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INTRODUCTION

In recent years, the World Wide Web, or simply the Web
(Berners-Lee, Caililiau, Luotonen, Nielsen, & Secret, 1994),
hasbecomethe primary meansfor information dissemina-
tion. It is a hypertext-based application and uses the
hypertext transfer protocol (HTTP) for filetransfers.

During its first years, the Web consisted of static
hypertext markup language (HTML) pages stored on the
file systemsof the connected machines. When new needs
arose, e.g., database access, it wasrealized that we could
not affordintermsof storagetoreplicatethedatawewant
to publish in the Web server’ sdisk in the form of HTML
pages. So, instead of static pages, an application program
should run on the Web server to receive requests from
clients, retrieve the relevant data from the source, and
then pack theinformationintoHTML or extensiblemarkup
language (XML) format. Even the emerged
“semistructured” XML databasesthat store datadirectly
intothe XML format need an application program that will
connect to the database management system (DBM S) and
retrievethe XML fileor fragment. Thus, anew architecture
was born: in the traditional couple of aWeb client and a
Web server, athird partisadded, whichistheapplication
programthat runsonthe Web server and servesdatafrom
an underlying repository that, in most cases, is a data-
base. This architecture is referred to as Web-powered
databaseandisdepictedinFigure 1. Inthisscheme, there
are three tiers: the database back-end, the Web/applica-
tion server, and the Web client.

BACKGROUND

Dueto the existence of temporal locality in Web request
streams, we can exploit the technique of caching, that is,
temporal storage of datacloser to the consumer. Caching
can save resources, i.e., network bandwidth, because
fewer packetstravel inthenetwork, andtime, becausewe
have faster response times. Caching can beimplemented
at various points along the path of the flow of datafrom

the repository to the final consumer. So, we may have
cachingattheDBM S, at theWeb server’ smemory or disk,
at various pointsin the network (i.e., proxy caches), or at
the consumer’ s endpoint. Web proxies may cooperate so
asto haveseveral proxiesto serveeach other’ smisses. All
the caches present at various points comprise a memory
hierarchy. The most important part of a cache is the
mechanism that determineswhich datawill be accommo-
dated in the cache space and is referred to as the cache
admission/replacement policy.

Requests for “first-time accessed” data cannot ben-
efit from caching. In these cases, due to the existence of
spatial locality in request streams, we can exploit the
techniqueof preloading or prefetching, which actscomple-
mentary to caching. Prefetching may increasetheamount
of traveling data, but on the other hand, it can signifi-
cantly reduce the latency associated with every request.

The role of a cache is to store temporally a set of
objectsthat will most probably berequested by itsclients.
A cache replacement policy assigns a value to every
cached object, called utility value (UV), and evicts from
cachetheobject withtheleast utility value. Theaim of the
replacement policy is to improve the cache’s effective-
ness by optimizing two performance measures: the hit
ratio and the cost—savings ratio (CSR). The former
measure is defined as

HR= Zhi/ZI‘i

and the latter is defined as

CsR=Y.G*hi/ Y ci*r

where h. is the number of referencesto object i satis-
fied by the cache out of ther, total referencestoi, and c,
isthe cost of fetching object i in cache. The cost can be
defined either asthe object’ ssizes or asthedownloading
latency c. Intheformer case, the CSR coincideswith the
byte—hitratio (BHR); inthelatter case, the CSR coincides
with the delay—savingsratio (DSR).
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Figure 1. Architecture of a typical Web-powered database.
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Table 1. A list of factors differentiating Web caching from traditional caching

1. Variable Object Size

The Web object’s size varies considerably. It ranges from a few bytes (e.g., small HTML
or text files) to several megabytes (e.g., large multimedia files). In contrary, the objects
that move through the levels of the caching hierarchy in operating systems or database
systems have fixed size, which is equal to the size of a disk block.

2. Variable Fetching Cost

The cost (time penalty) for retrieving a Web object varies significantly. Different objects
may have different fetching costs, because they differ in size or in their distance from the
client (in terms of network hops). Moreover, the same file may have different fetching
costs at different time instances, depending on the server (e.g., heavy load) and network
conditions (e.g., congestion).

