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he recent advances in device miniaturization, and
progress in wireless communications and the respective
system/application software have made the presence of
ad hoc networks ubiquitous. A wealth of ad hoc net-

works is encountered today, such as mobile ad hoc networks
(MANETs), wireless sensor networks (WSNs), and wireless
mesh networks (WMNs). They have potential applications in
disaster relief, conference and battlefield environments, wire-
less Internet connectivity, and smart vehicles. Ad hoc net-
works consist of wireless hosts that communicate with each
other in the absence of a fixed infrastructure; each host acts
as a relay that forwards messages toward their destination.

The absence of fixed infrastructure and the frequent
changes in network topology (due to mobility and/or intermit-
tent operation of the hosts) makes self-organization of these
wireless networks a necessity. Self-organization touches on
many aspects of nodes’ networking; for instance, calls for solu-
tions to the problem of creating a hierarchy (clustering) over
a flat ad hoc network or creating a network spanner to reduce
redundant rebroadcasts, pertain to the design of routing (uni-
casting, multicasting) protocols, which touch on problems
related to the design of information dissemination (e.g.,
caching, message ferrying) protocols and also to the modeling
of the network itself (e.g., network topology description,
establishment of mobility models that closely represent true
human behavior).

The plain fact that the nodes of an ad hoc network are
strongly interdependent rather than independent and
autonomous agents, which communicate via wireless channels
that transfer resources, helped researchers to realize the signif-

icance of borrowing concepts from the field of social network
analysis (SNA) [1] to the design of more efficient protocols.
This borrowing was further enforced by the fact that many of
the ad hoc networks are basically human-centered and follow
the way humans come into contact. Moreover, because of the
lack of infrastructure, it is rather challenging to develop more
systematic design optimization approaches as in, for instance,
cellular networks. Greedy best effort techniques are used pri-
marily for opportunistic ad hoc networks and may benefit sig-
nificantly from the social networking perspective.

Informally, a social network is a collection of actors (i.e., net-
work nodes), a set of relational information on pairs of actors
(i.e., wireless links), and possible attributes of the actors and/or
the links. The notion of a social network and the methods of
SNA constitute a very old discipline, and attracted significant
interest initially from the social and behavioral communities,
later in data mining, and only recently from the networking
community. This interest stems from the focus of SNA on rela-
tionships among entities, and the patterns and implications of
these relationships. SNA could be viewed as another network
measurement task, while the traditional tasks of network mea-
surement deal with issues such as traffic monitoring, latency,
bandwidth, and congestion. The analysis of the social aspects of
a network is the study and exploitation of the structural infor-
mation present in the network, such as existence and strength
of communities, node centralities, network robustness to node
removal, and topology evolution over time, among others.

The purpose of this article is to provide an overview of the
most important concepts of SNA that have been used in the
design of wireless networks protocols; additionally, it aims at
pinpointing the shortcoming of the traditional SNA concepts,
and at proposing some possible roads for further research
concerning the synergy between SNA and protocol design.
The rest of this article is organized as follows. The next sec-
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tion describes the most popular SNA concepts that have been
used so far in protocol design. We then provide a categoriza-
tion of the application of SNA concepts in various networking
areas. We then demonstrate the inefficiency of traditional
SNA concepts when applied to protocol design and propose
possible roads for future investigation, and the final section
concludes the article.

Social Network Analysis Concepts
The area of SNA is a broad, diverse, and theoretically varied
field with a long and rich history; in the following two subsec-
tions we present only its most popular concepts that have also
found significant applications in protocol design.

Centrality Measures
One of the primary questions of SNA is the identification of
the most important actors in a social network using graph-the-
oretic terms. The importance or prominence of an actor in
this context is synonymous with the strategic location of the
actor within the network. This prominence is described by
numerous centrality measures. Currently, the most noteworthy
and substantively interesting centrality metrics relevant to the
present study belong to two generic categories: a) metrics
based on the degree information of an actor and b) those
based on the geodesic (i.e., shortest path) distances of actors.
The former category includes the degree and spectral centrali-
ty, whereas the latter includes the closeness, shortest path,
and bridging centrality. The members of each family are
described in the sequel.

Degree-Based Centrality Metrics — The degree-based family of
centrality measures consider an actor prominent if the ties of
the actor make the actor visible to the other actors in the net-
work. Intuitively, according to these definitions an actor is
prominent if s/he is adjacent to many other (highly promi-
nent) actors. Degree centrality takes into account only the
number of ties, whereas spectral centrality takes into account
both the number and quality of the neighboring actors. Specif-
ically, these metrics are defined as follows.

