Adaptive query processing in distributed settings

Anastasios Gounaris and Efthymia Tsamoura and Yannis Maoalos

Abstract In this survey chapter, we discuss adaptive query procg$8iuhQP) tech-
niques for distributed environments. We also investigageissues involved in ex-
tending AdQP techniques originally proposed for singlee@rocessing so that
they become applicable to multi-node environments as welbrder to make it
easier for the reader to understand the similarities amiagarious proposals, we
adopt a common framework, which decomposes the adaptaty into the moni-
toring, analysis, planning and actuation (or executiorgggh The main distributed
AdQP techniques developed so far tend to differ signifigeintm their centralized
counterparts, both in their objectives and in their focuee ®bjectives in distributed
AdQP are more tailored to distributed settings, wherearatiention is paid to is-
sues relating to the adaptivity cost, which is significaspexially when operators
and data are moved over the network.

1 Introduction

The capability of database management systems to effigipnticess queries,
which are expressed as declarative statements, has plagapbarole in their suc-

cess over the last decades. Efficiency is guaranteed duedmbsophisticated op-
timization techniques, which heavily rely on the existentenetadata information
about the data to be processed, such as the distributionw#s/and the selectiv-
ity of the relational operators. Since the late 1970s andrtieduction of System

R [58], static optimization of query plans and subsequertetion has been the

Anastasios Gounaris
Aristotle University of Thessaloniki, Thessaloniki, Geeee-mail: gounaria@csd.auth.gr

Efthymia Tsamoura
Aristotle University of Thessaloniki, Thessaloniki, Geeg e-mail: etsamour@csd.auth.gr

Yannis Manolopoulos
Aristotle University of Thessaloniki, Thessaloniki, Geeee-mail: manolopo@csd.auth.gr

2 Anastasios Gounaris and Efthymia Tsamoura and Yannis Mpoolos

main choice for database system developers. However, wieemétadata required
are not available or accurate at compile time, or when thaypgh during execution,
the query processor needs to revise the current executioroplthe fly. In this case,
query processing is called adaptive.

In adaptive query processing (AdQP), there is a feedbagk Eimilar to the one
appearing in autonomic systems, according to which theygqouiercessor monitors
its execution properties and its execution environmerglyaes this feedback, and
possibly reacts to any changes identified with a view to énguthat either the
current execution plan is the most beneficial or a modificatibthe current plan
can be found that is expected to result in better performance

Although AdQP is particularly relevant to wide area setsinm which query
statistics are more likely to be limited or potentially icacate, and the computa-
tional properties, such as the processing capacity ofigpstiachines, are volatile,
most AdQP proposals have focused either on completelyaler#td query process-
ing or on centralized processing of data retrieved or stergifiom remote sources
and data streams, respectively. In such settings, theypisatly a single physical
machine used for query execution, which is predefined, amglttie focus is mostly
on adapting to changing properties of the data processgdcardinalities of inter-
mediate results and operator selectivities. This is, ofssof high importance for
distributed query processing (DQP), as crucial informatbout the data may be
missing at compile time. However, of equal significance dagpations to changing
properties of a potentially arbitrary set of resources @P may employ and of
their communication links. Currently, AdQP with respecttmnging resources is
not addressed as satisfactorily as with respect to chamigitagproperties.

In this survey chapter, we systematically discuss AdQPriiegles that are tai-
lored to distributed settings both with respect to the datases and the process-
ing nodes. We also investigate the issues involved in extgnddQP techniques
originally proposed for single-node processing so thay thecome applicable to
multi-node environments as well. In order to make it easietlie reader to under-
stand the similarities among the various proposals, wetaopmmon framework,
which decomposes the adaptivity loop into its constitudratges mentioned above,
i.e, monitoring, analysis, planning and actuation phake.[&ter corresponds to the
phase, in which the adaptivity decisions are executed bgykem.

