
Efficiently Maintaining Structural Associations

of Semistructured Data

Dimitrios Katsaros

Department of Informatics, Aristotle University of Thessaloniki
Thessaloniki, 54124, Greece
dkatsaro@csd.auth.gr

Abstract. Semistructured data arise frequently in the Web or in data
integration systems. Semistructured objects describing the same type of
information have similar but not identical structure. Finding the com-
mon schema of a collection of semistructured objects is a very important
task and due to the huge volume of such data encountered, data mining
techniques have been employed. Maintenance of the discovered schema
in case of updates, i.e., addition of new objects, is also a very important
issue. In this paper, we study the problem of maintaining the discovered
schema in the case of the addition of new objects. We use the notion of
“negative borders” introduced in the context of mining association rules
in order to efficiently find the new schema when objects are added to
the database. We present experimental results that show the improved
efficiency achieved by the proposed algorithm.

1 Introduction

Much of the information that is available on-line, is semistructured [1]. Docu-
ments like XML, BibTex, HTML and data encountered in biological applications
are examples of such information. The intrinsic characteristic of semistructured
data is that they do not have a rigid structure, either because the data source
does not force any structure on them (e.g., the Web) or because the data are
acquired from various heterogeneous information sources (e.g., in applications
that use business-to-business product catalogs, data from multiple suppliers –
each with its own schema – must be integrated, so that buyers can query them).

It is quite common that semistructured objects representing the same sort
of information have similar, though not identical, structure. An example of
semistructured objects is depicted in Figure 1, where a portion of semistruc-
tured “fish” objects, maintained by the “Catalogue of Life” database (found in
URL http://www.sp2000.org), is illustrated.

Finding the common schema of a large collection of semistructured objects
is very important for a number of applications, such as querying/browsing in-
formation sources, building indexes, storage in relational or object oriented
database systems, query processing (regular path expressions), clustering docu-
ments based on their common structure, building wrappers.

Y. Manolopoulos et al. (Eds.): PCI 2001, LNCS 2563, pp. 118–132, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Efficiently Maintaining Structural Associations of Semistructured Data 119

OEM db

&1

Fish

&2

Fish

Name Climate Age Distribution

Temperature Depth Atlantic Pacific

Marshall Is. Hawaii

Climate ReferenceDistributionName

Pacific Depth

Fig. 1. A portion of “fish” objects

Semistructured schema discovery is a challenging task, mainly for two rea-
sons. The first is the huge volume of data and the second is their irregularity.
Several approaches targeting at this goal have been done [8, 14, 13, 10] to name
a few. Due to the huge amount of data to be processed, the primary requirement
for the algorithm employed is its scalability, both in terms of input and output
data. The algorithm presented by Wang and Liu in [13], WL in the sequel, meets
this requirement. Its objective is to discover all “typical” structures (substruc-
tures) that occur in a minimum number of objects specified by the user. WL is
based on the association rule discovery [2] paradigm.

When insertions take place into the collection (i.e., an “increment” database
is added into the “regular” database), which is a very frequent situation in the
Web, then the set of the aforementioned “typical” structures may change. Thus,
arises the need to maintain the set of discovered structures.

1.1 Motivation

The only work addressing this issue is that reported in [15], which presents
the algorithm ZJZT. They adopt the FUp [4] algorithm, that was proposed for
the maintenance of the discovered large itemsets from a transaction database.
In each iteration, ZJZT makes a scan over the whole updated database. The
increment database is scanned first and the results are used to guide the mining
of the regular database. The number of iterations is k, where k is the size of the
largest (in terms of the number of path expressions it contains) tree expression
(the definition of tree expression is presented in Section 2).

Incremental schema maintenance for semistructured data as addressed by
ZJZT, suffers from two main drawbacks. The first is that the employed algorithm
is inefficient, since it requires at least as many passes over the database as the

120 Dimitrios Katsaros

“size” of the longest j-sequence. Even in the case that the new results are merely
a subset of the old results, that is, the updates do not modify the schema, their
algorithm will make the same constant number of passes over the database. The
second is that their method cannot provide the mining results for the increment
database itself. These results are important in order to discover temporal changes
in the schema and drive decisions regarding storage issues [5]. So, we employ the
notion of negative borders [3, 6, 9, 11] in order to efficiently deal with the problem
of efficient incremental schema maintenance for semistructured data.