Degree Centrality — It is loosely defined as the number of
one-hop neighbors of an actor [1]. For a network consisting of
n actors, the degree centrality of an actor ai is

(1)

Spectral Centrality — There are various definitions of spectral
centrality metrics, which are referred to as spectral because
they are based on the spectral properties of the matrix that
represents the relationships among the actors. These metrics
define the prominence of an actor recursively (i.e., an actor is
prominent if it is pointed to by other prominent actors). The
most popular of the spectral centrality measures is the Page-
Rank metric [2], which is one of the methods used by Google
to rank web pages. The PageRank of an actor ai in a network
consisting of n actors is recursively defined as follows:

(2)

where α is a scalar quantity in the range (0, 1), and kout (aj) is
the outdegree of actor aj. Solving the set of the above equa-
tions is equivalent to finding the principal eigenvector of
matrix A with elements Aij:

(3)

The aforementioned metrics are also interrelated in the
sense that the number of incoming links of an actor is a gross
measure of its PageRank centrality index. The accuracy of this
approximation depends on the topology of the underlying
graph; in the Web, for instance, due to its weak degree corre-
lations, both theoretical and empirical analyses conclude that
this approximation can be relatively accurate.

Geodesic Distance-Based Centrality Metrics — This family of
metrics exploits the distance (i.e., shortest path) between
actors in order to define centrality measures. Since shortest
path computations are frequently used for various networking
tasks (e.g., routing, monitoring), a lot of variations on these
metrics can be found in the literature, but in the next para-
graphs we present only the most popular ones.

Closeness Centrality — This describes the efficiency of infor-
mation propagation from one actor to all the others, and it is
defined as the inverse of the sum of the distances between a
given actor and all other actors in the network [1]. The close-
ness centrality of an actor ai is

(4)

The distance can be measured in number of hops, delays, and
so on. Closeness centrality gives an estimate of how long it
will take information to spread from a given actor to the rest
of the network actors. Evidently, this measure could be used
in applications where, for instance, we need to elect a single
leader actor to propagate alert messages.

Shortest-Path Betweenness Centrality — It describes the frequen-
cies of actors in the shortest paths between indirectly connect-
ed actors and is formally defined as the fraction of the shortest
paths between any pair of actors that pass through an actor [1].
The shortest-path betweenness centrality of an actor ai is

(5)

where spj,k is the number of shortest paths linking actors j and
k, and spj,k(ai) is the number of shortest paths linking actors j
and k that pass through ai. Shortest-path betweenness centrali-
ty is a measure of the extent to which an actor has control over
information flowing between others. This centrality metric can
be used, for instance, in message-carrying applications where
we need to forward a packet to a node that is promising to
deliver it with success and/or faster to its final destination.

Bridging Centrality — It is calculated by multiplying the short-
est-path betweenness centrality by a bridging coefficient [3].
The bridging coefficient is the ratio of the inverse of a node
degree to the sum of the inverses of all its neighbor degrees.
The bridging coefficient of an actor describes how well the
actor is located between high-degree actors. The bridging cen-
trality of an actor ai is

BrCai = SPBCai × β(ai). (6)

Bridging centrality could be used in applications where the
dense areas of a network should be identified for purposes of,
say, placing proxies or preventing congestion.
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Apart from the individual actor’s versions for closeness and
shortest-path betweenness centrality, there are also the group ver-
sions of these metrics, which calculate the importance of groups
of actors. For instance, the group betweenness centrality (GSPBC)
of a set of actors is roughly defined as the total fraction of short-
est paths that traverse at least one member of the set.

A Brief Critique of the Centrality Metrics — All of the above
centrality metrics have been defined in a centralized fashion
(i.e., taking into account all the network actors). Such central-
ized computations are prohibitive for ad hoc networks due to
the communication complexity of learning the whole network
topology, and thus localized versions of them have been used
in the literature of protocol design. Inspired by these metrics,
localized centrality metrics have been proposed in the litera-
ture, such as a truly distributed centrality called μ-Power
Community Index [4] and cumulative contact probability [5]
based on Poisson modeling of social contacts.