Sructure. The structure of this chapter is as follows. In the remairafethis
section we briefly discuss preliminary concepts of distedujuery processing and
optimization (Section 1.1), and related work (Section A2 5ection 2, we present
the framework that forms the basis of our analysis. The renti@an contains a short
review of traditional AdQP for centralized settings and lekgs the reasons why
such techniques cannot be applied to wide-area envirorsniret straightforward
manner. The discussion of the AdQP techniques for diskibsettings, which is
the core part of this chapter, is in Sections 4-6. Existingkwo distributed AdQP
techniques can be classified in three broad categoriesnitpas that do not rely
on the existence of traditional query plans fall into thetfagtegory, which is ex-
amined in Section 4. The second category comprises appsdlcat perform load
management at the operator level (Section 5), whereasciio86, we discuss dis-

Adaptive query processing in distributed settings 3

tributed AdQP techniques where the adaptivity occurs aghédrilevel. The final
section (Section 7) contains an assessment of the curedossh the area, along
with directions for future work, and concludes the chapter.

1.1 Distributed Query Processing Basics

Distributed query processing consists of the same thren ptases as its central-
ized counterpart, namely parsing (or translation), optation and execution. Dur-
ing parsing, the initial query statement, which is exprdsse declarative language
such as SQL, is translated into an internal representatioich is the same for both
centralized and distributed queries [42].

Query optimization is commonly divided into two parts, queewriting and
cost-based plan selection. Query rewriting is typicallyriea out without any statis-
tical information about the data and independently of amyious physical design
choices (e.g., data locations, existence of indices) diart the information about
data fragments. In distributed queries over non-replit&tmgmented data, the rel-
evant data fragments are identified during this proceduneeis[51]. Secondly,
cost-based optimization is performed. The search straigmyally follows a dy-
namic programming approach for both centralized and Oisteid queries [43, 46]
provided that the query is not very complex in terms of the benof different
choices that need to be examined; in the latter case the péoess reduced with
the help of heuristics. Traditional cost based optimizat®capable of leading to
excellent performance when there are few correlations detvwihe attributes, ade-
quate statistics exist and the environment s stable.

The optimized plan is subsequently passed on to the quegugsa engine,
which is responsible for controlling the data flow througé tiperators and imple-
menting the operators. Although in both traditional digiséd queries and contin-
uous queries over data streams the operators are typibhabg that are defined by
the relational algebra (or their modifications [69]), theextion engine may dif-
fer significantly. In disk-based queries, the pull-basedaitor model of execution
is preferable [31], according to which each operator adhera common interface
that allows pipelining of data, while explicitly definingetexecution order of query
operators and ensuring avoidance of flooding the systemimtghmediate results in
case of a bottleneck. On the other hand, continuous querersdata streams may
need to operate in a push-based mode [8]. The main differlesivecen the push
and pull model of execution lies in the fact that, in the pusited, the processing is
triggered by the arrival of new data items. This property miag rise to issues that
are not encountered in pull-based systems, which havedntral on the production
rate of intermediate results. For example, push-based quecessors may need to
resort to approximation techniques when data arrival etesed the maximum rate
in which the system can process data. We do not deal with ajppation issues in
this chapter; we refer the interested reader to Chapter Ai®bibok. However, it

4 Anastasios Gounaris and Efthymia Tsamoura and Yannis Mpoolos

is worth mentioning that AAQP in push-based systems corssatiditional issues,
such as adaptations to the data arrival rates.

In conventional static query processing, the three phakegiery processing
occur sequentially, whereas, in AAQP, query execution terleaved with query
optimization in the context of a single query with a view tgow with the unpre-
dictability of the environment, and evolving or inaccuratatistics. According to a
looser definition of AAQP, the feedback collected from thergjexecution of previ-
ous queries impacts on the optimization of future querieg (61]); we do not deal
with such flavors here. Note that the need for on-the-fly réagipations is mitigated
with the help of advanced optimization methodologies, sashobust optimization
(e.g., [3, 12]). Also, other topics related to AdQP are désad in Chapter 10 (on
combining search queries and AdQP).

1.2 Related Work

A number of surveys on AdQP have been made available [35,, 28]4However,
none of them focuses on distributed queries over distribrgsources, although the
work in [18] is closer in spirit to this chapter in the sensatth adopts the same
describing framework. Static DQP is described in [51, 42Zjeveas the work in
[31] discusses query processing issues in detail.

