
 1

�
����������	�
�����������������
���������

Dimitrios Katsaros
Aristotle University of Thessaloniki, Greece

Yannis Manolopoulos
Aristotle University of Thessaloniki, Greece

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

In recent years, the World Wide Web, or simply the Web
(Berners-Lee, Caililiau, Luotonen, Nielsen, & Secret, 1994),
has become the primary means for information dissemina-
tion. It is a hypertext-based application and uses the
hypertext transfer protocol (HTTP) for file transfers.

During its first years, the Web consisted of static
hypertext markup language (HTML) pages stored on the
file systems of the connected machines. When new needs
arose, e.g., database access, it was realized that we could
not afford in terms of storage to replicate the data we want
to publish in the Web server’s disk in the form of HTML
pages. So, instead of static pages, an application program
should run on the Web server to receive requests from
clients, retrieve the relevant data from the source, and
then pack the information into HTML or extensible markup
language (XML) format. Even the emerged
“semistructured” XML databases that store data directly
into the XML format need an application program that will
connect to the database management system (DBMS) and
retrieve the XML file or fragment. Thus, a new architecture
was born: in the traditional couple of a Web client and a
Web server, a third part is added, which is the application
program that runs on the Web server and serves data from
an underlying repository that, in most cases, is a data-
base. This architecture is referred to as Web-powered
database and is depicted in Figure 1. In this scheme, there
are three tiers: the database back-end, the Web/applica-
tion server, and the Web client.

BACKGROUND

Due to the existence of temporal locality in Web request
streams, we can exploit the technique of caching, that is,
temporal storage of data closer to the consumer. Caching
can save resources, i.e., network bandwidth, because
fewer packets travel in the network, and time, because we
have faster response times. Caching can be implemented
at various points along the path of the flow of data from

the repository to the final consumer. So, we may have
caching at the DBMS, at the Web server’s memory or disk,
at various points in the network (i.e., proxy caches), or at
the consumer’s endpoint. Web proxies may cooperate so
as to have several proxies to serve each other’s misses. All
the caches present at various points comprise a memory
hierarchy. The most important part of a cache is the
mechanism that determines which data will be accommo-
dated in the cache space and is referred to as the cache
admission/replacement policy.

Requests for “first-time accessed” data cannot ben-
efit from caching. In these cases, due to the existence of
spatial locality in request streams, we can exploit the
technique of preloading or prefetching, which acts comple-
mentary to caching. Prefetching may increase the amount
of traveling data, but on the other hand, it can signifi-
cantly reduce the latency associated with every request.

The role of a cache is to store temporally a set of
objects that will most probably be requested by its clients.
A cache replacement policy assigns a value to every
cached object, called utility value (UV), and evicts from
cache the object with the least utility value. The aim of the
replacement policy is to improve the cache’s effective-
ness by optimizing two performance measures: the hit
ratio and the cost–savings ratio (CSR). The former
measure is defined as

HR = ∑ ih / ∑ ir

and the latter is defined as

CSR = ∑ ii hc * / ∑ irci *

where h
i
 is the number of references to object i satis-

fied by the cache out of the r
i
 total references to i, and c

i

is the cost of fetching object i in cache. The cost can be
defined either as the object’s size s

i
 or as the downloading

latency c
i
. In the former case, the CSR coincides with the

byte–hit ratio (BHR); in the latter case, the CSR coincides
with the delay–savings ratio (DSR).

2

Cache Management for Web-Powered Databases

CACHING IN WEB-POWERED
DATABASES

Web cache replacement (Katsaros & Manolopoulos, 2002)
is one of the most important areas of Web caching for
several reasons. First, studies have shown that the cache
HR and BHR grow in a log-like fashion as a function of
cache size (Breslau, Cao, Fan, Phillips, & Shenker, 1999).

Thus, a better algorithm that increases HR by only several
percentage points would be equivalent to a several-fold
increase in cache size. Second, the growth rate of Web
content is much higher than the rate with which memory
sizes for Web caches are likely to grow. Finally, the benefit
of even a slight improvement in cache performance may
have an appreciable effect on network traffic, especially
when such gains are compounded through a hierarchy of

Figure 1. Architecture of a typical Web-powered database.