1.2 Contributions

In this paper, we deal with the problem of how to efficiently maintain the discov-
ered schema (structural associations) of a collection of semistructured objects in
the case of insertions of new objects into the collection. We utilize the notion of
negative borders [7] and devise the DeltaSSD algorithm, which is an adaptation
of the Delta algorithm [9], in order to efficiently find the new schema of the
collection.

We present a performance evaluation of DeltaSSD and a comparison with
existing algorithms using synthetic data. The experiments show that DeltaSSD
incurs the least number of database scans among all algorithms, which indicates
its superiority.

The rest of this paper is organized as follows: Section 2 defines the problem
of the incremental maintenance of semistructured schema. Section 3 presents the
proposed algorithm DeltaSSD. Section 4 presents the experimental results and
finally, Section 5 contains the conclusions.

2 Incremental Schema Mining

For our convenience, we recall some definitions from [13] and some features of
the WL and ZJZT algorithms.

2.1 Overview of the WL Algorithm

We adopt the Object Exchange Model [1] for the representation of semistructured
objects, where each object is identified by a unique identifier &a and its value
val(&a). Its value may be atomic (e.g., integer, string), a list 〈l1 : &a1, l2 :
&a2, · · · , ln : &an〉 or a bag {l1 : &a1, l2 : &a2, · · · , ln : &an}1, where each li
identifies a label. For the incremental schemamaintenance problem (to be defined
shortly after) the user must specify some objects, called transaction objects and
denoted as �, whose common structure we are interested in identifying (e.g., in
Figure 1 the transaction objects are the fish objects &1 and &2).

1 Order does matter in a list but it does not in a bag. We deal only with nodes of list
type, since our target is ordered semistructured data (e.g., XML).

Efficiently Maintaining Structural Associations of Semistructured Data 121

p
2

Fish

Distribution

p
3

Fish

Distribution

Pacific

p
1

Fish

Name

(a)

p
1

p
2

DistributionName

Fish

p
1

p
3

DistributionName

Pacific

Fish

(b)

Fig. 2. Examples of tree expressions

Definition 1 (Tree Expressions). Consider an acyclic OEM graph. For any
label l, let l∗ denote either l or the wild-card label ?, which matches any label.

1. The nil structure ⊥ (that denotes containment of no label at all) is a tree-
expression.

2. Suppose that tei are tree expressions of objects ai, 1 ≤ i ≤ p. If val(&a)=
〈l1 : &a1, l2 : &a2, · · · , lp : &ap〉 and 〈i1, i2, · · · , iq〉 is a subsequence of
〈1, · · · , p〉 q > 0, then 〈l∗i1 : tei1 , · · · , l∗iq

: teiq〉 is a tree-expression of object a.

Therefore, a tree expression represents a partial structure of the correspond-
ing object. A k-tree-expression is a tree-expression containing exactly k leaf
nodes. Hence, a 1-tree-expression is the familiar notion of a path expression.
Figure 2(a) shows three 1-tree expressions, p1, p2, p3. Each k-tree-expression can
be constructed by a sequence of k paths (p1, p2, · · · , pk), called k-sequence, where
no pi is a prefix of another. For example, Figure 2(b) illustrates two 2-tree ex-
pressions. In the same example, we see that we can not combine the 1-tree
expressions p2 and p3 to form a 2-tree expression, since the former is prefix of
the latter.
In order to account for the fact that some children have repeating outgoing
labels, WL introduced superscripts for these labels. Hence, for each label l in
val(&a), li represents the i-th occurrence of label l in val(&a). Consequently, a k-
tree-expression can be constructed by a k-sequence (p1, p2, · · · , pk), each pi of the
form [�, l1j1 , · · · , lnjn

,⊥]. Although Definition 1 holds for acyclic graphs, in [13]
cyclic OEM graphs are mapped to acyclic ones by treating each reference to an
ancestor (that creates the cycle) as a reference to a terminating leaf node. In this
case, the leaf obtains a label which corresponds to the distance of the leaf from its
ancestor (i.e., the number of intermediate nodes). For this reason, henceforth,
we consider only acyclic OEM graphs. Additionally, WL replicates each node
that has more than one ancestors. The result of the above transformation is that
each object is equivalently represented by a tree structure.

