
The Journal of Systems and Software 69 (2004) 183–193

www.elsevier.com/locate/jss
Efficient validation of mobile transactions in wireless environments q

Victor C.S. Lee a,*, Kwok Wa Lam a, Tei-Wei Kuo b

a Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
b Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

Received 30 September 2001; received in revised form 31 January 2002; accepted 19 July 2002
Abstract

In broadcast environments, the limited bandwidth of the upstream communication channel from the mobile clients to the server

bars the application of conventional concurrency control protocols. In this paper, we propose a new variant of the optimistic

concurrency control (OCC) protocol that is suitable for broadcast environments. At the server, forward validation of a transaction

is done against currently running transactions, including mobile transactions and server transactions. At the mobile clients, partial

backward validation of a transaction is done against committed transactions at the beginning of every broadcast cycle. Upon

completion of execution, read-only mobile transactions can be validated and committed locally and update mobile transactions are

sent to the server for final validation. These update transactions have a better chance of commitment because they have gone

through the partial backward validation. In addition to the nice properties of conventional OCC protocols, this protocol provides

autonomy between the mobile clients and the server with minimum upstream communication, which is a desirable feature to the

scalability of applications running in broadcast environments. This protocol is able to process both update transactions and read-

only transactions at the mobile clients at low space and processing overheads.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Real-time transaction processing; Optimistic concurrency control; Transaction validation; Mobile computing
1. Introduction

In near future, tens of millions of users will be car-
rying a portable computer that uses a wireless interface

to access the worldwide information network for busi-

ness or personal use (Imielinski and Badrinath, 1994).

However, some physical constraints of wireless com-

munication pose a number of challenging issues on

transaction processing. In a wireless mobile network, the

server may have a relatively high downstream band-

width broadcast capability while the upstream band-
width for mobile clients to the server is very limited.

Such asymmetric communication environments (Ach-
qThe work described in this paper was partially supported by a

grant from CityU (project no. 7001193) and a grant from the Research

Grants Council of the Hong Kong Special Administrative Region,

China (project no. CityU 1075/02E). This paper is a complete and

extended version of a paper containing the preliminary idea in the First

International Conference on Mobile Data Access, 1999.
*Corresponding author. Tel.: +852-2788-8617; fax: +852-2788-

8614.

E-mail address: csvlee@cityu.edu.hk (V.C.S. Lee).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0164-1212(03)00084-0
arya et al., 1995) render the conventional transaction

processing mechanisms inapplicable because those

mechanisms require considerable bi-directional com-
munication between the server and mobile clients and

the time required for message passing may be intolerably

long. Another issue is that data transmission over the air

is monetarily expensive as the bandwidth from mobile

clients to the server will continue to be a scarce resource

(Pitoura and Bhargava, 1994). The prolonged commu-

nication time may be too costly. Furthermore, the large

population size of mobile clients may overload the ser-
ver when they asynchronously submit transactions to

the server for processing. Therefore, one of the design

objectives of our protocol is to minimize the use of

upstream bandwidth.

To exploit the relative abundance of downstream

communication capacity from the server to the mobile

clients, broadcast-based data dissemination becomes a

major mode of information transfer in mobile comput-
ing and wireless environments (Alonso and Korth, 1993;

Imielinski and Badrinath, 1994; Zdonik et al., 1994).

Therefore, we assume such broadcast mechanism in our

mail to: csvlee@cityu.edu.hk

184 V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193
proposed protocol. Broadcast disks (Acharya et al.,

1995) are a form of such data dissemination systems.

The server continuously and repeatedly broadcasts all

data objects in the database. The mobile clients view this

broadcast as a disk and read the values of data objects

being broadcast. A periodic broadcast program is con-
structed to schedule the broadcast of data objects cy-

clically according to certain popularity criteria. Some

unused extra broadcast slots in each broadcast cycle can

be used to broadcast additional information such as

control information to be used by the mobile clients to

perform some functions on their local transactions.

Many applications in broadcast environments are

inherently real-time in nature. Transactions are associ-
ated with timing constraints in form of deadlines, in-

dependent of whether they originate from the mobile

clients or the static hosts over wired or wireless net-

works. For instance, it may be a financial or opportunity

loss if a stock-trading transaction cannot be completed

with a certain timing constraint, disregarding whether

the stock trader is submitting the transaction (purchas-

ing or read-only) in his office (wired) or on a ride to
somewhere (wireless). In addition, the temporal validity

of some data objects such as stock prices or sensor data

poses another type of timing constraints to the database

systems. Transaction correctness is then defined as

meeting its timing constraints and using data that is

absolutely and relatively timing consistent (Stankovic

and Zhao, 1988; Stankovic et al., 1999).

Most of the systems and applications in mobile
computing environments comprise of a large proportion

of read-only transactions. Read-only transactions do

not modify any data (Garcia-Molina and Wiederhold,

1982). Examples include information dispersal systems

for temporal or time-sensitive information such as stock

prices, traffic condition and weather information. In

electronic commerce applications, such as stock markets

and auctions, it is expected that the number of stock
buyers or bidders is relatively few compared to the

number of speculators who look up (read) the prices

frequently. The large population of read-only transac-

tions makes the processing of read-only transactions an

important performance issue in these applications (Kuo

et al., 1998). Although, read-only transactions can be

processed with conventional transaction processing al-

gorithms, in many cases it is more efficient to process
read-only transactions with special algorithms which

take advantage of the knowledge that the transactions

only read (Garcia-Molina and Wiederhold, 1982; Lam

et al., 1998). Therefore, another design objective of our

proposed protocol is to exploit the semantics of read-

only transactions at mobile clients such that they can be

processed separately from the update transactions at the

server.
The rest of this paper is organized as follows. Section

2 discusses some related work. Section 3 discusses im-
portant issues of transaction processing in broadcast

environments that induce the development of our pro-

posed protocol. Our proposed protocol will be described

in Section 4. Section 5 shows the performance of our

proposed protocol compared with the conventional

optimistic concurrency control (OCC) protocol using
simulation. We conclude the study and discuss any en-

hancement and optimization that can be done in near

future in Section 6.
2. Related work

Data management in wireless environments receives a
lot of attention in these few years (Barbara, 1997;