I N
 T

 E
 R

 N
 E

 T

Web
Client

Proxy
Server

request

response

request

response
 Cache Cache

request

response

+ prefetching

Main
Memory
Cache

Disk
Cache

Web
server

A
pplication

prefetch

response

request

Database

 Cache

Web-Powered Database

Table 1. A list of factors differentiating Web caching from traditional caching

1. Variable Object Size
The Web object’s size varies considerably. It ranges from a few bytes (e.g. , small HTML
or text files) to several megabytes (e.g., large multimedia files). In contrary, the objects
that move through the levels of the caching hierarchy in operating systems or database
systems have fixed size, which is equal to the size of a disk block.

2. Variable Fetching Cost
The cost (time penalty) for retrieving a Web object varies significantly. Different objects
may have different fetching costs, because they differ in size or in their distance from the
client (in terms of network hops). Moreover, the same file may have different fetching
costs at different time instances, depending on the server (e.g., heavy load) and network
conditions (e.g., congestion).

3. The Depth of the Web Caching Hierarchy
Because caching can happen nearly anywhere, including on the server, on the user’s
machine, at Internet service protocols (ISPs), at telecommunication companies, at the
peering points of national networks, etc., the depth of this hierarchy is significantly larger
than the respective depth in computer systems. The large depth of this hierarchy
significantly affects the characteristics of the request stream.

4. The Origin of the Web Request Streams
The requests seen by the Web caches, especially by the proxies and the reverse proxies, are not generated
by a few programmed processes like the request streams encountered in traditional computer systems. They
mainly originate from large human populations with diverse and varying interests.

 3

Cache Management for Web-Powered Databases

�
caches. There are several factors that distinguish Web
caching from caching in traditional computer architectures
(see Table 1).

The majority of the replacement policies focus on the
first two factors. The main drawback in the design of these
policies is that they do not achieve a balance between HR
and CSR. Some of them are called recency-based policies
and favor the HR, e.g., the Greedy Dual-Size (Cao & Irani,
1997), the Size-Adjusted LRU (Aggrawal, Wolf, & Yu,
1999), whereas some others are called frequency-based
policies and favor the CSR (BHR or DSR), e.g., LRV (Rizzo
& Vicisano, 2000), LFU-DA (Diley & Arlitt, 1999), and LNC-
R-W3 (Shim, Scheuermann, & Vingralek, 1999). Notable
exceptions are the LUV (Bahn, Koh, Noh, & Min, 2002),
GD* (Jin & Bestavros, 2001), and CRF (Katsaros &
Manolopoulos, 2004), which try to combine recency and
frequency. The drawback of LUV and GD* though, is the
existence of some manually tunable parameters. CRF is a
self-tunable policy that gracefully combines recency and
frequency and addresses all the particularities of the Web
caching environment.

PREFETCHING IN WEB-POWERED
DATABASES

Prefetching is employed in order to cure caching’s short-
comings. An effective and efficient prefetching scheme
should maximize the number of cache hits due to its action
and at the same time minimize the incurred cost due to the
prefetched objects. This cost may represent cache space,
network bandwidth, server overloading, etc. Although the
implementation mechanism of prefetching is very impor-

tant, the core issue in employing a prefetching scheme is
the deduction of future object requests.

In general, there exist two alternatives for the deduc-
tion of the future client requests. The first is termed
informed prefetching, and the second is termed predic-
tive prefetching. In Table 2, we explain why the former is
not appropriate for the Web environment.

A predictive prefetching algorithm is based on the
notion of Markov predictors. Let T

r
= 〈tr

1
, …, tr

k
〉 be a

sequence of consecutive requests (called a transaction)
and S = 〈d

1
, …, d

n
〉, n �k be a sequence of accesses, which

is a subsequence of T
r
. Given a collection of nTr trans-

actions, where the sequence S appears fr(S) times, then
the appearance probability P(S) of S is equal to P(S) =
fr(S)/nTr.