122 Dimitrios Katsaros

Definition 2 (Weaker than). The nil structure ⊥ is weaker than every tree-
expression.

1. Tree-expression 〈l1 : te1, l2 : te2, · · · , ln : ten〉 is weaker than tree-expression
〈l′1 : te

′
1, l

′
2 : te

′
2, · · · , l

′
m : te

′
m〉 if for 1 ≤ i ≤ n, tei is weaker than some

te
′
ji
, where either l

′
ji

= li or li =? and 〈j1, j2, · · · , jn〉 is a subsequence of
〈1, 2, · · · ,m〉.

2. Tree-expression te is weaker than identifier &a if te is weaker than val(&a).

This definition captures the fact that a tree-expression te1 is weaker than an-
other tree-expression te2 if all information regarding labels, ordering and nesting
present in te1 is also present in te2. Intuitively, by considering the paradigm of
association rules [2], the notion of tree expression (Definition 1) is the analogous
of the itemset of a transaction and the notion of weaker-than relationship (Def-
inition 2) corresponds to the containment of an itemset by a transaction (or by
another itemset).

The target of WL is to discover all tree expressions that appear in a percent-
age of the total number of the transaction objects. This percentage is defined by
the user and it is called minimum support, MINSUP.

WL works in phases. In each phase, it makes a pass over the transaction
database. Firstly, it determines the frequent path expressions, that is, frequent 1-
tree-expressions. Then it makes several iterations. At the k-th (k ≥ 1) iteration
WL constructs a set of candidate (k + 1)-tree-expressions using the frequent k-
sequences and applying some pruning criteria. This set is a superset of the actual
frequent (k + 1)-tree-expressions. Then, it determines the support of the candi-
dates by scanning over the database of transaction objects.

2.2 Problem Definition

We describe below the problem of incremental semistructured schema mainte-
nance in the case that new objects are added into the database.

Definition 3 (Incremental Schema Maintenance). Consider a collection
of transaction objects in an OEM graph and a minimum support threshold MIN-
SUP. Let this collection be named db (regular database). Suppose that we have
found the frequent (or large) tree expressions for db, that is, the tree expressions
which have support greater than or equal to MINSUP. Suppose that a number
of new objects is added into the collection. Let the collection of these objects be
named idb (increment database). The incremental schema maintenance problem
is to discover all tree expressions which have support in db ∪ idb greater than or
equal to MINSUP.

When insertions into a database take place, then some large tree expressions
can become small in the updated database (called “losers”), whereas some small
tree expressions can become large (called “winners”).

ZJZT is based on the idea that instead of ignoring the old large tree expres-
sions, and re-running WL on the updated database, the information from the
old large tree expressions can be reused.

Efficiently Maintaining Structural Associations of Semistructured Data 123

ZJZT works in several passes. In the k-th phase (k ≥ 1), it scans the in-
crement and recognizes which of the old large k-tree expressions remain large
and which become “losers”. In the same scan, it discovers the k-tree expres-
sions, which are large in the increment and do not belong to the set of the old
large k-tree expressions. These are the candidates to become large k-tree expres-
sions in the updated database. Their support is checked by scanning the regular
database. A more detailed description of ZJZT can be found in [4, 15].

3 The DeltaSSD Algorithm

3.1 The Notion of the Negative Border

It is obvious that scanning the regular database many times, as ZJZT does, can
be time-consuming and in some cases useless, if the large tree expressions of the
updated database are merely a subset of the large tree expressions of the regular
database. So, [11, 6, 3] considered using not only the large tree expressions of
the regular database, but the candidates that failed to become large in the regular
database, as well. These candidates are called the negative border [12].

Below we give the formal definition of the negative border of a set of tree
expressions.

Definition 4 ([7]). Let the collection of all possible 1-tree expressions be de-
noted as R. Given a collection of S ⊆ P(R) of tree expressions,2 closed with
respect to the “weaker than” relation, the negative border Bd− of S consists of
the minimal tree expressions X ⊆ R not in S.