3. The Depth of the Web Caching Hierarchy

Because caching can happen nearly anywhere, including on the server, on the user’'s
machine, at Internet service protocols (ISPs), at telecommunication companies, at the
peering points of national networks, etc., the depth of this hierarchy is significantly larger
than the respective depth in computer systems. The large depth of this hierarchy
significantly affects the characteristics of the request stream.

4. The Origin of the Web Request Streams

The requests seen by the Web caches, especially by the proxies and the reverse proxies, are not generated
by afew programmed processes like the request streams encountered in traditional computer systems. They
mainly originate from large human populations with diverse and varying interests.

CACHING IN WEB-POWERED
DATABASES

Web cachereplacement (Katsaros& Manol opoul os, 2002)
is one of the most important areas of Web caching for
several reasons. First, studies have shown that the cache
HR and BHR grow in alog-like fashion as a function of
cachesize(Breslau, Cao, Fan, Phillips, & Shenker, 1999).

Thus, abetter algorithmthat increasesHR by only several
percentage points would be equivalent to a several-fold
increase in cache size. Second, the growth rate of Web
content is much higher than the rate with which memory
sizesfor Web cachesarelikely togrow. Finally, thebenefit
of even aslight improvement in cache performance may
have an appreciable effect on network traffic, especially
when such gains are compounded through a hierarchy of
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caches. There are several factors that distinguish Web
caching from cachingintraditional computer architectures
(seeTablel).

The majority of the replacement policies focus on the
firsttwo factors. Themaindrawback inthedesign of these
policiesisthat they do not achieve a balance between HR
and CSR. Some of them are called recency-based policies
andfavortheHR, e.g., the Greedy Dual-Size (Cao & Irani,
1997), the Size-Adjusted LRU (Aggrawal, Wolf, & Yu,
1999), whereas some others are called frequency-based
policiesandfavortheCSR (BHRor DSR), e.g., LRV (Rizzo
& Vicisano, 2000), LFU-DA (Diley & Arlitt,1999),and LNC-
R-W3 (Shim, Scheuermann, & Vingralek, 1999). Notable
exceptionsarethe LUV (Bahn, Koh, Noh, & Min, 2002),
GD* (Jin & Bestavros, 2001), and CRF (Katsaros &
Manolopoulos, 2004), which try to combine recency and
frequency. The drawback of LUV and GD* though, isthe
existence of some manually tunable parameters. CRFisa
self-tunable policy that gracefully combines recency and
frequency and addresses all the particularities of the Web
caching environment.

PREFETCHING IN WEB-POWERED
DATABASES

Prefetching isemployed in order to cure caching’s short-
comings. An effective and efficient prefetching scheme
should maximizethenumber of cache hitsduetoitsaction
and at the sametime minimizetheincurred cost dueto the
prefetched objects. This cost may represent cache space,
network bandwidth, server overloading, etc. Althoughthe
implementation mechanism of prefetchingisvery impor-

Table 2. Informed and predictive prefetching

tant, the coreissuein employing aprefetching schemeis
the deduction of future object requests.

Ingeneral, thereexist two alternativesfor the deduc-
tion of the future client requests. The first is termed
informed prefetching, and the second is termed predic-
tiveprefetching. InTable2, weexplainwhy theformeris
not appropriate for the Web environment.

A predictive prefetching algorithm is based on the
notion of Markov predictors. Let T =(tr,, ..., tr,) bea
sequence of consecutive requests (called atransaction)
andS=(d,, ...,d ), n <k beasequenceof accesses, which
is asubsequence of T . Given acollection of nTr trans-
actions, where the sequence S appears fr(S) times, then
the appearance probability P(S) of Sisequal to P(S) =
fr(S)/nTr.