Dunham et al., 1997; Huang et al., 1994; Imielinski and

Badrinath, 1994; Lam et al., 1999; Lee et al., 1998;

Pitoura and Bhargava, 1994; Pitoura and Samaras,

1998; Shanmugasundaram et al., 1997). However, there

are few studies on transaction processing in wireless

environments, and nearly all of them are focused on

processing of read-only transactions. In particular, a
data-cycle architecture (Herman et al., 1987) is intro-

duced for high throughput database systems. The entire

contents of the database are repetitively broadcast to the

hosts in a high bandwidth network. Shanmugasunda-

ram et al. (1999) showed that it is very expensive to use

serializability as correctness criterion in the data-cycle

architecture. In his pioneer work (Shanmugasundaram

et al., 1999), a correctness criterion is proposed to allow
read-only transactions to read current and consistent

data in wireless environments without contacting the

server. However, serializability is not maintained in their

protocol. Two different read-only transactions may

perceive the effects of update transactions in different

serialization orders. It may be hazardous to certain ap-

plications such as mobile stock trading where a buy/sell

trade will be triggered to exploit the temporary pricing
relationships among stocks. From the trader’s perspec-

tive, the inability of database management system to

maintain the serializability may have important financial

consequences (Bowen et al., 1992). For instance, if the

users who submit multiple read-only transactions com-

municate and compare their query results, they may be

confused (Garcia-Molina and Wiederhold, 1982). Dis-

tinct from the past work, the protocol proposed in this
paper considers both read-only and update transactions

at the mobile clients, and the proposed protocol main-

tains the serializability at low cost in terms of a smaller

control information size.

In another comprehensive work (Pitoura, 1998;

Pitoura and Chrysanthis, 1999), a number of broadcast

methods are introduced to guarantee the correctness of

read-only transactions. The multiversion broadcast ap-
proach broadcasts a number of versions for each data

item along with the version numbers. This method

V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193 185
increases the size of the broadcast cycle and accordingly

the response time. Moreover, the serialization order is

fixed at the beginning of the read-only transaction. It is

usually too restrictive and lacks flexibility. In the inval-

idation-only broadcast, a read-only transaction is abor-

ted if any data item that has been read by the read-only
transaction is updated at the server, and it results in low

concurrency. For the conflict-serializability method,

both the mobile clients and the server have to maintain a

copy of the serialization graph for conflict checking. It

incurs high overheads to maintain the serialization

graph. The integration of updates into the local copy of

the serialization graph and the cycle detection may be

too computation intensive for portable mobile com-
puters.

Barbara (1997) used a modified version of OCC to

support both read-only and update transactions at the

mobile client side. However, in their protocol, they

adopted a certifier that aborts mobile transactions

whenever there are data conflicts with server transac-

tions. This mechanism will cause intolerable delay to

mobile transactions that are aborted when they are
submitted to the server for completing the verification.

In addition, read-only transactions are not discrimi-

nately handled in their protocol. On the other hand, in

our proposed OCC variant, we adopt forward valida-

tion at the server such that mobile transactions that are

submitted to the server for final validation are more

likely to commit. Therefore, fewer mobile transactions

will be restarted at the server and more processing and
communication resources will be saved. Furthermore,

read-only transactions are handled separately in our

protocol such that they are allowed to commit locally at

the mobile client side without contacting the server. As a

result, the system performance is further enhanced.
3. Issues of transaction processing in broadcast environ-
ments

In this section, some important issues of transaction

processing in real-time broadcast environments are dis-

cussed. These issues are then addressed in the design of

our proposed protocol.

3.1. Asymmetric communication and limited capability of

mobile computers

The first most critical constraint in wireless environ-

ments is the limited upstream bandwidth from the mo-

bile clients to the server. So, a desirable concurrency

control protocol should minimize the use of upstream

communication channel. Other constraints are the lim-

ited capability and battery life of the mobile clients. It is
of particular importance to reduce the amount of un-

productive processing in mobile computers.
Conventional concurrency control protocols are

based on locking and optimistic approaches. However,

locking-based protocols are not feasible in wireless en-

vironments (Shanmugasundaram et al., 1999) because

lock requests for each data object from the mobile cli-

ents to the server require excessive bi-directional com-
munication that is too expensive in light of the limited

upstream bandwidth. The transaction response time will

be intolerably long due to the low bandwidth in wireless

environments. Furthermore, the population size in

broadcast environments is usually very large. A huge

number of lock requests will overload the server.

On the other hand, OCC protocols are preferable. In

OCC mechanism, transactions are allowed to execute
unhindered until they reach their commit point, at which

time they are validated (Kung and Robinson, 1981).

