

ef
=1

.0
, o

ff
se

t=
10

%
)

Fig. 17. Cache hit rate at different cache sizes.

0%

5%

10%

15%

20%

25%

10 30 50 70 90

Cache Size

MV update interval=0.6 MV update interval=1.0

IR update interval=0.6 IR update interval=1.0

OUFO update interval=0.6 OUFO update interval=1.0

B
ro

ad
ca

st
 o

ve
rh

ea
d

(D
ea

d
lin

e=
20

0
se

c,
 c

o
ef

=1
.0

, o
ff

se
t=

10
%

)

Fig. 18. Broadcast overhead at different cache sizes.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234230

To model network disconnection, we in-
troduce two new parameters, the disconnec-
tion probability and disconnection time. In the
experiments, we concentrate on the involuntary
disconnection since it is assumed that voluntary
disconnection will only occur after the comple-
tion of mobile transactions. The disconnection
time is set to be 100ms. In our model, a
mobile client may disconnect from the network
following the disconnection probability after
receiving a broadcast item. Two sets of
experiments have been performed: high disconnec-

tion probability and medium disconnection
probability. Figs. 22 and 23 show the mean
response time and miss rate, respectively, when
a low disconnection probability, 0.01, and
a higher disconnection probability, 0.1, are
used. As shown in Figs. 22 and 23, the perfor-
mance of the three methods is worse than the
case without disconnection and the performance
of the three methods is poorer when the dis-
connection probability is higher. However, the
miss rate and mean response time of OUFO
are still significantly smaller than that of MV and

ARTICLE IN PRESS

0

30

60

90

120

150

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV dbsize=2000 MV dbsize=1000

IR dbsize=2000 IR dbsize=1000

OUFO dbsize=2000 OUFO dbsize=1000

M
ea

n
 r

es
p

o
n

se
 t

im
e(

se
c)

(D
ea

d
lin

e=
20

0
se

c,
 c

o
ef

=1
.0

, o
ff

se
t=

10
%

)

Fig. 19. Mean response time at different database sizes.

0%

10%

20%

30%

40%

50%

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV dbsize=2000 MV dbsize=1000

IR dbsize=2000 IR dbsize=1000

OUFO dbsize=2000 OUFO dbsize=1000

M
is

s
ra

te
(D

ea
d

lin
e=

20
0

se
c,

 c
o

ef
=1

.0
, o

ff
se

t=
10

%
)

Fig. 20. Miss rate at different database sizes.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 231

IR even when the disconnection probability is
high, i.e., 0.1.

6. Conclusions

Data broadcast has been shown to be an
efficient method for disseminating data items to
transactions generated by mobile clients. Although
the research in the design of broadcast algorithms
has received a lot of attention in previous years,

the concurrency control issue has been largely
ignored. If broadcast of data items and execution
of update transactions (which are important for
maintaining the validity of the data items at the
database) are uncontrolled, mobile transactions
may observe inconsistent data values.
In this paper, we study the issue of concurrency

control between update transactions and mobile
transactions, which consist of ordered read-only
operations. Our proposed method, called ordered
update first with order (OUFO), is not only

ARTICLE IN PRESS

0%

10%

20%

30%

40%

50%

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV dbsize=2000 MV dbsize=1000

IR dbsize=2000 IR dbsize=1000

OUFO dbsize=2000 OUFO dbsize=1000

C
ac

h
e

h
it

 r
at

e
(D

ea
d

lin
e=

20
0

se
c,

 c
o

ef
=1

.0
, o

ff
se

t=
10

%
)

Fig. 21. Cache hit rate at different database sizes.