If S={(d,, ..., d ) isasequence of accesses, then the
conditional probability that the next accesses will beto
d.,....d isP(d »d,.ld;,...,d),anditequalsthe
following:

1 Tt

P(dn+1 ..... dn+m| dl,...,dn)z

. P(dl,...., dn,dn +1yeuny dn + m)
' P(ds,..., dn)

Given acollection of transactions, rules of the form

d,..d=d

n n+1’ **

o dn+m (1)

canbederived, whereP(d ,,,...,d , |d,,...,d )isnotless
than auser-definedvalueT_.P(d ,,,...,d  |d,,...,d)is
theconfidenceof therule. Theleft part of theruleiscalled
the head and has size equal to n, whereas the right part

n+m

Informed Prefetching

Can be applied in cases where the client program knows exactly the resources the client is
going to request and reveals them into the cache (Patterson, Gibson, Ginting, Stodolsky, &
Zelenka, 1995). Informed prefetching is actually a scheduling policy subject to a set of
constraints regarding cache space, timeliness of prefetching, and available bandwidth. It
requires the communication bandwidth between the applications and the cache to be stable.
Thus, it can be implemented only in cases where the cache is embedded into the
application, e.g., databases and operating systems.

Predictive Prefetching

How will future references be deduced if not revealed by the client program? The only
possibility is to take advantage of the spatial locality present in Web request streams.
Spatial locality captures the coreference of some resources. The remaining issue is to
“quantify” spatial locality, that is, to discover the dependencies between references for
different data. Such dependencies can be discovered from past requests and can be used
for making predictions about future requests.




iscalled thebody and hassizeequal tom. Thedependency
of forthcoming accesses on past accesses defines a
Markov chain.

Definition of an - m Markov Predictor

Ann-m Markov predictor calculates conditional prob-
abilities P(d ,,, ..., d_, [d,, ..., d) between document
accesses and discovers rules of the form (1), which are
used to predict future accesses.

A predictive prefetching algorithm is defined as a
collectionof n-1,n- 2, ..., n- m Markov predictors.
Existing predictive Web prefetching mechanisms can be
categorized intothreefamilies.

The algorithms of the first family use the concept of
the dependency graph (DG) (Padmanabhan & Mogul,
1996; Jiang & Kleinrock, 1998). TheDG hasanodefor each
object that has ever been accessed and an arc from node
X to node Y, if and only if Y was accessed within w
accesses after X and the same client did both accesses.
DG maintainsthe number of accessesto each node X and
the number of transitions from X to Y. It calculates
conditional probabilitiesP(dildj) foralld, dj belongingto
atransaction. Therefore, DG discoversrules of the form
d= dj, or equivalently, it usesa1-1 Markov predictor.

The algorithms belonging to the second category are
based on the notion of a k-order PPM predictor (Fan,
Cao, Lin, & Jacobson, 1999). A k-order PPM predictor
maintainsj - 1Markov predictors, forall 1<j<k(kisauser-
specified constant). It employs Markov predictors that
have the constraint that the preceding j requests must be
consecutivein therequest stream. These Markov predic-
tors calculate conditional probabilities of the form
P .ld),....,Pd_.[d .. ....d)and determinethecorre-
sponding rules, which have head sizesequal to 1,2, ..., k.

A generalization of the above two families was pre-
sented in Nanopoulos, Katsaros, and Manolopoulos
(2003). That scheme uses n - m Markov predictors that
calculate conditional probabilitiesof theformP(d ., ...,
d..ld, ...,d), though thedocument accesses need not be
consecutive. Moreover, the maximum head sizen and the
maximum body size m are not set by the user but are
adaptively estimated by the data.

FUTURE TRENDS

Weall know that the I nternet, and consequently the Web,
facesperformance problems. Performance problemsarise
in any of the following three general areas:

1  Web server processing delays
2 Internet delays
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3 “Last-mile” delays (delays between the subscriber
and the Internet, e.g., dueto aslow dial-up modem
connection)

The idea in alleviating these problems is to make
content delivery from origin servers more “distributed,”
moving someof their contenttothe“ edge” of thelnternet.
Based upon this idea, the content delivery networks
(CDN) emergedrecently. CDN aredesignedtotakeadvan-
tage of the geographiclocationsof end users. Rather than
serving content from the origin Web site, the content
distribution model makes copies of “key” content on
multiplecontent delivery serverssitesdistributed through
the Internet, close to the users requesting that content.