This approach suits the asymmetric communication

bandwidth property in broadcast environments. The

server can use the large downstream bandwidth to

broadcast data objects to transactions at the mobile

clients where they can be processed locally without

sending every request to the server. After a transaction
finishes reading and pre-writing all the requested data

objects at the mobile client, the transaction together

with the required information is sent back to the server

for validation. This basic and straightforward extension

of optimistic approach helps to relieve the limited up-

stream communication bandwidth. However, this ap-

proach suffers from a number of overheads. Firstly, a

large number of validation requests may overload the
server and the server has to keep a long historical record

of committed transactions for validation. Secondly,

some mobile transactions, which are destined to restart

due to data conflicts with committed transactions at the

server, are allowed to execute to the end and are sent to

the server for validation. Processing of these destined-

to-restart transactions is useless and wastes the limited

upstream communication bandwidth. Eventually, these
overheads may lead to insufficient time for mobile

transactions to complete their execution before dead-

lines. To solve these problems, our proposed OCC

variant can detect data conflicts and restart the trans-

actions at early stage of execution at the mobile client

side. As a result, unfruitful processing and communi-

cation can be eliminated. Moreover, transactions may

have greater chance to complete before their deadlines
after restart.

3.2. Serializability

Due to the asymmetric communication bandwidth

between the mobile clients and the server, existing con-

currency control protocols for transaction processing

are not suitable for broadcast environments. Hence,
recent work (Shanmugasundaram et al., 1997; Shan-

mugasundaram et al., 1999) relaxed the strictness of

186 V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193
serializability and proposed some concurrency control

protocols based on the relaxed consistency requirements

for broadcast environments. While these protocols are

useful in some real-time applications, serializability is

needed to guarantee correctness of some applications in

real-time broadcast environments.
Serializability is the standard notion of correctness in

transaction processing (Bernstein et al., 1987) to pre-

serve database consistency. Serializability requires that

concurrent transactions be scheduled in a serializable

way, i.e., the result produced by the interleaved execu-

tion of a set of transactions should be equal to the result

produced by executing the transactions in some serial

order. When transactions are processed in a serializable
manner, the database is guaranteed to remain in a

consistent state. Therefore, the objectives of concur-

rency control in transaction processing are to maintain

the serializability on the one hand and to maximize

concurrency on the other so that transactions are more

likely to complete within their deadlines (Peng and Lin,

1996; Yu et al., 1994). To illustrate the importance of the

serializability in transaction processing in wireless envi-
ronments, let us take mobile stock trading as an exam-

ple. Consider a stock-trading read-only transaction Q1

at a mobile client that reads the number of units (X) and

the unit price (Y) of a stock. Let U2 and U3 be update

transactions at the server that update the values of X
and Y , respectively.

Consider the following execution schedule:

r1ðX Þr2ðY Þr2ðX Þw2ðX Þc2 r3ðY Þw3ðY Þc3r1ðY Þ � � �

If Q1 was allowed to commit, then both the server and

the mobile client would see serializable executions. The

serialization order for the server is U2 ! U3 whereas the

serialization order for Q1 at the mobile client is U3 ! Q1

(! U2). Assume that the execution schedule is allowed,
and the number of units X of the stock is reduced from

1100 to 1000 and is updated by U2 whereas the unit price

Y of the stock drops to $0.9 and is updated by U3. Since

Q1 perceives a different serialization order from that by

the server, it would appear to Q1 that there were 1100

units of the stock with unit price of $0.9. This is con-

fusing. In fact, the global execution schedule

(Q1 ! U2 ! U3 ! Q1) is not serializable. In order to
avoid a transaction to see a logically inconsistent state

(Bober and Carey, 1992), the above execution schedule

should not be allowed.

3.3. Control information

To guarantee the serializability, additional control

information has to be broadcast by the server to the
mobile clients. The size and the complexity of control

information affect the performance of the system. First

of all, sending control information consumes band-

width. If the size of control information is comparable
to the size of database to be broadcast, it will be ineffi-

cient in terms of bandwidth utilization. Secondly, the

size of control information attributes to the length of

broadcast cycle, which in turn has a great impact on the

satisfaction of timing constraints of transactions at the

mobile clients. There are two main components that
affect transactions meeting their deadlines at the mobile

clients. The first one is the waiting time for data objects.

The waiting time increases with the length of broadcast

cycle. The second one is attributed to transaction re-

starts. Transaction restarts are mainly caused by data

conflicts during a broadcast cycle. When the length of

broadcast cycle increases, the number of transactions

committed at the server per broadcast cycle increases.
This in turn increases the likelihood of data conflict,

which leads to a higher transaction restart rate.
4. Optimistic concurrency control in broadcast environ-

ments

In this section, we first describe the development of
thought of our proposed protocol. Then, we briefly

discuss the underlying principles, particularly regarding

its validation. Then we describe the mechanism of the

proposed protocol in a single broadcast disk environ-

ment.

4.1. Development of thought

In this study, we assume that the underlying con-

currency control at the server is the conventional OCC.

In order to develop a protocol that makes the least

change to the server, one of the design objectives of the

protocol is that the new protocol should be fully com-

patible to the OCC protocol running at the server. The

key component in OCC protocols is the validation

phase, where a transaction’s destiny is decided. Valida-
tion can be carried out basically in two ways: backward

validation and forward validation (Haerder, 1984). While

in backward scheme, the validation process is done

against committed transactions, in forward validation,

validating of a transaction is carried out against cur-

rently running transactions. Forward validation pro-

vides flexibility for conflict resolution such that either

the validating transaction or the conflicting active
transactions may be chosen to restart, so it is more

popular in database systems. In addition, forward

scheme generally detects and resolves data conflicts

earlier than backward validation, and hence it wastes

less resources and time.