The collection of all frequent tree expressions is closed with respect to the
“weaker than” relationship (Theorem 3.1 [13]). The collection of all candidate
tree expressions that were not frequent is the negative border of the collection
of the frequent tree expressions.

3.2 The DeltaSSD Algorithm

The proposed algorithm utilizes negative borders in order to avoid scanning
multiple times the database for the discovery of the new large tree expressions.
It differs from [11, 6, 3] in the way it computes the negative border closure.
It adopts a hybrid approach between the one layer at a time followed by [6,
3] and the full closure followed by [11]. In summary, after mining the regular
database, DeltaSSD keeps the support of the large tree expressions along with
the support of their negative border. Having this information, it process the
increment database in order to discover if there are any tree expressions that
moved from the negative border to the set of the new large tree expressions.
If there are such tree expressions, then it computes the new negative border. If
there are tree expressions with unknown support in the new negative border and
2 The “power-set” P(R) includes only “natural” and “near-natural” tree expressions
(see [13]).

124 Dimitrios Katsaros

Table 1. Symbols

Symbol Explanation

db, idb, DB (= db ∪ idb) regular, increment and updated database

Ldb, Lidb, LDB frequent tree expressions of db, idb and DB

Ndb, N idb, NDB negative border of db, idb and DB

TEdb Ldb ∪ Ndb

L, N LDB ∩ (Ldb ∪ Ndb), Negative border of L

SupportOf(set, database) updates the support count of the tree
expressions in set w.r.t. the database

NB(set) computes the negative border of the set

LargeOf(set, database) returns the tree expressions in set which have
support count above MINSUP in the database

are large in the increment database, then DeltaSSD scans the regular database,
in order to find their support.

The description of the DeltaSSD requires the notation presented in Table 1.

First Scan of the Increment. Firstly, the support of the tree expressions
which belong to Ldb and Ndb is updated with respect to the increment database.
It is possible that some tree expressions of Ldb may become small and some
others of Ndb may become large. Let the resulting large tree expressions be
denoted as L and the remaining (Ldb ∪ Ndb) − L tree expressions as Small.
If no tree expressions that belonged to Ndb become large, then the algorithm
terminates. This is the case that the new results are a subset of the old results
and the proposed algorithm is optimal in that it makes only a single scan over
the increment database. This is valid due to the following theorem [11]:

Theorem 1. Let s be a tree-expression such that s /∈ Ldb and s ∈ LDB. Then,
there exists a tree-expression t such that t is “weaker than” s, t ∈ Ndb and t ∈
LDB. That is, some “component” tree-expression of s moved from Ndb to LDB.

Second Scan of the Increment. If some tree expressions do move from Ndb

to L, then we compute the negative border N of L. The negative border is
computed using the routine presented in [13], which generates the k-sequences
from the k−1 sequences. Tree expressions in N with unknown counts are stored
in a set Nu. Only the tree expressions in Nu and their extensions may be large.
If Nu is empty, then the algorithm terminates. Any element of Nu that is not
large in db cannot be large in db ∪ idb [4]. Moreover, none of its extensions can
be large (antimonotonicity property [2]). So, a second scan over the increment
is made in order to find the support counts of Nu.

Third Scan of the Increment. Then, we compute the negative border closure
of L and store them in a set C. After removing from C the tree expressions that

Efficiently Maintaining Structural Associations of Semistructured Data 125

belong to L∪Nu for which the support is known, we compute the support counts
of the remaining tree expressions in the increment database.

First Scan of the Regular Database. The locally large in idb tree expres-
sions, say ScanDB, of the closure must be verified in db, as well, so a scan over
the regular database is performed. In the same scan, we compute the support
counts of the negative border of L∪ScanDB, since from this set and from Small
we will get the actual negative border of the large tree expressions of db ∪ idb.
After that scan the large tree expressions from ScanDB and the tree expressions
in L comprise the new set of the large tree expressions in db ∪ idb.

Table 2. The DeltaSSD algorithm

DeltaSSD (db, idb, Ldb, Ndb)
//db: the regular database, idb: the increment database

//Ldb, Ndb: the large tree expressions of db and their negative border, respectively.

BEGIN
1 SupportOf(TEdb, idb) //First scan over the increment.