A CDN, running on thousands of servers distributed
across the Internet, contracts with content providers to
deliver their content. A CDN addresses efficiently the
aforementioned performance problems:

1  With the “hottest” content “outsourced,” the load
on the origin server is reduced.

2. Theconnectionfromalocal content delivery server
is shorter than between the origin Web server and
the user, thus reducing latency.

3. Because many users share the CDN servers, this
service greatly increases the hit ratio.

Thedeployment of large-scale CDNsbringssomenew
challengesto caching. Onevery important issueisthat of
object placement, that is, the sel ection of theedge servers
where an object should be stored (Tang & Chanson,
2002). This problem could also be seen in combination
with that of object replacement (Korupolu & Dahlin,
2002). Another very important issueisrel ated to maintain-
ing the coherency of the cached objects, especially inthe
case that these objects are dynamically generated (Tang
& Chanson, 2004).

Prefetching isalso challenging inthe context of CDN
because of the huge number of clients served. To deal
withthisproblem, thecache satellitedistribution systems
(Armon & Levy, 2004), CSDSfor short, have emerged as
atechnology for feeding the cacheswith theinformation
clients are expected to request, ahead of time. In such a
system, the participating caches periodically report to a
central station about requestsreceived fromtheir clients.
Thecentral station selectsacollection of Web documents
that are “pushed” via a satellite broadcast to the partici-
pating caches, so that upon afuture local request for the
documents, they will already resideinthelocal cacheand
will not need to be fetched from the terrestrial network.
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CONCLUSION

Web-powered databases have emerged to support nu-
merous Web applications, like e-commerce systems, but
dueto thelarge number of visitorsthey attract, they face
serious performance problems. To reduce or even allevi-
ate such problems, the techniques of caching and
prefetching have been employed. The different physical
characteristics of the Web objects, the existence of
hyperlinks, and the nature of the Web caching hierarchy
call for different caching and prefetching solutions than
those investigated in traditional operating and database
systems. The present article recorded the most critical
factorsthat affect the design of caching and prefetching
policies for Web-powered databases and surveyed the
major familiesand their representativesfor thesepolicies.
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KEY TERMS

Caching proxy: A caching proxy or proxy server or
proxy is a server that acts as an intermediary between a
client and a content server. It intercepts the requests of
the client and checkswhether it can servethe client from
its own cache, and if not, it forwards the requests to the
content server.

Capacity miss: This miss occurs because the cache
cannot accommodate all requested objects.

CDN (content distribution networ k or content deliv-
ery network): Thisisanetwork of cache servers owned
by the same Internet Service Provider that delivers con-
tent to userson behal f of content providers. CDN servers
are typically shared, delivering content belonging to
multipleWeb sites, though all serversmay not beused for
all sites.

Compulsory miss: A compulsory or cold-start miss
occursin the first access to a Web object.

CPN (capacity provisioningnetwork): Thisisanet-
work of cache servers owned, operated, and coordinated
through capacity trading by different Internet Service
Providers. Unlike CDN, with the purpose of replicating
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content from specifically contracted content providers,
CPN’s goal is to cache whatever content users access
from around the world of content servers. Qualitatively,
aCDN servicesthe supply side of content distribution; a
CPN services the demand side.

Flash crowd problem: It occurswhentherequest load
overwhelms some aspect of a Web site’s infrastructure,
such asthe front-end Web server, network equipment or
bandwidth, or the back-end transaction-processing infra-
structure. Theresulting overload can crash asite or cause
unusually high response times.

Spatial locality: Describes the effect that when an
object isreferenced, its “nearby” objectswill tend to be
referenced soon. The notion of “nearness’ can include
the minimum number of hyperlinks that link the two
objects, or it can describe semantic nearness.

Temporal locality: Describestheeffect that an object,
which hasjust been referenced, hasahigh (or increased)
probability of being referenced again in the near future.
Formally: et p,(k) denotethe probability that, followinga
referenceto object i, the next referenceto object i occurs
withinkreferences. Wesay that aparticul ar object shows
temporal locality of referenceif there existsak > 0 such
that p,(K) > 1- (1- 1/n)~.