In wireless environments, there are different consid-

erations. At the server, there are transactions submitted

for validation by different sources including the mobile
clients. It is not desirable to restart a validating mobile

transaction because of high restart cost. Therefore,

V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193 187
forward validation is a better choice for the server be-

cause of the flexibility to choose those active transac-

tions that are in conflict with the validating transaction

to restart. In addition, only the write set of a transaction

is required for forward validation, it allows the read-

only transactions to be validated locally and autono-
mously at the mobile clients. As a result, the server takes

the active role for the decision to commit transactions.

In other words, the server determines the serialization

order. On the other side, the mobile clients play a pas-

sive role. Given the serialization order determined by the

server, the mobile clients have to determine whether

their mobile transactions can be committed by detecting

any data conflicts with the committed transactions. As a
result, the mobile clients have to carry out the backward

validation process. Although it is possible to carry out

the backward validation at the end of a transaction

execution, it causes delayed transaction restarts and

wasted resources at the mobile clients. So, partial

backward validation is introduced at the beginning of

every broadcast cycle. Any transaction that is found to

read inconsistent data is restarted immediately.

4.2. Principles

In our proposed protocol, transactions are allowed to
execute unhindered until they reach the validation point

or partial validation point for mobile transactions. The

validation is based on the following principle to ensure

the serializability.

If a transaction Ti is serialized before transaction Tj,
the following two conditions must be satisfied:

Condition 1: No overwriting

The writes of Ti should not overwrite the writes of Tj.
Condition 2: No read dependency

The writes of Ti should not affect the read phase of Tj.

Generally, Condition 1 is ensured by performing the

write phase serially in critical sections at the server.

Thus, only Condition 2 will be considered. In the fol-
lowing sections, we will describe two validation schemes

at the mobile clients and the server. The objective of

these validation schemes is to satisfy the requirement of

Condition 2.

4.3. Backward validation at the mobile clients

At the mobile clients, all transactions including read-
only transactions and update transactions have to per-

form a partial validation at the beginning of every

broadcast cycle. The partial validation is carried out by

consulting the control information broadcast by the

server at the beginning of every broadcast cycle. The

content of the control information will be described

later. If the transaction fails the partial validation, it will
be aborted and restarted. Otherwise, the transaction can

proceed. The partial validation process is carried out

against committed transactions (at the server) in the last

broadcast cycle. Data conflicts are detected by com-

paring the read set of the validating mobile transaction

and the write set of committed transactions, since it is
obvious that committed transactions precede the vali-

dating transaction in the serialization order. Such data

conflicts are resolved to ensure Condition 2 by restarting

the validating mobile transaction.

Let Tpv be the partial validating mobile transaction,

and CDðCiÞ be the set of data objects that have been

committed (updated) in the last broadcast cycle Ci at the

server. Let CRSðTpvÞ denote the current read set of
transaction Tpv, which is the set of data objects that have

been read by Tpv from previous broadcast cycles. The

backward validation is described by the following pro-

cedure:

partial validateðT pvÞ
{

if CDðCiÞ \ CRSðT pvÞ 6¼{ } then

abortðT pvÞ;
else

{

record the value of Ci;

T pv is allowed to continue;

}

endif;

}

Note that CDðCiÞ is stored in the control information

table. The value of Ci is recorded for the final validation

to be described in the next section.

4.4. Forward validation at the server

At the server, validation of a transaction is done

against currently running transactions. Note that a

validating transaction at the server may be a server

transaction or a mobile transaction submitted by the
mobile clients. This process is based on the assumption

that the validating transaction is ahead of every con-

currently running transaction still in read phase in the

serialization order. Thus, the write set of the validating

transaction is used for data conflict detection to ensure

Condition 2. The detection of data conflicts is carried

out by comparing the write set of the validating trans-

action and the read set of active transactions. That is, if
an active transaction, Ti, has read an object that has

been concurrently written by the validating transaction,

the value of the object used by Ti is not consistent. Such
data conflicts are resolved by restarting the conflicting

transactions in the read phase. For mobile transactions,

data conflicts are detected in the partial validation

described above.

188 V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193
For an update transaction submitted by a mobile

client, it has to perform a final validation before the

forward validation. The final validation is necessary be-

cause there may be transactions committed since the last

partial validation performed at the mobile client. So, the

broadcast cycle number of the last partial validation
performed at the mobile client has to be sent to the server

along with the update transaction for final validation.

Let Tv be the validating transaction, and Ta
(a ¼ 1; 2; . . . ; n, a 6¼ v) be the conflicting transactions

existing at the server in their read phase. Let Ck be the

broadcast cycle number received along with Tv. That is,
Tv has performed it last partial backward validation at

the mobile client in the broadcast cycle Ck. Note that a
mobile transaction may read or write data objects after

partial validation and before being sent to the server for

final validation. Therefore, there may exist some trans-

actions at the server that are committed and in conflict

with Tv since its last partial validation. Let Tc
(c ¼ 1; 2; . . . ;m) be the transactions committed at the

server since Ck. If the history of Tc is not available at the
server due to space limitation, Tv has to be aborted. Let
RSðT Þ and WSðT Þ denote the read set and the write set

of a transaction T , respectively. Recall that CDðCiÞ is

the set of data objects that are updated in the current

broadcast cycle and is initialized at the beginning of

every broadcast cycle. Then the forward validation at

the server is described by the following procedure:

validateðT vÞ
{

if T v is a mobile transaction then

{

final validateðT vÞ;
if return fail then

{

abortðT vÞ;
exit;

}

}

foreach T a ða ¼ 1; 2; . . . ; nÞ
{

if RSðT aÞ \ WSðT vÞ 6¼{ } then

abortðT aÞ;
}

commit WSðT vÞ to database;

CDðCiÞ ¼ CDðCiÞ [WSðT vÞ;
}

final validateðT vÞ
{

foreach T c ðc ¼ 1; 2; . . . ; mÞ
{

if WSðT cÞ \ RSðT vÞ 6¼{ } then

return fail;

}

return success;

}

If Tv is successfully validated, the write set of Tv is

recorded in the control information table, which will be

broadcast in the next broadcast cycle. The mobile clients

require the control information to perform the local

partial validation. In addition, the final validation re-

sults (commit or abort) of the mobile transactions are
included in the control information table for acknowl-

edgement to the mobile clients for further action.