There are also cases (e.g., leader election) where it is useful
to have a relatively accurate ranking of the nodes considering
the whole network topology, but we do not wish to pay the
high computational cost of precise calculations (e.g., exact
closeness centrality values). In these cases, most of the afore-
mentioned measures are not appropriate. It would be very
useful if we had in our arsenal low-cost methods for the esti-
mation of approximations for these centrality metrics; current-
ly the literature is lacking such techniques with sound
theoretical background.

Community Definitions
Another feature of complex self-organized networks is the
formation of compartments that have their own role and/or
function. In the network representation, such compartments
appear as sets of nodes with a high density of internal links,
whereas links between compartments have comparatively
lower density; these subgraphs are called communities. These
partitions can potentially lead to reduced, more manageable
representation of the original network. The identification of
communities in wireless networks can be used, for instance, in

packet-switched networks to improve delivery of information
by selecting appropriate forwarders instead of performing
naive oblivious flooding.

The definition of communities as sets of nodes with high den-
sity among these nodes is vague and qualitative; moreover, there
is a lack of theory or consensus on measures to quantify the
goodness of a community structure. For example, if we consider
as such a measure the cut size — the number (or the sum of
weights) of edges that lie at the boundaries of communities —
then, despite the fact that this criterion is intuitive, it has negligi-
ble applicability since the partition with minimum cut size is
often trivial. Therefore, the topic of community detection in
graphs has a long history, and multiple methods and heuristics
have been proposed to partition networks into communities.

An early definition is based on the conductance [6]; the
conductance of a community is the ratio between the cut size
of the community and the minimum between the total degree
of the community and that of the rest of the graph. The prob-
lem of finding a cut with minimal conductance is NP-hard. A
similar measure is the normalized cut. Another popular way of
defining communities is based on modularity [7], which is a
global criterion to define a community, a quality function, and
the key ingredient for many popular methods for graph clus-
tering. In the standard formulation of modularity, a subgraph
is a community if the number of edges inside the subgraph
exceeds the expected number of internal edges the same sub-
graph would have in a random graph.

(7)

where the sum runs over all pairs of vertices, A is the adjacen-
cy matrix, m the total number of edges of the graph, and Pij
represents the expected number of edges between vertices i
and j in the random graph. The δ-function yields one if vertices
i and j are in the same community (Ci = Cj), zero otherwise.

Despite the appealing definition of modularity, it has been
shown that optimizing modularity can over- or underpartition
the network, failing to find the most natural community struc-
ture. To compensate for this, we can add an ad hoc resolution
parameter that can be tuned to bias toward small or large
communities, at the expense of requiring administrative
(human) intervention.

Conductance and modularity are network-wide metrics and
thus are cumbersome when used for ad hoc network proto-
cols. In this area, localized community definitions are more
appropriate (i.e., definitions that look at individual nodes) [8].
One such definition is that of a hard community, which implies
that a node belongs to a specific community if the number of
its links toward the nodes of this community is strictly larger
than the number of its links toward other nodes not belonging
to this specific community.

This definition is quite restrictive, since it allows a node to
be in at most one community or in no community at all; for
instance, no community will be discovered for the graph
shown in Fig. 1, although at first glance we could recognize
four communities based on our human perception (i.e., the
four triangles); a careful look would leave us puzzled as to
whether the four nodes (pointed to by arrows) at the corners
of the square really belong to any community. Actually, we
could consider as a community any set of nodes enclosed by
the dashed lines.

Thus, a new and more flexible definition of a community is
needed, the generalized community, which also allows for over-
lapping communities and requires no administratively tuned
parameters. This definition describes a set of nodes to be a
community if the number of their links (collectively) toward the
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Figure 1. A sample graph where the hard community definition
fails to identify communities.
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nodes of the community is larger than the number of their links
toward nodes not belonging to the community. The definition
implies that a node may belong to a community even if its num-
ber of links toward the nodes of the community is smaller than
the number of its links toward nodes not belonging to the com-
munity — this node actually works as a connector node.

Apart from the above definitions, a very popular graph-the-
oretic way of defining communities is based on the clique per-
colation method, which builds up communities from k-cliques.
A k-clique corresponds to a complete (fully connected) sub-
graph of k nodes (e.g., a 3-clique is equivalent to a triangle).
Two k-cliques are considered adjacent if they share k – 1
nodes. A k-clique community is defined as the maximal union
of k-cliques that can be reached from each other through a
series of adjacent k-cliques.