2 L = LargeOf (TEdb, DB)

3 Small = TEdb − L

4 if (L == Ldb) //New results alike the old ones.
RETURN(Ldb, Ndb)

5 N = NB(L)
6 if (N ⊆ Small)

RETURN(L, N)
7 Nu = N − Small
8 SupportOf(Nu, idb) //Second scan over the increment.
9 C = LargeOf(Nu)

10 Smallidb = Nu − C
11 if (|C|)
12 C = C ∪ L
13 repeat //Compute the negative border closure.
14 C = C ∪ NB(C)

15 C = C − (Small ∪ Smallidb)
16 until (C does not grow)
17 C = C − (L ∪ Nu)
18 if (|C|) then SupportOf(C, idb) //Third scan over the increment.
19 ScanDB = LargeOf(C ∪ Nu, idb)
20 N ′ = NB(L ∪ ScanDB) −Small
21 SupportOf(N ′ ∪ ScanDB, db) //First scan over the regular.
22 LDB = L ∪ LargeOf(ScanDB, DB)
23 NDB = NB(LDB)
END

126 Dimitrios Katsaros

Table 3. The regular and increment database

db idb

1) a, b 1) a, b, c
2) a, b 2) a, b, c, d
3) a, c 3) a, d, g
4) b, c
5) c, d
6) a, d, f
7) a, d, g
8) b, f, g
9) a, c, i

3.3 Mining Results for the Increment

Executing the above algorithm results in computing Ldb∪idb and Ndb∪idb and
their support. We also need the complete mining results for the increment
database idb, that is, Lidb and N idb and their support. We describe how this can
be achieved without additional cost, but during the three passes over the incre-
ment database. After the first pass, we know the support of the tree-expressions
belonging to Ldb∪idb and Ndb∪idb in the increment itself. From these, we identify
the frequent ones and compute their negative border. If some tree-expressions
belonging to the negative border are not in Ldb∪idb ∪Ndb∪idb we compute their
support during the second pass over the increment. Then the negative border
closure of the resulting (frequent in idb) tree-expressions is computed. If there
are new tree-expressions, which belong to the closure and whose support in idb is
not known, then their support is computed in the third pass over the increment.

Example 1. We give a short example of the execution of the DeltaSSD . For the
sake of simplicity, we present the example using flat itemsets and the set contain-
ment relationship instead of tree expressions and the weaker than relationship.
Suppose that all the possible “items” are the following R = {a, b, c, d, f, g, i}.
Let the regular database be comprised by nine transactions and the increment
database be comprised by three transactions. The databases are presented in
Table 3. Let the support threshold be 33.3%. Thus, an item(set) is large in the
regular database, if it appears in at least three transactions out of the nine.

We can confirm that the frequent “items” in the regular database db are the
following Ldb = {a, b, c, d}. Thus, their negative border, which is comprised by
the itemsets that failed to become large, is Ndb = {f, g, i, ab, ac, ad, bc, bd, cd}.
The steps of the DeltaSSD proceed as shown in Table 4.

Efficiently Maintaining Structural Associations of Semistructured Data 127

Table 4. An example execution of the DeltaSSD algorithm

DeltaSSD (db, idb, Ldb, Ndb)

Input: Ldb = {a, b, c, d} and Ndb = {f, g, i, ab, ac, ad, bc, bd, cd}

BEGIN

1 count support of (Ldb ∪ Ndb = {a, b, c, d, f, g, i, ab, ac, ad, bc, bd, cd}) in idb
2 L = LargeOf(Ldb ∪ Ndb) in DB =⇒ L = {a, b, c, d, ab, ac, ad}
3 Small = (Ldb ∪ Ndb)− L =⇒ Small = {f, g, i, bc, bd, cd}
4 L 	= Ldb

5 N = NegativeBorderOf(L) =⇒ N = {f, g, i, bc, bd, cd, abc, abd, acd}
6 N (Small
7 Nu = N − Small =⇒ Nu = {abc, abd, acd}
8 count support of (Nu = {abc, abd, acd}) in idb
9 C = LargeOf(Nu) in idb =⇒ C = {abc, abd, acd}
10 Smallidb = Nu − C =⇒ Smallidb = ∅
11 C 	= ∅ thus
12 C = C ∪ L =⇒ C = {a, b, c, d, ab, ac, ad, abc, abd, acd}
13 repeat //Compute the negative border closure.
14 C = C ∪NegativeBorderOf(C)