4.5. The roles of server and mobile clients

During each broadcast cycle, the server broadcasts

the values of all data objects as well as the control in-

formation for the mobile clients to perform the partial
validation. To ensure the serializability of all transac-

tions submitted to the server including server transac-

tions and update transactions submitted by the mobile

clients, the server uses the OCC with forward validation

protocol described above.

At the mobile clients, before any read or write oper-

ations are performed on data objects broadcast during a

cycle, the control information transmitted at the begin-
ning of the cycle is consulted to perform the partial

validation. If the transaction fails the partial validation,

the transaction is aborted. Otherwise, the read or write

operation can proceed. A write operation on a data

object is performed on a private workspace at the mo-

bile client.

At the mobile clients, a read-only transaction can

commit locally if it passes all the partial backward val-
idation in the course of its execution. The transaction is

serialized after all transactions committed before the

beginning of the current broadcast cycle and is serialized

before all transactions committed after the beginning of

the current broadcast cycle. Note that a read-only

transaction may be serialized before a transaction that is

committed earlier at the server if the commit time of the

transaction is later than the start time of the current
broadcast cycle.

For an update transaction, the read set, write set, the

updated values and the broadcast cycle number of the

last partial validation performed at the mobile client

have to be sent to the server for final validation because

the position of the update transaction in the serialization

order is determined on the fly (at the validation point) at

the server. That is, the update transaction is serialized
after all transactions committed before its validation

point and is serialized before all active transactions. In

the final validation, forward validation is required be-

cause those active transactions that have data conflicts

with the validating transaction have to be identified and

aborted. After the final validation, the result is sent back

to the corresponding mobile client. To abort a transac-

V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193 189
tion at the mobile clients, all copies of the data objects

written in the private workspace, if any, are discarded.

Theorem 1. All committed transactions in the system are
serializable.

Proof. The correctness of this theorem follows directly

from the arguments in the previous paragraph. �

Let us take the following set of transactions as an

example with the schedule depicted in Fig. 1.
At the mobile client : Q2 : rðaÞrðbÞrðcÞ Q3 : rðpÞrðqÞ U4 : rðxÞrðyÞwðyÞ
At the server : U1 : rðaÞwðaÞ U5 : rðqÞwðqÞ U6 : rðyÞwðyÞ
In Fig. 1, we can find that Q2 cannot pass the partial

backward validation in broadcast cycle Ci. It is because

after it has read data a and b from the broadcast cycle

Ci�1, the value of a is written by U1 before it can read

data c in the broadcast cycle Ci and commits. On the

other hand, Q3 passes the partial backward validation

and commits locally. Note that although Q3 commits

after U5;Q3 is before U5 in the serialization order be-
cause Q3 is not affected by U5. For U4 at the mobile

client, it passes the partial backward validation in

broadcast cycle Ci. After it reads the last data y and pre-

writes the value of y in its private workspace, the re-

quired information for the final validation of U4 is sent

to the server. However, it fails the final validation be-

cause the data y is written by U6 before U4 reaches its

validation point. If U6 reaches its validation phase after
U4’s validation point, U6 will be aborted by U4 in the

forward validation process and U4 can commit.
Fig. 1. Transaction exe
4.6. Contributions

In our proposed protocol, read-only transactions can

be validated and committed locally at the mobile clients

without contacting the server. In view of a large pro-

portion of transactions being read-only transactions in
most data dissemination applications, autonomy of the

mobile clients to process read-only transactions saves

much processing burden of the server and upstream

communication cost. For update transactions, part of

the validation process is performed in advance at the
mobile clients and it alleviates part of the burden from

the server.

In our proposed protocol, the partial backward val-

idation helps to detect data inconsistency such that

transactions can be aborted early at the mobile client

side instead of at the end of read phase. In addition, the

partial validation also helps to identify those update

transactions that are likely to commit before transmit-
ting them to the server for final validation such that the

battery power can be used effectively. These are very

desirable features in processing transactions to meet

their deadlines in real-time applications.

The size of control information required in our pro-

posed protocol is small. Let d be the size of a data object

identifier, t be the maximum number of transactions

committed in a broadcast cycle and N be the maximum
number of (write) operations per transaction at the

server. Note that the mobile clients are required to
cution schedule.

190 V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193
record the broadcast cycle number in which the partial

validation of a mobile transaction is performed. So, the

value of the broadcast cycle number has to be trans-

mitted. Let c be the size of a broadcast cycle number.

The total size of the control information is therefore

Ntd þ c.
5. Performance evaluation

The simulation experiments are aimed at studying the

performance of our proposed protocol in contrast with

the conventional OCC protocol in real-time broadcast

disk environments. We did not consider the effects of
caching in this performance study to rule out factors

other than concurrency control. In other words, a mo-

bile transaction may have to wait for the requested data

object in the next broadcast cycle if the requested data

object is missed (have been broadcast) in the current

broadcast cycle.