If S = 〈d
1
, …, d

n
〉 is a sequence of accesses, then the

conditional probability that the next accesses will be to
d

n+1
, …, d

n+m
 is P(d

n+1
, …, d

n+m
|d

1
, …, d

n
), and it equals the

following:

,..., n1mn1n), d,| ddP(d =…++

)(

),...,,,....,(1

n1

mnnn1

, d,dP

ddddP

…
= ++

Given a collection of transactions, rules of the form

d
1
, …, d

n
 ⇒ d

n+1
, …, d

n+m
(1)

can be derived, where P(d
n+1

, …, d
n+m

|d
1
, …, d

n
) is not less

than a user-defined value T
c
. P(d

n+1
, …, d

n+m
|d

1
, …, d

n
) is

the confidence of the rule. The left part of the rule is called
the head and has size equal to n, whereas the right part

Table 2. Informed and predictive prefetching

Informed Prefetching
Can be applied in cases where the client program knows exactly the resources the client is
going to request and reveals them into the cache (Patterson, Gibson, Ginting, Stodolsky, &
Zelenka, 1995). Informed prefetching is actually a scheduling policy subject to a set of
constraints regarding cache space, timeliness of prefetching, and available bandwidth. It
requires the communication bandwidth between the applications and the cache to be stable.
Thus, it can be implemented only in cases where the cache is embedded into the
application, e.g., databases and operating systems.

Predictive Prefetching
How will future references be deduced if not revealed by the client program? The only
possibility is to take advantage of the spatial locality present in Web request streams.
Spatial locality captures the coreference of some resources. The remaining issue is to
“quantify” spatial locality, that is, to discover the dependencies between references for
different data. Such dependencies can be discovered from past requests and can be used
for making predictions about future requests.

4

Cache Management for Web-Powered Databases

is called the body and has size equal to m. The dependency
of forthcoming accesses on past accesses defines a
Markov chain.

Definition of a n - m Markov Predictor

An n - m Markov predictor calculates conditional prob-
abilities P(d

n+1
, …, d

n+m
|d

1
, …, d

n
) between document

accesses and discovers rules of the form (1), which are
used to predict future accesses.

A predictive prefetching algorithm is defined as a
collection of n - 1, n - 2, …, n - m Markov predictors.
Existing predictive Web prefetching mechanisms can be
categorized into three families.

The algorithms of the first family use the concept of
the dependency graph (DG) (Padmanabhan & Mogul,
1996; Jiang & Kleinrock, 1998). The DG has a node for each
object that has ever been accessed and an arc from node
X to node Y, if and only if Y was accessed within w
accesses after X and the same client did both accesses.
DG maintains the number of accesses to each node X and
the number of transitions from X to Y. It calculates
conditional probabilities P(d

i
|d

j
) for all d

i
, d

j
 belonging to

a transaction. Therefore, DG discovers rules of the form
d

i
⇒ d

j
, or equivalently, it uses a 1-1 Markov predictor.

The algorithms belonging to the second category are
based on the notion of a k-order PPM predictor (Fan,
Cao, Lin, & Jacobson, 1999). A k-order PPM predictor
maintains j - 1 Markov predictors, for all 1 ≤ j ≤ k (k is a user-
specified constant). It employs Markov predictors that
have the constraint that the preceding j requests must be
consecutive in the request stream. These Markov predic-
tors calculate conditional probabilities of the form
P(d

n+1
|d

n
), …, P(d

n+1
|d

n-k+1
, …, d

n
) and determine the corre-

sponding rules, which have head sizes equal to 1,2, …, k.
A generalization of the above two families was pre-

sented in Nanopoulos, Katsaros, and Manolopoulos
(2003). That scheme uses n - m Markov predictors that
calculate conditional probabilities of the form P(d

n+1
, …,

d
n+m

|d
1
, …, d

n
), though the document accesses need not be

consecutive. Moreover, the maximum head size n and the
maximum body size m are not set by the user but are
adaptively estimated by the data.

FUTURE TRENDS

We all know that the Internet, and consequently the Web,
faces performance problems. Performance problems arise
in any of the following three general areas:

1. Web server processing delays
2. Internet delays

3. “Last-mile” delays (delays between the subscriber
and the Internet, e.g., due to a slow dial-up modem
connection)

The idea in alleviating these problems is to make
content delivery from origin servers more “distributed,”
moving some of their content to the “edge” of the Internet.
Based upon this idea, the content delivery networks
(CDN) emerged recently. CDN are designed to take advan-
tage of the geographic locations of end users. Rather than
serving content from the origin Web site, the content
distribution model makes copies of “key” content on
multiple content delivery servers sites distributed through
the Internet, close to the users requesting that content.