15 C = C − (Small ∪ Smallidb)
16 until (C does not grow)

Finally: C = {a, b, c, d, ab, ac, ad, abc, abd, acd, abcd}
17 C = C − (L ∪ Nu) =⇒ C = {abcd}
18 C 	= ∅ thus

count support of (C = {abcd}) in idb
19 ScanDB = LargeOf (C ∪ Nu) in idb =⇒ ScanDB = {abc, abd, acd, abcd}
20 N ′ = NegativeBorderOf(L ∪ ScanDB)− Small =⇒ N ′ = ∅
21 count support of (N ′ ∪ ScanDB = {abc, abd, acd, abcd}) in db
22 LDB = L ∪ LargeOf(ScanDB) in DB =⇒ LDB = {a, b, c, d, ab, ac, ad}
23 NDB = NegativeBorderOf(LDB) =⇒ NDB = {f, g, i, bc, bd, cd}
END

4 Experiments

We conducted experiments in order to evaluate the efficiency of the proposed
approach DeltaSSD with respect to ZJZT, and also with respect to WL, that
is, re-running Wang’s algorithm on the whole updated database.

4.1 Generation of Synthetic Workloads

We generated acyclic transaction objects, whose nodes have list semantics. Each
workload is a set of transaction objects. The method used to generate synthetic
transaction objects is based on [2, 13] with some modifications noted below.

128 Dimitrios Katsaros

Each transaction object is a hierarchy of objects. Atomic objects, located
at level 0, are the objects having no descendants. The height (or level) of an
object is the length of the longest path from that object to a descendant atomic
object. All transaction objects are at the same level m, which is the maximal
nesting level. Each object is recognized by an identifier. The number of identifiers
for objects of level i is Ni. Each object is assigned one (incoming) label, which
represents a “role” for that object. Any object i that has as subobject an object j,
will be connected to j through an edge labelled with the label of object j. All
transaction objects have the same incoming label.

Objects belonging to the same level are assigned labels drawn from a set,
different for each level i, with cardinality equal to Li. We treat each object serially
and draw a label using a self-similar distribution. This power law provides the
means to select some labels (“roles”), more frequently than others. A parameter
of this distribution determines the skewness of the distribution ranging from
uniform to highly skewed. In our experiments, we set this parameter equal to
0.36 to account for a small bias.

The number of the subobject references of an object at level i is uniformly
distributed with mean equal to Ti. The selection of subobjects models the fact
that some structures appear in common in many objects. To achieve this, we
used the notion of potentially large sets [2]. Thus, subobject references for an
object at level i are not completely random, but instead are drawn from a pool
of potentially large sets. If the maximum nesting level equals m, then this pool
is comprised by m− 1 portions, namely Γ1, Γ2, . . . , Γm−1. Each Γi is comprised
by sets of level-i identifiers. The average size of such a set is Ii. More details
regarding these sets can be found in [2]. The construction of the objects is
a bottom-up process. Starting from level-2, we must construct N2 objects. For
each object, we first choose the number of its subobject references (its size) and
then pick several potential large sets from Γ1 until its size is reached. Recursively,
we construct the level-3 objects and so on. For any object belonging to any
level, say level i > 2, we obligatorily choose one potentially large set from Γi−1

and then we choose the rest of the potentially large sets equiprobably from all
Γj , 1 ≤ j < i.

Thus, a generated data set in which transaction objects are at level m will
be represented as: 〈L1, N1, I1, P1〉, 〈L2, N2, T2, I2, P2〉, . . . , 〈Nm, Tm〉. 3 Table 5
presents the notation for the generation of synthetic data.

The way we create the increment is a straightforward extension of the tech-
nique used to synthesize the database. In order to do a comparison on a database
of size |db| with an increment of size |idb|, we first generate a database of size
|db+ idb| and then the first |db| transactions are stored in the regular database
and the rest |idb| are stored in the increment database. This method will pro-
duce data that are identically distributed in both db and idb and was followed
in [4, 9], as well.