The major performance metric of these protocols is

the miss rate, which is the percentage of transactions
missing their deadlines. Another performance metric is

the restart rate, which is the average number of aborts

and restarts before a transaction can be committed.

Note that a transaction that has been restarted may

meet its deadline. Therefore, this metric can demon-

strate the effectiveness of the protocols in reducing

transaction restarts. Transaction response time, which is

the elapsed time when a transaction commits since a
mobile client submits the transaction, is also collected.

This metric includes the time involved in transaction

restarts. Note that a transaction may be restarted more

than once. The statistics of read-only mobile transac-

tions (MROT) and update mobile transactions (MT)

under conventional OCC and our proposed protocol

(FBOCC) are collected separately.
Table 1

Baseline setting

Parameter V

Mobile clients

Transaction length (number of operations) 4

Read operation probability (for update transactions) 0

Fraction of read-only transaction 7

Mean inter-operation delay 6

Mean inter-transaction delay 1

Slack factor 2

Server

Transaction length 8

Transaction arrival rate 1

Read operation probability 0

Number of data objects in database 3

Size of data objects 8

Concurrency control protocol O

Priority scheduling E
5.1. Parameter setting

The simulation model is based on the model de-

scribed in (Shanmugasundaram et al., 1999). It consists

of a server, a client, and a broadcast disk for transmit-

ting both the data objects and the required control in-
formation. At the server, conventional OCC protocol

with forward validation is employed. The mobile clients

process both read-only and update transactions. A

deadline is assigned to every mobile transaction when

they are submitted. The deadline of a mobile transaction

is assigned as (submission time+ slack factor� predicted
execution time), where predicted execution time is a

function of transaction length, mean inter-operation delay
and broadcast cycle length. A mobile transaction is

processed until it is committed, even the deadline is

missed. The data objects that are accessed by a trans-

action are uniformly distributed in the database. Table 1

lists the baseline setting for the simulation experiments.

These values are selected in order to create a scenario

with high resource utilization and data contention. The

number of read/write operations of a transaction is
specified by the transaction length. The time unit is in

bit-time, the time to transmit a single bit. For a broad-

cast bandwidth of 64 Kbps, 1 M bit-times is equivalent

to approximately 15 s.

The server fills the broadcast disk with the data at the

beginning of a cycle. Each cycle consists of a broadcast

of all the data objects in the database along with the

associated control information. The response times are
measured in bit-time, and 95% confidence intervals were

obtained with widths less than 5% of the point estimates

of the response times.

5.2. Simulation results

Fig. 2 shows the miss rate of mobile transactions

under different concurrency control mechanisms with
alue

.5

0%

5,536 bit-times (exponentially distributed)

31,072 bit-times (exponentially distributed)

.0–8.0 (uniformly distributed)

per 2,000,000 to 1 per 200,000 bit-times

.5

00

000 bits

CC with forward validation

arliest deadline first

0%

5%

10%

15%

20%

25%

30%

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Server Transaction Arrival Rate (10^-6 tx per bit time)

M
is

s
R

at
e

MT - OCC
MROT - OCC
MT - FBOCC
MROT - FBOCC

Fig. 2. Miss rate versus server transaction arrival rate.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Server Transaction Arrival Rate (10^-6 tx per bit time)

R
es

ta
rt

 R
at

e

MT - OCC
MROT - OCC
MT - FBOCC
MROT - FBOCC

Fig. 3. Restart rate versus server transaction arrival rate.

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

2.0E+07

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Server Transaction Arrival Rate (10^-6 tx per bit time)

R
es

po
ns

e
Ti

m
e

MT - OCC
MROT - OCC
MT - FBOCC
MROT - FBOCC

Fig. 4. Response time versus server transaction arrival rate.

V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193 191
different loadings at the server. For OCC, there is no

discrimination between MROT and MT. Both are re-

quired to submit to the server for validation. Therefore,

the performance of these two transaction types is almost

the same. The miss rate increases with the server trans-

action arrival rate. Although the loading at the server is
not high such that the impact of resource contention is

not great, the increasing number of server transactions

increases the chance of data conflicts between the mobile

transactions and the server transactions. Consequently,

mobile transactions submitted to the server for valida-

tion will be restarted if any data objects that have been

read are over-written by a committed transaction. Since

the delay overhead in broadcast environments is much
higher than that in wired systems, it is more likely for a

restarted transaction to miss its deadline.

On the other hand, the performance of mobile

transactions under our proposed protocol (FBOCC) is

significantly improved. The miss rate increases at a

much slower rate with the server loading than OCC. In

particular, the performance of MROT is even better

than that of MT. The saving of validation of MROT at
the server helps them to meet more deadlines. For MT,

the partial validation at the mobile clients also helps to

improve the performance.

As a restarted transaction may meet its deadline, the

restart rate as shown in Fig. 3 and the response time as

shown in Fig. 4 can help to give better understanding of

the effectiveness of the protocols. Note that a transac-

tion may be restarted more than once. For instance,
mobile transactions are restarted more than once on

average under OCC when the server transaction arrival

rate is higher than 2.5. In fact, the transaction restart

counts are almost the same for both protocols. How-

ever, the reduction in response time helps to increase the

throughput under our proposed protocol such that the

restart rate is effectively reduced.
6. Conclusions and future works

In this paper, we have proposed an efficient concur-

rency control protocol in real-time broadcast environ-
ments that is adapted from the conventional OCC

protocols. The proposed protocol is developed under the

requirements and constraints of real-time broadcast

environments. The limited upstream bandwidth from

the mobile clients to the server, the low bandwidth of

wireless communication, the low capability, and the

short battery life of mobile computers are considered in

the design of the protocol. In this protocol, both read-
only transactions and update transactions at the mobile

clients are considered. At the mobile clients, read-only

transactions can be processed and committed locally

without contacting the server. For update mobile

transactions, they are partially validated by consulting

192 V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193
the control information broadcast in every broadcast

cycle. Only update transactions with the best chance to

commit will be sent to the server for final validation. A

series of simulation experiments have been conducted to

study the performance of our proposed protocol com-

pared to the conventional OCC protocol. The results
showed that our protocol outperformed OCC for a wide

range of parameter setting.