0

30

60

90

120

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV (P(disconnect))=0.01 MV (P(disconnect))=0.1

IR (P(disconnect))=0.01 IR (P(disconnect))=0.1

OUFO (P(disconnect))=0.01 OUFO (P(disconnect))=0.1

M
ea

n
 r

es
p

o
n

se
 t

im
e(

se
c)

(c
o

ef
=1

.0
, o

ff
se

t=
10

%
)

Fig. 22. Mean response time at different disconnection probabilities.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234232

simple, but can also maintain the schedule between
update and mobile transactions to be serializable
and at the same time maximize the currency of the
data items observed by the mobile transactions.
OUFO can easily be applied to different broadcast
algorithm and its impact on the mobile clients,
especially in cache data management, is minimal.
This means that OUFO can be implemented easily
in most mobile broadcast systems.
In OUFO, an efficient cache management

scheme is adopted to minimize the cost of
transaction restarts due to data conflicts with
update transactions and reduce the data access
delays. It combines both data re-broadcast and
explicit IRs to ensure that all the accessed cached
data items are valid. Although at first sight it
might appear that data re-broadcast will increase
the broadcast overhead significantly, we have
found that in practice the data items being re-
broadcast are often hot data items and the re-
broadcast actually has the desirable side effect of
reducing the waiting time of other mobile transac-
tions not involved in the data conflict. Thus,
OUFO can still achieve good performance even
when data conflict probability is high.
In order to investigate the performance char-

acteristics of the OUFO method, a simulation
model of a mobile computing system with data
broadcast has been implemented. Experiments are
performed to investigate the impact of different

system parameters on its performance as com-
pared with the MV broadcast method as well as
the periodic invalidation method. The results show
that OUFO significantly outperforms the other
two efficient methods in terms of mean response
time of mobile transactions and miss rate. Another
important advantage is that the data items under
OUFO are generally much more current than
those under MV broadcast method. Although
disconnection may affect the efficiency of OUFO,
performance results indicate that OUFO still give
a much better performance than MV and IR when
the disconnection probability is high.

Acknowledgements

We would like to thank the reviewers of the
COMAD’2000 for their valuable comments and
suggestions on the earlier version of the paper
which appeared in COMAD’2000.

References

[1] S. Acharya, M. Franklin, S. Zdonik, Balancing push and

pull for data broadcast, in: Proceedings of the ACM

SIGMOD, Tucson, Arizona, May 1997.

[2] M. Franklin, S. Zdonik, Data in your face: push

technology in prospective, in: Proceedings of the 1998

ACM SIGMOD Conference, Seattle, 1998.

ARTICLE IN PRESS

0%

5%

10%

15%

20%

25%

0 0.5 1 1.5 2 2.5 3 3.5 4

Update interval (sec)

MV (P(disconnect))=0.01 MV (P(disconnect))=0.1

IR (P(disconnect))=0.01 IR (P(disconnect))=0.1

OUFO (P(disconnect))=0.01 OUFO (P(disconnect))=0.1

M
is

s
ra

te
(c

o
ef

=1
.0

, o
ff

se
t=

10
%

)

Fig. 23. Miss rate at different disconnection probabilities.

K-Y. Lam et al. / Information Systems 29 (2004) 207–234 233

[3] T. Imielinski, B.R. Badrinath, Mobile wireless computing:

challenges in data management, Commun. ACM 37 (10)

(1994).

[4] E. Pitoura, B. Bhargava, Maintaining consistency of data

in mobile distributed environment, in: Proceedings of the

15th International Conference on Distributed Computing

Systems, 1995, pp. 404–413.

[5] H.W. Leung, Concurrency control for data broadcasts in

mobile computing systems, M.Phil. Thesis, Department of

Computer Science, City University of Hong Kong, 2001.

[6] S. Hameed, N.H. Vaidya, Efficient algorithms for schedul-

ing single and multiple channel data broadcast, Technical

Report 97-002, Department of Computer Science, A&M

University, Texas, February 1997.

[7] H.V. Leong, A. Si, Data broadcasting strategies over

multiple unreliable wireless channels, in: Proceedings of

the Fourth International Conference on Information and

Knowledge Management, November 1995, pp. 96–104.

[8] H.V. Leong, A. Si, Database caching over the air-storage,

Comput. J. 40 (7) (1997) 401–415.