2 A Framework for Analysis of AAQP

AdQP can be deemed as the main means of self-optimizationdrygrocessing,
and, as such, it relates to autonomic computing. Accordingé most commonly
used autonomic framework, which is introduced in [41], & tonceptual level,
autonomic managers consist of four parts, namely monio@malysis, planning
and execution, whereas they interface with managed elentteriugh sensors and
effectors. In line with this decomposition, a systematgrdission about distributed
AdQP distinguishes between monitoring, analysis, plag@nd execution. Note
that these parts need not necessarily correspond to distiplemented components
at the physical level.

Monitoring involves the collection of measurements praatliby the sensors. In
the context of query processing, the types of measuremecitedie data statistics
(e.g., cardinalities of intermediate results), operatmracteristics (e.g., selectivi-
ties) and resource properties (e.g., machine CPU load)f@édaback collected is
processed during the analysis phase with a view to diaggashether there is
an issue with the current execution plan. If this is the césen an adaptation is
planned, which can be thought of as an additional query gamgawith operations
that ensure final result correctness. Execution is condesite the actuation of the
planned adaptations. Planned adaptations are executedigitmediately in simple

Adaptive query processing in distributed settings 5

scenarios, or, in more complex cases (e.g., when interatd sf some operators
must be modified first), after certain procedures have bdewfed.

In this chapter, we follow the approach in [18] and we provadgimmary of the
measurements collected, and the analysis, planning andtewxt procedures that
are encapsulated in each of the main AdQP techniques peesédibte that these
aspects of AdQP may be arbitrarily interleaved with querycpssing. For exam-
ple, in some techniques, measurements’ collection ocdigs @uery processing
has been suspended (e.g., due to materialization pointgreas other techniques
continuously generate monitoring information during quexecution. Also, analy-
sis and planning may be tightly connected, since, in somescthe analysis of the
feedback is done in a way that identifies better executiongxe well. Due to this
fact, we prefer to examine analysis along with planning.e\tbiat other variants
of this framework, such as the one in [27], may regard plagaind execution as
a single response phase, whereas, during monitoringnpnalry analysis may be
performed to filter uninteresting feedback.

3 AdQR in Centralized Settings

The role of this section is twofold. Firstly, it provides aoshreview of the main
techniques employed in centralized AdQP, which is thorduiivestigated in sur-
veys such as the one in [18]. Secondly, it discusses thebitgsof applying such
techniques in distributed settings.

3.1 Overview of Techniques

In broad terms, the objective of conventional AAQP is to @&tBons in light of new
information becoming available during query execution ides to achieve better
query response time or more efficient CPU utilization. Altpb AdQP can be ap-
plied to plans consisting of any type of operators, therst@perators that naturally
lend themselves to adaptivity in the sense that they fatgliplan changes at run-
time. Such operators include symmetric hash joins and thpgsals that build on
top of them (e.g, XJoins [63]), multi-way pipelined joinsde [65]) and eddies [2].
All the operators mentioned above can be complemented wiftianal operators
that encapsulate autonomic aspects within their desigrexample, certain opera-
tor implementations provide built-in support to adapt te &mount of the memory
available (e.g., [52]).

Eddies constitute one of the most radical adaptive tectasiqun the grounds
that they do not require explicit decisions on the orderihgammutative and as-
sociative operators (e.g., selections and joins). Thiglt®s a much simpler query
optimization phase. Eddies have been proposed in ordeatdefine-grained adap-
tivity capabilities during query execution; actually, yredlow each tuple to follow a

6 Anastasios Gounaris and Efthymia Tsamoura and Yannis Mpoolos

different route through the operators. More specificaflyeddies, the order of com-
mutative and associative operators is not fixed and adaptatre performed by
simply changing the routing order. To this end, severalingupolicies have been
proposed. The eddy operator is responsible for taking thtng decisions accord-
ing to the policy adopted and monitoring information proeldidy the execution
of tuples. As an example, assume that a long-running quegsytbvee relations of
equal size is processed with the help of two binary joins.h&tlheginning, the se-
lectivity of the first join is much lower than the selectivitf the other and the eddy
will route most of the tuples to the most selective one. Latex second join be-
comes more selective (e.g., due to the existence of a tiperent join attribute);
the eddy will be capable of swapping the order of join exegutAny static opti-
mization decision on the join ordering would fail to constra good plan in such
a scenario where a different ordering yields better resultifferent time periods
during query execution.