In conventional OCC protocols, forward validation is

based on the assumption that the serialization order

among transactions is determined by the arrival order of

transactions at the validation phase. Thus, the validat-

ing transaction, if not restarted, always precedes con-

currently running active transactions in the serialization
order. This assumption is not necessary and can incur

unnecessary transaction restarts. These restarts should

be avoided (Lee and Son, 1993). In our future work, we

will incorporate the mechanism of dynamic adjustment

of serialization order in our new protocol in order to

reduce transaction restarts. By using timestamp ordering

mechanism, temporary serialization order among con-

currently running transactions may be dynamically ad-
justed and recorded as far as data consistency is not

violated.

Transactions submitted by the mobile clients may

have priorities and data conflicts should be resolved in

favor of higher priority transactions (Kuo et al., 1998;

Lee et al., 1999) to enhance the real-time performance.

Since forward validation provides flexibility for conflict

resolution that either the validating transaction or the
conflicting active transactions may be chosen to restart,

so it is possible to introduce priorities in broadcast en-

vironments, as it may be more expensive to restart a

mobile transaction than a server transaction. However,

careful selection of transactions to abort is important to

the overall real-time system performance because the

cost to restart different transactions can be very different

such as update transaction versus read-only transaction
and mobile transaction versus server transaction.

In view of the nature of most data dissemination ap-

plications in real-time broadcast environments and the

characteristics of wireless communications such as

monetarily expensive bandwidth and slow transmission

speed, transaction processing in broadcast environments

is an excellent area for the application of data similarity

(Chen and Mok, 1999b; Kuo and Mok, 1993). The
similarity information gives both the mobile clients and

the server the flexibility of adjusting the timing and fre-

quency of data broadcast (Chen and Mok, 1999a). Ca-

ched values that satisfy certain similarity predicates can

be used instead of accessing remote data source at the

server. Similarity predicates can be some timing-re-

lated constraints that are used to check the validity of

data values. Accordingly, the use of wireless communi-
cation and the number of transaction restarts can be

reduced.
References

Acharya, S., Alonso, R., Franklin, M., Zdonik, S., 1995. Broadcast

disks: data management for asymmetric communication environ-

ments. In: Proceedings of the ACM SIGMOD Conference, pp.

199–210.

Alonso, R., Korth, H., 1993. Database systems issues in nomadic

computing. In: Proceedings of the ACM SIGMOD Conference,

Washington, DC, pp. 388–392.

Barbara, D., 1997. Certification reports: supporting transactions in

wireless systems. In: Proceedings of 17th International Conference

on Distributed Computing Systems, USA, pp. 466–473.

Bernstein, P.A., Hadzilacos, V., Goodman, N., 1987. Concurrency

Control and Recovery in Database Systems. Addison-Wesley,

Reading, Massachusetts.

Bober, P.M., Carey, M.J., 1992. Multiversion query locking. In:

Proceedings of the Eighteenth International Conference on Very

Large Data Bases, Canada.

Bowen, T.F., Gopal, G., Herman, G., Hickey, T., Lee, K.C.,

Mansfield, W.H., Raitz, J., Weinrib, A., 1992. The datacycle

architecture. Communications of the ACM 35 (12), 71–81.

Chen, D., Mok, A.K., 1999a. Building a similarity-based real-time

database engine. In: Work in Progress of the 5th IEEE Real-Time

Technology and Applications Symposium, pp. 35–38.

Chen, D., Mok, A.K., 1999b. SRDE––application of data similarity to

process control. In: Proceeding of the IEEE 20th Real-Time

Systems Symposium.

Dunham, M.H., Helal, A., Balakrishnan, S., 1997. A mobile transac-

tion model that captures both the data and movement behavior.

Mobile Networks and Applications 2, 149–162.

Garcia-Molina, H., Wiederhold, G., 1982. Read-only transactions in a

distributed database. ACM Transactions on Database Systems 7

(2), 209–234.

Haerder, T., 1984. Observations on optimistic concurrency control

schemes. Information Systems 9 (2).

Herman, G., Gopel, G., Lee, K.C., Weinrib, A., 1987. The datacycle

architecture for very high throughput database systems. In:

Proceedings of the ACM SIGMOD Conference, pp. 97–103.

Huang, Y., Sistla, P., Wolfson, O., 1994. Data replication for mobile

computers. In: Proceedings of the 1994 ACM SIGMOD Inter-

national Conference on Management of Data, pp. 13–24.

Imielinski, T., Badrinath, B.R., 1994. Mobile wireless computing:

challenges in data management. Communications of the ACM 37

(10), 18–28.

Kung, H.T., Robinson, J.T., 1981. On optimistic methods for

concurrency control. ACM Transactions on Database Systems 6

(2), 213–226.

Kuo, T.W., Kao, Y.T., Shu, L., 1998. A two-version approach for real-

time concurrency control and recovery. In: Proceeding of the Third

IEEE International High Assurance Systems Engineering Sympo-

sium, Washington, DC, November.

Kuo, T.W., Mok, A.K., 1993. SSP: a semantics-based protocol for

real-time data access. In: Proceedings of IEEE Real-Time Systems

Symposium.