3 Remember that T1 = 0, Lm = 1 and that there is no Γm.

Efficiently Maintaining Structural Associations of Semistructured Data 129

Table 5. Notation used for the generation of synthetic data

Symbol Explanation

Li Number of level-i labels

Ni Number of level-i object identifiers

Ti Average size of val(o) for level-i identifiers o

Ii Average size of potentially large sets in Γi

Pi Number of potentially large sets in Γi

m maximal nesting level

4.2 Experimental Results

For all the experiments reported below, we used the following dataset comprised
by 30000 transaction objects: 〈100, 5000, 3, 100〉, 〈500, 500, 8, 3, 400〉, 〈3000, 8〉.

We used as performance measure the number of passes over the whole data-
base db∪ idb. For an algorithm, which makes α passes over the regular database
and β passes over the increment database, the number of passes is estimated as
α∗|db|+β∗|idb|

|db|+|idb| , where |db| and |idb| is the number of transactions of the regular
and the increment database, respectively.

Varying the Support Threshold. Our first experiment aimed at comparing
the performance of the algorithms for various support thresholds and the results
are depicted in Figure 3. We observe that DeltaSSD performs much better
than the rest of the algorithms and makes on the average (almost) only one
pass over the whole database. For higher support thresholds, it performs even
better, because it does not scan the regular database, but scans once or twice
the increment database. ZJZT and WL perform 4 full scans, because the number
of passes depends on the number of leaves of the tree expression with the largest
number of leaves.

Varying the Increment Size. Our second experiment aimed at evaluating
the performance of the algorithms for various increment sized. The results are
depicted in Figure 4. We notice that ZJZT and WL make the same constant
number of scans for the reason explained earlier, whereas the number of scans
performed by DeltaSSD increases slightly with the increment size, as a function
of the increment size and the number of candidate tree expressions that move
from the negative border to the set of the large tree expressions, imposing a scan
over the regular database.

Comparison of ZJZT and WL. Since both ZJZT and WL perform the same
number of scans over the database, we further investigated their performance by
comparing the number of node comparisons they make during the tree matching

130 Dimitrios Katsaros

0

1

2

3

4

5

6

6 6.5 7 7.5 8 8.5 9 9.5 10

n
u

m
b

e
r

o
f

p
a

ss
e

s

support threshold (%)

DeltaSSD
ZJZT

WL

Fig. 3. Database passes with varying support threshold (10% increment)

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

n
u

m
b

e
r

o
f

p
a

ss
e

s

(%) increment

DeltaSSD
ZJZT

WL

Fig. 4. Database passes with varying increment size (8% support)

operation (involved in the computation of the weaker than relationship). This
measure is independent on any particular implementation and reflects the CPU
time cost of the algorithms. The results are depicted in Figure 5.4

We can observe that with increasing support the performance gap between
ZJZT and WL broadens, because higher support means fewer candidate tree
expressions and even fewer large tree expressions and thus smaller number of
tree matchings.

Increment sizes impacts also the performance of the algorithms. Larger in-
crement means that more new candidates arise in the increment and thus larger
number of tree matchings in order to count their support both in the incre-
ment and in the regular database. Thus, the number of comparisons made by
4 The right graph presents the ratio of the number of node comparisons made by ZJZT
to the number of comparisons made by WL.

Efficiently Maintaining Structural Associations of Semistructured Data 131

10000

100000

1e+06

1e+07

1e+08

1e+09

6 6.5 7 7.5 8 8.5 9 9.5 10

n
o

d
e

 c
o

m
p

a
ri
so

n
s

support threshold (%)

ZJZT
WL

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 5 10 15 20 25 30 35 40

n
o

d
e

 c
o

m
p

a
ri
so

n
s

ra
tio

 (
Z

JZ
T

/W
L

)

(%) increment

Fig. 5. Left Varying support (10% increment), Right Varying increment size (8%
support)

ZJZT increases with respect to WL (larger ratio, as depicted in the right part
of Figure 5).

The results clearly indicate the superiority of the DeltaSSD algorithm,
which performs the smaller number of scans over the database. The ZJZT algo-
rithm performs the same number of scans with WL. This is expected, since the
number of scans depends on the size (in terms of the number of path expressions
it contains) of the largest tree-expression. But, ZJZT is much better than WL
for low and large support thresholds and small increment sizes, whereas their
performance gap narrows for moderate support thresholds and large increment
sizes.