[9] P. Xuan, O. Gonzalez, J. Fernandez, K. Ramamritham,

Broadcast on demand: efficient and timely dissemination

of data in mobile environments, in: Proceedings of the

Third IEEE Real-Time Technology Application Sympo-

sium, 1997.

[10] R. Srinivasan, C. Liang, K. Ramamritham, Maintaining

temporal coherency of virtual data warehouses, in:

Proceedings of Real-time Systems Symposium, Spain,

1998, pp. 60–70.

[11] O. Ulusoy, Real-time data management for mobile

computing, in: Proceedings of the International Workshop

on Issues and Applications of Database Technology

(IADT’98), Berlin, Germany, July 1998.

[12] O. Wolfson, P. Sistla, S. Chamberlain, Y. Tesha, Updating

and querying databases that track mobile units, J.

Distributed Parallel Databases 7(3) (1999).

[13] E. Kayan, O. Ulusoy, An evaluation of real-time transac-

tion management issues in mobile database systems,

Comput. J. 42(6) (1999), 501–510.

[14] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency

Control and Recovery in Database System, Addison-

Wesley, Reading, MA, 1987.

[15] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankar-

an, K. Ramamritham, Efficient concurrency control for

broadcast environments, in: Proceedings of the ACM

SIGMOD International Conference on Management of

Data, Philadelphia, June 1–3, 1999.

[16] Kam-Yiu Lam, Mei-Wai Au, Edward Chan, Broadcasting

consistent data to read-only transactions from mobile

clients, Comput. J. (2001), in preparation.

[17] E. Pitoura, P.K. Chrysanthis, Scalable processing of read-

only transactions in broadcast push, in: Proceedings of the

International Conference on Distributed Systems, May

1999.

[18] E. Pitoura, Supporting read-only transactions in wireless

broadcasting, in: Proceedings of the DEXA’98 Workshop

on Mobility in Databases and Distributed Systems, August

1998.

[19] E. Pitoura, P.K. Chrysanthis, Exploiting versions for

handling updates in broadcast disks, in: Proceedings

of the Very Large Data Base Conference, Edinburgh,

UK, September 1999.

[20] S. Acharya, R. Alonso, M. Franklin, S. Zdonik, Broadcast

disks: data management for asymmetric communications

environments, in: Proceedings of the ACM SIGMOD, San

Jose, CA, 1995.

[21] J. Fernandez, K. Ramamritham, Adaptive dissemination

of data in real-time asymmetric communication environ-

ments, in: Proceedings of the Euromicro Conference on

Real-Time Systems, June 1998.

[22] J. Fernandez, K. Ramamritham, Adaptive dissemination

of data in asymmetric communication environment, ACM

Mobile Networks Appl. J., in preparation.

[23] A. Datta, A. Celik, J. Kim, D.E. VanderMeer, Adap-

tive broadcast protocol to support power conservant

retrieval by mobile users, in: Proceedings of the

International Conference on Data Engineering, 1997,

pp. 124–133.

ARTICLE IN PRESS

K-Y. Lam et al. / Information Systems 29 (2004) 207–234234

	Concurrency control strategies for ordered data broadcast in mobile computing systems
	Introduction
	Related work
	System model
	Ordered update first with order (OUFO)
	Method overview
	Execution of update transactions
	Conflict resolution between update and BTs
	Algorithm at the broadcast server
	Algorithm at the mobile client

	Consistency checking for cached data items
	Benefit of caching data items
	IR-based consistency checking
	Generation of IR
	Validation

	Data re-broadcast vs. IR

	Correctness and implementation overhead
	Correctness
	Implementation overheads

	Operation under disconnection
	Broadcast index structure and doze mode operation

	Performance studies
	Simulation model
	Model parameters and performance measures
	Model parameters
	Performance measures

	Performance results and discussion
	Impacts of update workload
	Impact of cache size and database size
	Impact of network disconnection

	Conclusions
	Acknowledgements
	References