Lam, K.W., Son, S.H., Lee, V.C.S., Hung, S.L., 1998. Using separate

algorithms to process read-only transactions in real-time systems.

In: Proceedings of IEEE Real-Time Systems Symposium.

Lam, K.Y., Au, M.W., Chan, E., 1999. Broadcast of consistent data to

read-only transactions from mobile clients. In: Proceedings of

Second IEEE Workshop on Mobile Computing Systems and

Applications.

Lee, J., Son, S.H., 1993. Using dynamic adjustment of serialization

order for real-time database systems. In: Proceedings of 14th IEEE

Real-Time Systems Symposium, pp. 66–75.

Lee, V.C.S., Lam, K.Y., Kao, B., 1999. Priority scheduling of

transactions in distributed real-time databases. Real-time Systems

16 (1), 31–62.

V.C.S. Lee et al. / The Journal of Systems and Software 69 (2004) 183–193 193
Lee, V.C.S., Lam, K.Y., Tsang, W.H., 1998. Transaction processing in

wireless distributed real-time database systems. In: Proceedings of

the 10th Euromicro Workshop on Real Time Systems, Berlin, June,

pp. 214–220.

Peng, C.S., Lin, K.J., 1996. A semantic-based concurrency control

protocol for real-time transactions. In: Proceedings of the Second

IEEE Real-Time Technology and Applications Symposium, pp.

59–67.

Pitoura, E., 1998. Supporting read-only transactions in wireless

broadcasting. In: Proceedings of the DEXA98 International

Workshop on Mobility in Databases and Distributed Systems,

pp. 428–433.

Pitoura, E., Bhargava, B., 1994. Building information systems for

mobile environments. In: Proceedings of the Third International

Conference on Information and Knowledge Management, pp. 371–

378.

Pitoura, E., Chrysanthis, P.K., 1999. Scalable processing of read-

only transactions in broadcast push. In: Proceedings of the

19th IEEE International Conference on Distributed Computing

System.

Pitoura, E., Samaras, G., 1998. Data Management for Mobile

Computing. Kluwer Academic Publishers.

Shanmugasundaram, J., Nithrakasyap, A., Padhye, J., Sivasankaran,

R., Xiong, M., Ramamritham, K., 1997. Transaction processing in

broadcast disk environments. In: Jajodia, S., Kerschberg, L. (Eds.),

Advanced Transaction Models and Architectures. Kluwer, Boston,

pp. 321–338.

Shanmugasundaram, J., Nithrakashyap, A., Sivasankaran, R., Rama-

mritham, K., 1999. Efficient concurrency control for broadcast

environments. In: ACM SIGMOD International Conference on

Management of Data.

Stankovic, J.A., Son, S.H., Hansson, J., 1999. Misconceptions about

real-time databases. Computer 32 (6), 29–37.

Stankovic, J.A., Zhao, W., 1988. On real-time transactions. SIGMOD

Record 17 (1), 4–18.
Yu, P.S., Wu, K.L., Lin, K.J., Son, S.H., 1994. On real-time databases:

concurrency control and scheduling. Proceedings of the IEEE 82

(1), 140–157.

Zdonik, S., Alonso, R., Franklin, M., Acharya, S., 1994. Are disks in

the air just pie in the sky. In: Proceedings of the Workshop of

Mobile Computing Systems and Applications, California.

Victor C.S. Lee received the Ph.D. degree in Computer Science from
the City University of Hong Kong in 1997. He is now an Assistant
Professor in the Department of Computer Science of the City Uni-
versity of Hong Kong. He has been a Visiting Research Associate in
the Department of Computer Science of University of Virginia. His
research interests include transaction processing, mobile computing,
and real-time databases. He is a member of the IEEE and the IEEE
Computer Society.

Kwok-Wa Lam received the Ph.D. degree in Computer Science from
the City University of Hong Kong in 1997. He received the B.Sc.
degree with first class honors in 1993 from the same university. He is
now a Research Fellow in the Department of Computer Science of the
City University of Hong Kong. His research interests include real-time
databases, mobile computing, and data mining.

Tei-Wei Kuo received B.S.E. degree in computer science and infor-
mation engineering from National Taiwan University in Taipei, Tai-
wan, in 1986. He received the M.S. and Ph.D. degrees in computer
sciences from the University of Texas at Austin in 1990 and 1994,
respectively. He is currently a Professor and the Vice Chairman in the
Department of Computer Science and Information Engineering of the
National Taiwan University, Taiwan, ROC. He was an Associate
Professor in the Department of Computer Science and Information
Engineering of the National Chung Cheng University, Taiwan, ROC,
from August 1994 to July 2000. The research interests of Professor
Kuo include real-time databases, real-time process scheduling, real-
time operating systems, and embedded systems. He is the Program
Co-Chair of IEEE 7th Real-Time Technology and Applications
Symposium, 2001, and an associate editor of the Journal of Real-Time
Systems since 1998. He has consulted for government and industry on
problems in various real-time systems design. Dr. Kuo is a senior
member of the IEEE computer society.

	Efficient validation of mobile transactions in wireless environments
	Introduction
	Related work
	Issues of transaction processing in broadcast environments
	Asymmetric communication and limited capability of mobile computers
	Serializability
	Control information

	Optimistic concurrency control in broadcast environments
	Development of thought
	Principles
	Backward validation at the mobile clients
	Forward validation at the server
	The roles of server and mobile clients
	Contributions

	Performance evaluation
	Parameter setting
	Simulation results

	Conclusions and future works
	References

