Brief Announcement: On the Quest of Optimal Service
Ordering in Decentralized Queries

Efthymia Tsamoura
Aristotle University of
Thessaloniki, Greece

etsamour@csd.auth.gr

ABSTRACT

This paper deals with pipelined queries over services. The
execution plan of such queries defines an order in which the
services are called. We present the theoretical underpinnings
of a newly proposed algorithm that produces the optimal
linear ordering corresponding to a query being executed in
a decentralized manner, i.e., when the services communi-
cate directly with each other. The optimality is defined in
terms of query response time, which is determined by the
bottleneck service in the plan. The properties discussed in
this work allow a branch-and-bound approach to be very
efficient.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems—Query Pro-
cessing; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms

Keywords

Web Services, pipelined execution

1. INTRODUCTION

Nowadays, there is a growing interest in systems that
are capable of processing complex tasks formulated as Web
Service (WS) workflows utilizing remote computational re-
sources. This interest has motivated the development of
several scientific and business workflow management sys-
tems and WS-oriented systems equipped with DBMS-like
capabilities. In the latter systems, data sources and anal-
ysis tools expose themselves as WSs, an SQL-like interface
for queries involving WSs is provided and the query plans
resemble service workflows (e.g., [1]).

Suppose that there are multiple data tuples to be pro-
cessed by several distinct WSs, each of which resides on a
different host and is characterized by different processing
speed and selectivity values. Selectivity is defined as the
average ratio of output and input tuples and is particularly
relevant to scenarios, where selectivity differs from 1, as is

Copyright is held by the author/owner(s).
PODC’10, July 25-28, 2010, Zurich, Switzerland.
ACM 978-1-60558-888-9/10/07.

Anastasios Gounaris
Aristotle University of
Thessaloniki, Greece

gounaria@csd.auth.gr

Yannis Manolopoulos
Aristotle University of
Thessaloniki, Greece

manolopo@csd.auth.gr

the case of filtering services. For example, a WS that re-
ceives as input a person’s identifier, and returns a list of
credit card numbers has average selectivity above one, since
there are more credit card numbers than persons. Another
service that, for the same input, performs some filtering and
returns the input as output only if that person has a good
payment history, has average selectivity below one.

In many cases, the order in which the services can be
called is flexible in the sense that multiple orderings pro-
duce equivalent results. For example, when looking for the
credit card numbers of potential customers selecting only
those who have a good payment history, the two aforemen-
tioned services can be called in any order (see also [1] for a
more complex example). However, different orderings may
result in significantly different response times. We assume
a pipelined execution model, where each WS runs on a dif-
ferent node and the results of one WS may immediately be
passed on to the next service in a pipelined fashion. Accord-
ing to the pipelined execution model, the query response
time is no longer the sum of the service costs, but is deter-
mined by the slowest node [1].

If the services communicate with each other either through
an intermediary service or the communication cost incurred
by exchanging data between two services is identical for ev-
ery service pair, then there exists a polynomial algorithm,
which produces an optimal ordering in terms of query re-
sponse time and is applicable regardless of any precedence
constraints among the services [1]. This work focuses on a
generalization of the aforementioned problem and assumes
that the services in the query plan communicate directly
with each other following a service choreography approach
(i.e., the execution is decentralized), and, in addition, the
inter-service communication costs differ. No polynomial time
algorithm is known for this more general problem to the best
of the authors’ knowledge. Also, we believe that such an al-
gorithm is unlikely to exist. The problem we deal with is
a generalization of the bottleneck TSP problem, which is
known to be NP-hard. More specifically, when (i) setting
all service selectivities to 1 and service processing costs to
0, and (ii) considering only the inter-service communication
costs, then the optimal service linear ordering problem is the
same as the bottleneck TSP one.

In [2], we have proposed a branch-and-bound algorithm
that is guaranteed to find the linear ordering of services,
which minimizes the query response time and, according to
the extensive simulation and real experiments’ results ap-
pears to be particularly efficient. In this paper, after pre-
senting an overview of our approach in Section 2, we discuss



the theoretical underpinnings that allow us to prune the ex-
ponential search space effectively.

2. PROBLEM STATEMENT AND BRIEF PRE-

SENTATION OF OUR APPROACH

Assume that all services are selective (i.e., they act as fil-
ters), there are no precedence constraints and each service
consists of a single thread that processes input tuples and
sends output tuples to the next service sequentially; our so-
lution can be applied with minor modifications when these
restrictions are relaxed (see [2]), however we examine this
restricted case in order to keep the discussion as simple as
possible. Let ¢; be the average time needed by WS; to pro-
cess an input tuple (also referred to as the cost of WS;), o;
the selectivity of WS; and t¢; ; the time needed to transfer
a tuple from WS; to WS;. Note that, in practice, tuples
are transmitted in blocks [1]; in that case, ¢;; is the cost
to transmit a block divided by the number of tuples it con-
tains. We also assume that ¢;, o; and ¢;; are constants and
independent of the input attribute values and of each other.