Finally, another relevant SNA concept that measures the
cliquishness of a network is the clustering coefficient [1],
defined as follows:

(8)

where a connected triple means a single vertex with edges run-
ning to an unordered pair of others.

A Brief Critique of Community Definitions — Community defini-
tion based on NP-hard metrics, although mathematically
sound, are practically difficult to handle and maintain, espe-
cially for mobile networks. Moreover, these metrics define
non-overlapping communities, and when used in ad hoc net-
work protocols, they require an additional task of finding
which nodes will be the relays. On the other hand, overlap-
ping communities seem more appropriate for message for-
warding applications, because the nodes that belong to more
than one community can immediately be selected as gateways
to forward the message across communities. Also, as said ear-
lier, modularity-optimized communities can overpartition or
underpartition the network, failing to detect the true commu-
nity structure, and the remedy to this situation can simply add
more administratively tuned parameters to the algorithm for
which there is no effective way to determine the best parame-

ter values. Finally, clique-based community definitions are not
expected to work well in wireless ad hoc networks, since these
networks are sparse; thus, these algorithms will end up with a
large number of small communities.

The main drawback though of all the presented approaches
concerns their stability across timescales; apparently a com-
munity with members that change rapidly over time may not
be truly useful for protocol design, since it requires frequent
runs of the community-finding algorithm. At this point, the lit-
erature needs definitions of community stability as well as
algorithms that will run incrementally to address additions of
nodes and/or edges. In the next section we survey the most
significant work using SNA notions in designing efficient pro-
tocols for wireless networks, broadly grouped into three cate-
gories: work that mainly addresses routing problems, work
that concerns information dissemination tasks, and finally,
work used for network entities modeling.

SNA in Network Protocol Design
As already explained, the human-based nature of opportunis-
tic networking has been one of the driving forces for the
exploitation of social theories and tools in protocol design.
For instance, it is observed that nodes of such networks tend
to meet a certain group of nodes with higher probability than
other nodes outside the group [9]. Such behaviors have been
exploited in routing protocols and also in sensornet protocols
— despite the fact that no human intervention is apparent
there. Soon SNA theories found their way as a network mea-
surement task for both semi-static and highly mobile ad hoc
networks. Table 1 illustrates the synergy between SNA and ad
hoc networking.

SNA in Routing
Routing protocols for ad hoc networks can be broadly divided
into proactive table-driven and reactive on-demand schemes.
The former category employs routing tables, which contain
approximated shortest paths between nodes and direct pack-
ets accordingly, but they suffer from huge communication
overhead to update the tables when mobility occurs. The lat-
ter category protocols initiate the path discovery process in

CC =
×3 number of triangles in the network

number off connected triples of vertices
,

Table 1. Literature categorization with respect to the SNA concepts used.

Article Centrality Community Other feature

[10] SPBC — Clustering coefficient

[11] SPBC k-clique percolation, overlapping —

[12] — — Interaction strength

[5] Cumulative contact prob. k-clique percolation, overlapping —

[13] SPBC — —

[14] Variant of SPBC — —

[4] μ-power community index — Localized clustering coeff.

[15] k-clique, modularity optimized —

[16] SPBC for edges Modularity optimized, non-overlapping —

[17] Localized BrC — —

[8] Deg, C, SPBC, BrC Generalized, overlapping Localized clustering coeff.
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response to receiving message delivery requests. A special
case of on-demand protocols are those for delay-tolerant net-
works that are based on best next-hop hill-climbing heuristics.
Such routing protocols address the common problem of parti-
tioning sparse mobile ad hoc networks by physically carrying
messages between disconnected parts of the network. These
schemes are sometimes referred to as store-carry-and-forward
protocols. This type of routing consists of each node indepen-
dently making forwarding decisions that take place when two
nodes meet. A message gets forwarded to encountered nodes
until it reaches its destination.

The SimBet protocol was the first one of this category that
exploited the concept of betweenness centrality in order to
make forwarding decisions. SimBet exploits the exchange of
pre-estimated betweenness centrality metrics and locally
determined social similarity (based on the number of common
neighbors) to the destination node. When the destination
node is unknown to the sending node or its contacts, the mes-
sage is routed to a structurally more central node where the
potential of finding a suitable carrier is dramatically increased.
This idea was further enhanced in [11] where the concepts of
centrality and communities were combined to assist in making
forwarding decisions in the Bubble protocol. Nodes are
grouped into overlapping communities, and each node has a
global ranking and local ranking (inside its community). When
a node has to deliver a message to another node, it searches
the hierarchical global ranking tree until it reaches a node in
the same community as the destination node. Then, using a
local ranking system, it searches for a significant node to for-
ward the message until the destination is reached or the mes-
sage expires. A similar methodology using centralities and
communities was also followed by [5], but solved a multicast-
ing problem instead of unicasting.