5 Conclusions

As the amount of on-line semistructured data grows very fast, arises the need
to efficiently maintain their “schema”. We have considered the problem of incre-
mentally mining structural associations from semistructured data. We exploited
the previous mining results, that is, knowledge of the tree-expressions that were
frequent in the previous database along with their negative border, in order to
efficiently identify the frequent tree-expressions in the updated database.

We presented the DeltaSSD algorithm, which guarantees efficiency by en-
suring that at most three passes over the increment database and one pass over
the original database will be conducted for any data set. Moreover, in the cases
where the new “schema” is a subset of the old, DeltaSSD is optimal in the sense
that it will make only one scan over the increment database.

Using synthetic data, we conducted experiments in order to assess its per-
formance and compared it with the WL and ZJZT algorithms. Our experi-
ments showed that for a variety of increment sizes and support thresholds,

132 Dimitrios Katsaros

DeltaSSD performs much better than its competitors making (almost) only
one scan over the whole database.

In summary, DeltaSSD is a practical, robust and efficient algorithm for the
incremental maintenance of structural associations of semistructured data.

References

[1] S. Abiteboul. Querying semistructured data. In Proceedings 6th ICDT Confer-
ence, pages 1–18, 1997. 118, 120

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings 20th VLDB Conference, pages 487–499, 1994. 119,
122, 124, 127, 128

[3] Y. Aumann, R. Feldman, O. Liphstat, and H. Mannila. Borders: an efficient
algorithm for association generation in dynamic databases. Journal of Intelligent
Information Systems, 12(1):61–73, 1999. 120, 123

[4] D. Cheung, J. Han, V. Ng, and C. Wong. Maintenance of discovered association
rules in large databases: An incremental updating technique. In Proceedings 12th
IEEE ICDE Conference, pages 106–114, 1996. 119, 123, 124, 128

[5] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with
STORED. In Proceedings ACM SIGMOD Conference, pages 431–442, 1999.
120

[6] R. Feldman, Y. Aumann, A. Amir, and H. Mannila. Efficient algorithms for
discovering frequent sets in incremental databases. In Proceedings ACM DMKD
Workshop, 1997. 120, 123

[7] H Mannila and H. Toivonen. Levelwise search and borders of theories in knowl-
edge discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997. 120,
123

[8] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistruc-
tured data. In Proceedings ACM SIGMOD Conference, pages 295–306, 1998.
119

[9] V. Pudi and J. Haritsa. Quantifying the utility of the past in mining large
databases. Information Systems, 25(5):323–343, 2000. 120, 128

[10] A. Rajaraman and J. Ullman. Querying Websites using compact skeletons. In
Proceedings 20th ACM PODS Symposium, 2001. 119

[11] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm for
the incremental updation of association rules in large databases. In Proceedings
KDD Conference, pages 263–266, 1997. 120, 123, 124

[12] H. Toivonen. Sampling large databases for association rules. In Proceedings 22nd
VLDB Conference, pages 134–145, 1996. 123

[13] K. Wang and H. Liu. Discovering structural association of semistructured data.
IEEE Transactions on Knowledge and Data Engineering, 12(3):353–371, 2000.
119, 120, 121, 123, 124, 127

[14] Q.Y. Wang, J.X. Yu, and K.-F. Wong. Approximate graph schema extraction
for semi-structured data. In Proceedings 7th EDBT Conference, pages 302–316,
2000. 119

[15] A. Zhou, Jinwen, S. Zhou, and Z. Tian. Incremental mining of schema for
semistructured data. In Proceedings Pasific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD), pages 159–168, 1999. 119, 123

	Efficiently Maintaining Structural Associations of Semistructured Data
	Introduction
	Motivation
	Contributions

	Incremental Schema Mining
	Overview of the WL Algorithm
	Problem Definition

	The DeltaSSD Algorithm
	The Notion of the Negative Border
	The DeltaSSD Algorithm
	Mining Results for the Increment

	Experiments
	Generation of Synthetic Workloads
	Experimental Results

	Conclusions