 A CDN, running on thousands of servers distributed
across the Internet, contracts with content providers to
deliver their content. A CDN addresses efficiently the
aforementioned performance problems:

1. With the “hottest” content “outsourced,” the load
on the origin server is reduced.

2. The connection from a local content delivery server
is shorter than between the origin Web server and
the user, thus reducing latency.

3. Because many users share the CDN servers, this
service greatly increases the hit ratio.

The deployment of large-scale CDNs brings some new
challenges to caching. One very important issue is that of
object placement, that is, the selection of the edge servers
where an object should be stored (Tang & Chanson,
2002). This problem could also be seen in combination
with that of object replacement (Korupolu & Dahlin,
2002). Another very important issue is related to maintain-
ing the coherency of the cached objects, especially in the
case that these objects are dynamically generated (Tang
& Chanson, 2004).

Prefetching is also challenging in the context of CDN
because of the huge number of clients served. To deal
with this problem, the cache satellite distribution systems
(Armon & Levy, 2004), CSDS for short, have emerged as
a technology for feeding the caches with the information
clients are expected to request, ahead of time. In such a
system, the participating caches periodically report to a
central station about requests received from their clients.
The central station selects a collection of Web documents
that are “pushed” via a satellite broadcast to the partici-
pating caches, so that upon a future local request for the
documents, they will already reside in the local cache and
will not need to be fetched from the terrestrial network.

 5

Cache Management for Web-Powered Databases

�
CONCLUSION

Web-powered databases have emerged to support nu-
merous Web applications, like e-commerce systems, but
due to the large number of visitors they attract, they face
serious performance problems. To reduce or even allevi-
ate such problems, the techniques of caching and
prefetching have been employed. The different physical
characteristics of the Web objects, the existence of
hyperlinks, and the nature of the Web caching hierarchy
call for different caching and prefetching solutions than
those investigated in traditional operating and database
systems. The present article recorded the most critical
factors that affect the design of caching and prefetching
policies for Web-powered databases and surveyed the
major families and their representatives for these policies.

REFERENCES

Aggrawal, C., Wolf, J., & Yu, P. S. (1999). Caching on the
World Wide Web. IEEE Transactions on Knowledge and
Data Engineering, 11(1), 94–107.

Armon, A., & Levy, H. (2004). Cache satellite distribution
systems: Modeling, analysis, and efficient operation.
IEEE Journal on Selected Areas in Communications,
22(2), 218–228.

Bahn, H., Koh, K., Noh, S. H., & Min, S. L. (2002). Efficient
replacement of nonuniform objects in Web caches. IEEE
Computer, 35(6), 65–73.

Berners-Lee, T., Caililiau, R., Luotonen, A., Nielsen, H. F.,
& Secret, A. (1994). The World Wide Web. Communica-
tions of the ACM, 37(8), 76–82.

Breslau, L., Cao, P., Fan, L., Phillips, G., & Shenker, S.
(1999). Web caching and Zipf-like distributions: Evidence
and implications. In Proceedings of the IEEE Conference
on Computer Communications (INFOCOM) (pp. 126–
134). Washington: IEEE Press.

Cao, P., & Irani, S. (1997). Cost-aware WWW proxy
caching algorithms. In Proceedings of the USENIX Sym-
posium on Internet Technologies and Systems (USITS)
(pp. 193–206). USENIX Press.

Dilley, J., & Arlitt, M. (1999). Improving proxy cache
performance: Analysis of three replacement policies. IEEE
Internet Computing, 3(6), 44–55.

Fan, L., Cao, P., Lin, W., & Jacobson, Q. (1999). Web
prefetching between low-bandwidth clients and proxies:
Potential and performance. In Proceedings of ACM Inter-
national Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS) (pp. 178–187). ACM
Press.

Jiang, Z., & Kleinrock, L. (1998). An adaptive network
prefetch scheme. IEEE Journal on Selected Areas in
Communications, 16(3), 358–368.