An inherent drawback of both routing protocols is that
they keep selecting the same nodes as forwarders because
these nodes have the largest centrality values, thus consum-
ing their energy quite fast. For instance, in the SimBet pro-
tocol 10 percent of the nodes carry out 54 percent of all
forwards. Instead of this greedy approach, we can perform
routing utilizing community information [18]. Suppose that
we can come up with a partitioning of the nodes into com-
munities and that each node is aware of the community to
which it belongs as well as the community of every other net-
work node. Then, when a node wishes to forward a packet to
a destination, it is sufficient to forward it to a node that
belongs to the same community as the destination. Such a
basic technique could be the inspiration of a routing scheme,
after resolving significant details such as avoiding cycles,
reducing latency, and so on. On the other hand, such tech-
niques are able to utilize more network paths, thus leading
to a greater network stability region, similar in spirit to the
backpressure principle.

Motivated by the unfairness of the SimBet-like protocols,
the FairRoute protocol [12] exploited the social process of
perceived interaction strength and assortativity. The former met-
ric suggests forwarding the messages to nodes that have
stronger relationships with the destination node; the interac-
tion strength increases with increased number of contacts and
reduces exponentially over time. Still, using this metric does
not avoid bias in selected forwarders (i.e., it creates hot spots
in communication). To remedy this situation, the FairRoute
protocol allows a node to forward a packet to another node
only if this second node has a queue length equal to or short-
er than the first node’s queue. This is the notion of assortativi-
ty — the tendency of nodes with similar number of edges to
connect. This policy has a significant positive effect on hot
spots but achieves slightly lower throughput.

Complications in SNA-Based Routing and Some Possible Solu-
tions — It is obvious that the utilization of SPBC-based met-
rics for packet forwarding will inevitably create hot spots. On
the other hand, shortest path communication is appealing due
to its relation to latency minimization. Thus, how can we
bridge these seemingly contradictory goals? We can come up
with a couple of solutions to address this trade-off. The first
one is not to create global communities, but allow each node
to define its own communities around it. This is like having
multiple overlays over a single network. Of course, these
node-dependent communities can span only the node’s neigh-
borhood and need not span the whole network. Then, depend-
ing on the source and destination nodes, the routing of a
packet will follow different paths, thus effectively reducing
energy depletion of the same nodes. The second solution is to
integrate power control and routing. With this technique, the
data will be routed on the shortest paths, and the nodes that
are expected to relay more packets for others are skipped or
jumped over. Finally, a solution with a different flavor would
be to define routing-specific centralities instead of routing
schemes based on specific centralities (as done so far). This
means that the centrality of a node will be estimated based on
the number of packets forwarded via it, not on the physical
connectivity of this node.

SNA in Information Dissemination
As content provisioning becomes the driving application of
modern ad hoc networks, placing information in the nodes of
such a networking structure becomes significant and challeng-
ing due to the lack of infrastructure and the volatile network
topology. Cooperative caching is a technique where multiple
nodes share and coordinate cache data to cut communication
cost and exploit the aggregate cache space of cooperating
nodes. The benefit of cooperative caching is reduced energy
consumption and smaller data retrieval latency. The first
approaches to cooperative caching did not exploit the link
structure of topology, but mainly worked as en route caching
algorithms, where each node made practically independent
decisions about whether to cache or not a passing-by informa-
tion item (or the path to it). Dimokas et al. in [13] introduced
the notion of mediator nodes in the NICoCa protocol for sen-
sornets that coordinate the caching decisions (e.g., cache
admission, eviction, routing). The mediators are practically
responsible for the implementation and operation of the
cooperation, and for their selection the authors exploited the
idea of shortest-path betweenness centrality in a distributed
setting. Nodes with large SPBC values are selected as media-
tors to strive for latency reduction and effective control of
communication among neighboring nodes. Later, the original
scheme was further improved [4] by replacing the SPBC met-
ric with a new one that required less communication for its
calculation and avoided some drawbacks of SPBC.