A plan S consists of a linear ordering of the WSs, and
its response time is given by the bottleneck cost metric, in
accordance to [1]:

cost(§) = max ((Myws, eps)0k)(ci +itiitr)), (1)
where P;(S) is the set of WSs that are invoked before W S;
in the plan S and Iy w s, e p;(s)0k gives the average number
of tuples that reach W.S; per input tuple. The problem we
deal with in this work is formulated as follows. Given a set
W of N WSs W = {WSo, WS,...,WSn_1}, where WS is
allocated on a host machine, the goal is to construct a linear
plan S, which minimizes the bottleneck cost metric given by
Eq. (1).

The algorithm in [2] builds on the branch-and-bound op-
timization approach and is capable of pruning the exponen-
tially large search space effectively. The algorithm starts
with an empty plan, to which it appends the less expensive
pair of WSs. At each step, the algorithm either appends
a service to a partial plan, or prunes the partial plan with
a view to exploring additional orderings. The service ap-
pended to the partial plan is the less expensive WS with re-
spect to the last service of the partial plan that has not been
investigated yet. Two measures, guide this process, € and €
respectively. The former corresponds to the bottleneck cost
of the partial plan, while the latter is the maximum possible
cost that may be incurred by WSs not currently included in
the partial plan.

If, for a partial plan C, the condition ¢ < € is met, this
means that the bottleneck cost of the plan beginning with C
depends on the ordering of the services not yet included; so
a new WS is appended to C. On the other hand, if condition
€ > € is met, then the order in which the rest WSs may be
appended to C does not affect its bottleneck cost e, since
the maximum possible cost € that may be incurred cannot
be higher than e. This implies that the bottleneck cost for
all orderings with prefix C has been established and is set to
the current value of €. As such, there is no need to exam-
ine plans with prefix C explicitly. In addition, we prune all
plans with prefix the part of C up to the bottleneck service
(including it) from the search space. As explained later, this
does not compromise the optimality of the algorithm. Note

that in each partial plan C, the bottleneck service may be at
any place. After the pruning of the search space, we prune
C up to (without including) the bottleneck service and con-
tinue appending new WSs until a new bottleneck cost can
be established.

3. SOLUTION PROPERTIES AND PROOF
OF CORRECTNESS

In this section, we present the theoretical background
of the proposed algorithm, explaining the reasons why the
pruning of the search space, although it may be deemed as
aggressive, does not compromise the solution’s optimality.

LEMMA 1. If € is the bottleneck cost of a partial plan C,
any plan with prefix C cannot have a lower bottleneck cost.

This non-decreasing property of € with regards to the size of
the partial plan derives directly from Eq. (1).

LEMMA 2. If for a partial plan C, € > €, then, any plan
with prefiz C has cost e.

This derives directly from the definition of these two mea-
sures and the fact that selectivities are not greater than 1.
If the selectivities may be greater than 1, the way € is com-
puted is slightly modified ([2]).

LEMMA 3. LetV be a data structure that contains all the
pruned plans up to the bottleneck service (including the lat-
ter). Then, no plan C with prefix any of the plans stored in
V can have bottleneck cost € < p, where p is the minimum
bottleneck cost found so far.

V includes prefixes of partial plans up to and including their
bottleneck service; the cost of at least one of such bottleneck
services is p, while the costs of other bottlenecks are either
equal to or higher than that. However, for any plan used
to construct V, the service appended to the plan just after
the bottleneck service during the expansion phase must have
been the less expensive one with respect to the service that
turned to be the bottleneck service (see the discussion in
the previous section), resulting in bottleneck cost € > p.
Because of this policy of choosing the next service to append,
any plan C produced by appending a service to V has cost
€ > p, too. So, with the help of the first lemma, this lemma
holds as well.

The algorithm in [2] builds on top of these properties in or-
der to construct the optimal plan quickly. Based on the first
lemma, the algorithm can safely exit when there is no WS
pair that may form a non-yet investigated prefix of a plan
that has a cost lower than the currently lowest bottleneck
cost. In general, there are n! orderings, where n is the num-
ber of services. However, there are at most n(n — 1) prefixes
of size two. Also, as the second lemma states, constructing
an optimal plan of size n can be reduced to the problem
of constructing an optimal plan of a smaller size, while the
third lemma drastically reduces the size of the search space,
too.

4. REFERENCES

[1] U. Srivastava, K. Munagala, J. Widom, and R. Motwani,
“Query optimization over Web Services,” in Proc. of VLDB,
2006, pp. 355 — 366.

[2] E. Tsamoura, A. Gounaris, and Y. Manolopoulos, “Optimal
service ordering in decentralized queries over Web Services,”
Technical Report, available from
http://delab.csd.auth.gr/ tsamoura/publications.html.