Jin, S., & Bestavros, A. (2001). GreedyDual* Web caching
algorithm: Exploiting the two sources of temporal locality
in Web request streams. Computer Communications,
24(2), 174–183.

Katsaros, D., & Manolopoulos, Y. (2002). Cache manage-
ment for Web-powered databases. In D. Taniar & W.
Rahayou (Eds.), Web-powered databases (pp. 201–242).
Hershey, PA: Idea Group Publishing.

Katsaros, D., & Manolopoulos, Y. (2004). Caching in Web
memory hierarchies. In Proceedings of the ACM Sympo-
sium on Applied Computing (SAC) (pp. 1109–1113). ACM
Press.

Korupolu, M. R., & Dahlin, M. (2002). Coordinated place-
ment and replacement for large-scale distributed caches.
IEEE Transactions on Knowledge and Data Engineer-
ing, 14(6), 1317–1329.

Nanopoulos, A., Katsaros, D., & Manolopoulos, Y. (2003).
A data mining algorithm for generalized Web prefetching.
IEEE Transactions on Knowledge and Data Engineer-
ing, 15(5), 1155–1169.

Padmanabhan, P., & Mogul, J. (1996). Using predictive
prefetching to improve World Wide Web latency. ACM
SIGCOMM Computer Communication Review, 26(3),
22–36.

Patterson, H. R., Gibson, G. A., Ginting, E., Stodolsky, D.,
& Zelenka, J. (1995). Informed prefetching and caching. In
Proceedings of the ACM Symposium on Operating Sys-
tem Principles (SOSP) (pp. 79–95). ACM Press.

Rizzo, L., & Vicisano, L. (2000). Replacement policies for
a proxy cache. IEEE/ACM Transactions on Networking,
8(2), 158–170.

Shim, J., Scheuermann, P., & Vingralek, R. (1999). Proxy
cache algorithms: Design, implementation and perfor-
mance. IEEE Transactions on Knowledge and Data En-
gineering, 11(4), 549–562.

Tang, X., & Chanson, S. T. (2002). Coordinated en-route
Web caching. IEEE Transactions on Computers, 51(6),
595–607.

Tang, X., & Chanson, S. T. (2004). The minimal cost
distribution tree problem for recursive expiration-based
consistency management. IEEE Transactions on Paral-
lel and Distributed Systems, 15(3), 214–227.

6

Cache Management for Web-Powered Databases

KEY TERMS

Caching proxy: A caching proxy or proxy server or
proxy is a server that acts as an intermediary between a
client and a content server. It intercepts the requests of
the client and checks whether it can serve the client from
its own cache, and if not, it forwards the requests to the
content server.

Capacity miss: This miss occurs because the cache
cannot accommodate all requested objects.

CDN (content distribution network or content deliv-
ery network): This is a network of cache servers owned
by the same Internet Service Provider that delivers con-
tent to users on behalf of content providers. CDN servers
are typically shared, delivering content belonging to
multiple Web sites, though all servers may not be used for
all sites.

Compulsory miss: A compulsory or cold-start miss
occurs in the first access to a Web object.

CPN (capacity provisioning network): This is a net-
work of cache servers owned, operated, and coordinated
through capacity trading by different Internet Service
Providers. Unlike CDN, with the purpose of replicating

content from specifically contracted content providers,
CPN’s goal is to cache whatever content users access
from around the world of content servers. Qualitatively,
a CDN services the supply side of content distribution; a
CPN services the demand side.

Flash crowd problem: It occurs when the request load
overwhelms some aspect of a Web site’s infrastructure,
such as the front-end Web server, network equipment or
bandwidth, or the back-end transaction-processing infra-
structure. The resulting overload can crash a site or cause
unusually high response times.

Spatial locality: Describes the effect that when an
object is referenced, its “nearby” objects will tend to be
referenced soon. The notion of “nearness” can include
the minimum number of hyperlinks that link the two
objects, or it can describe semantic nearness.

Temporal locality: Describes the effect that an object,
which has just been referenced, has a high (or increased)
probability of being referenced again in the near future.
Formally: let p

i
(k) denote the probability that, following a

reference to object i, the next reference to object i occurs
within k references. We say that a particular object shows
temporal locality of reference if there exists a k > 0 such
that p

i
(k) > 1 - (1 - 1/n)k.