The issue of information dissemination in ad hoc networks —
in a less dynamic setting than online caching — was investigat-
ed in [14]. The problem addressed was the optimal placement
of content in opportunistic networks, which can be expressed as
the k-median problem when the global network topology and
information demand stream are known. The authors developed
a scalable near-optimal placement algorithm for the 1-median
problem; the algorithm identifies nodes with high conditional
betweenness centrality (a special case of SPBC) and shrinks the
network into a smaller one that contains only those nodes, thus
solving a smaller optimization problem.

Challenges for SNA-Based Information Dissemination — The
main issue with SNA-based information dissemination is that
the protocols proposed so far work only for static (or semi-
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static) wireless ad hoc networks. Specifically, the NICoCa pro-
tocol can be seen as an implementation of a dynamic connect-
ed dominating set over the underlying sensornet. But when
mobility comes into play, the problem becomes harder to
address. None of the aforementioned approaches can work
efficiently. This leads to the issue of developing solutions for
the problem of finding dominating sets for mobile networks
that must satisfy some additional constraints (e.g., latency of
information dissemination, queue length of the nodes). More-
over, these solutions for the problem of mobile dominating
sets must admit distributed solutions (i.e., utilizing only local
network connectivity information).

Also, none of the SNA concepts described so far can be
used efficiently in the context of a vehicular ad hoc network
(VANET). It seems impossible to use the traditional notion of
SPBC over a network whose link duration might be a few sec-
onds [8]. Variations of the DegC seem more appropriate, but
they are not able to capture the rich topology information
present in a VANET. Therefore, at this point we also need
further research (i.e., new SNA concepts) — not extensions of
the traditional ones — to exploit in human-centered VANETs.
For instance, under such a centrality metric, in order for one
node to influence another over some period of time, there
must be a path that connects the source and destination nodes
through intermediaries at different times.

SNA in Network Modeling: Mobility and Topology
Characterization
In the previous subsections we have surveyed a number of
ways in which wireless networks protocols can make direct use
of SNA concepts (i.e., implementing those notions as compo-
nents of the protocol). SNA concepts have also been used for
descriptive purposes, to investigate the connectivity properties
and nodes’ ranking of a wireless network. The study in [17]
focused on wireless mesh networks, and the main question
concerned the differentiation between seemingly similar
nodes. For instance, if the system administrator of a wireless
mesh network (WMN) had to update and reboot a subset of
nodes, which of the nodes should s/he update/reboot first?
This is clearly a ranking problem for the network nodes, and
the authors suggested the concept of bridging centrality for
performing that ranking, since bridging nodes are more
important from a robustness perspective (as they help to
bridge connected components together), and a possible failure
of them would increase the risk of a network partition.

For static or semi-static wireless networks it is relatively
easy to use off-the-shelf concepts, but when dealing with node
mobility, the properties of a network graph are harder to ana-
lyze because the connectivity varies rapidly. Therefore, such
studies can either examine a series of snapshots of the graph
or develop novel methodologies, for example, propose new
definitions for the localized coefficient taking into account the

time-varying network topology. Hue et al. in [15] addressed
the problem of distributed detection of communities in delay-
tolerant networks (DTNs) without introducing new communi-
ty concepts, but developing distributed algorithms for
identifying k-clique and modularity-optimized communities.

Communities formed in the topology of wireless networks
as a consequence of human activity were also exploited in the
study reported in [16] which contributed a new mobility model
for mobile ad hoc networks. Input to the mobility model is the
social network of humans carrying the mobile devices. This
model allows sets of devices to be grouped together following
the pattern of social relationships among humans, which may
vary over time. The validation of this mobility model against
real traces showed that the synthetic mobility traces were a
very good approximation of human movement patterns.

The work [8] examined a series of snapshots of the evolving
network graph and investigated the topological properties
over time of a simulated VANET. The aim of the study was
to provide answers to the general question of what a VANET
communication graph looks like over time and space. For this
purpose the authors examined various centrality measures and
network clustering features to assess the suitability of each
metric/feature, and subsequently proposed the use of the
appropriate metrics in the design of protocols. In particular, a
significant question investigated by that study was whether the
examined centrality metrics reveal different patterns of the
graph. It became clear that the betweenness, closeness, and
bridging centrality indices follow more or less similar distribu-
tions. One significant observation was that the road topology
alone (e.g., position of junctions) does not determine the posi-
tions of possible central nodes. In Fig. 2 we see that nodes
with high SPBC (purple) appear at any position in the
VANET area, not only at junction positions; therefore, SNA
concepts are truly useful for dynamic networks.

The Road Ahead for SNA-Based Network Modeling — The
mining of time-varying networks cannot be done effectively or
efficiently with currently used graph-theoretic tools, since they
fail to model the topology changes. Probably other established
tools are more appropriate, which have not been exploited so
far. For instance, a tensor could be used to represent a contin-
uously changing adjacency matrix. With the aid of the tensor,
we could answer reachability queries for pairs of nodes, which
is useful in the design of message-ferrying protocols for
DTNs. Additionally, we could define a centrality metric such
as that mentioned earlier. Moreover, the clustering of a tensor
could give rise to new notions of communities.

Further Research
With a retrospective look at Table 1, we see that the network-
ing community has used SNA concepts without contributing
significant novel ideas. Its main effort is to develop distributed
variants of existing algorithms/concepts and use them subse-
quently in the design of protocols. From that perspective the
shortest-path betweenness centrality seems the most easily
understood and handy tool. The interesting question is
whether the networking community can offer significantly new
concepts and algorithms in the area of SNA, and if the ques-
tion receives an affirmative answer, what are the possible
roads for future research?

In the following we provide evidence that the special prob-
lems encountered during the design of communication net-
works can be a source of inspiration for the researchers
working in the synergy between social network analysis and
protocol development.

First of all, let us examine the concepts of DegC and SPBC,

Figure 2. SPBC of vehicles over geographic location for a specific
time-instance (from [8]).
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and compute their values for the nodes of the graph in Fig. 3.
Looking at Fig. 3, we see that the nodes 3, 4, 7, and 6 are
equally central with respect to their degree; they all have a
degree equal to 4. In addition, if we compute the shortest-
path betweenness centrality for each node in the whole graph,
then node 7 is the most central, followed by nodes 3, 4, and 6.
This is somehow counterintuitive, since node 6 all network
nodes at its vicinity (at a distance two hops away).

This is because SPBC is affected by the number of isolated
network nodes, such as node 8 and 9, which increase signifi-
cantly the SPBC value of the node at the other end of the
edge. Starting from this observation, Dimokas et al. [4] pro-
posed a new concept of centrality, which can be seen as a dis-
tributed approximation of SPBC, called the μ-Power
Community Index (μ-PCI), defined as follows.

Definition 1: The μ-PCI of a node v is equal to k, such that
there are up to μ × k nodes in the μ-hop neighborhood of v with
degree greater than or equal to k, and the rest of the nodes in
that neighborhood have a degree less than or equal to k.

Under this new centrality measure and for μ = 1, we see that
PCI(7) = PCI(4) = 2, whereas PCI(6) = PCI(3) = 3, which
agrees more with our intuition. This metric was subsequently
used to develop a cooperative caching protocol which proved to
be better than that based on a distributed version of SPBC [13].

Another shortcoming of most centrality metrics is that they
are all deterministic (applied in the current network topology
snapshot) instead of probabilistic (estimating the probability
for a node to contact other nodes in the future). Starting from
this observation, the work in [5] developed the cumulative con-
tact probability as a new centrality metric. The task of routing
in wireless/wired networks can inspire novel ideas for centrality
metrics; for instance, generalizations of the shortest-path and
flow betweenness can be devised embedding the actual routing
schemes. Work should also be done in developing approxima-
tion algorithms with proven bounds for calculating centralized
centrality metrics using only local information.

Apart from the work in devising centrality or community
discovery algorithms, we argue that the majority of effort
should be concentrated on the investigation of the time-vary-
ing properties of a network and subsequently the development
of appropriate concepts. This research area is still in its infan-
cy, and the results are sparse in the networking community. In
any case the synergy between complex network science and
communication networks will benefit both disciplines.

Conclusions
This article has surveyed the most important concepts
from social network theory that have found significant
application in protocol design for routing, information dis-

semination, and network modeling in the environment of
ad hoc networks. The article by no means serves as an
exhaustive survey, but as a vehicle to promote understand-
ing and proliferation of ideas, and suggests some roads for
possible future work. We envision the synergy between
social network theory and ad hoc networking as a fertile
research area.
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Figure 3. SPBC values (in parentheses) for a sample graph.
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