Hybrid approaches that combine eddies with more traditiopimization have
been proposed as well. For example, in [49] and [48], a metlogy is proposed
where multiple plans exist and the incoming tuples are btidethese plans with
the help of an eddy. Each such plan is designed for a partisulzset of data with
distinct statistical properties. In general, several esiens to the original eddy op-
erator have been made (e.g., [56], [16], [10], [14]).

Another notable centralized AdQP technique has been peabios[6], which
adaptively reorders filtering operators. This proposats$akto account the correla-
tion of predicates and can be used to enhance eddies rowliogp. It has also been
extended to join queries [7]. In general, join queries arated in a different manner
depending on whether they are fully pipelined and whethaptations impact on
the state that is internally built within operators becaoprevious routing deci-
sions. Non-pipelined join queries were among the first tygfegueries for which
AdQP techniques have been proposed. Such techniques &ealltybased on the
existence of materialization points and the insertion @foipoints, where statistics
are collected and the rest of the adaptivity loop phases atayyilace if significant
deviations from the expected values are detected (e.d)). [@0 specific types
of generalizations of these works are referred to as preyegptimization [47]
and proactive optimization [5], respectively. Adaptivautiag history-dependent
pipelined execution of join queries is one of the most cimglieg areas in AdQP,
where proposals exist that either use conventional quarysple.g., [39]) or eddies

(e.g., [16]).

3.2 On Applying Conventional AdQP Techniquesin Distributed
Settings

Undoubtedly, distributed AAQP techniques can benefit fiograeidaptive techniques
proposed for a centralized environment. In DQP, each ppating site receives
a sub-query, which can be executed in an adaptive mannerthétiinelp of the

Adaptive query processing in distributed settings 7

techniques described previously. However, these adapstivhich are restricted to
sub-queries only, are not related to each other, and, as thayhare not guaranteed
to improve the global efficiency of the execution. For exaanglppose that a set
of operators in a query plan are sent to multiple machinesltameously according
to the partitioned parallelism paradigm [19]. The exeautid a query operator in
a plan may benefit from partitioned parallelism when thisraf¥ is instantiated
several times across different machines with each instamaessing a distinct data
partition. An eddy running on each of those machines coulddrg effective in
detecting the most beneficial operator order at runtimegribeless, nothing can be
done if the workload allocated to each of these machinestipnoportional to their
actual capacity.

In general, when AdQP techniques that were originally psepidor single-node
queries are applied to full DQP, their efficiency is expedtedegrade significantly
due to the following reasons.

e Firstly, adaptations may impact on the state built withiri@gors, as explained
in [16, 73]. State movements in DQP incur non-negligible che to data trans-
mission over the network. If this cost is not taken into actaluring the plan-
ning phase, then, the associated overhead may outweigleasyits. Centralized
AdQP techniques that manipulate the operator state in dodenprove perfor-
mance do not consider such costs, whereas, if state movesnaviided, then
the adaptivity effects may be limited [16]. This situatioalls for new AdQP
techniques tailored to distributed settings.

e Secondly, several of the AAQP techniques mentioned abwet/ma final stitch-
up (or clean-up) phase, which is essential for result ctmess (e.g., [39]). As
with state movement, when such a phase is applied to diggdbplans, then
additional overhead is incurred, which needs to be casehssessed before pro-
ceeding with adaptations.

e Thirdly, direct applications of centralized AdQP techreguesult in techniques
in which there is a single adaptivity controller responsifdr all the adaptivity
issues. Obviously, this may become a bottleneck if the nurabparticipating
machines and/or the volume of the feedback collected is [¥galable solutions
may need to follow more decentralized approaches, whichbigdseen examined
in single-node settings.

e Finally, the optimization criteria may be different, sirissues, such as load bal-
ancing, economic cost, energy efficiency are more likelyrigeain DQP. These
issues are closely related to load allocation across ntelltiiachines, which is
an aspect that does not exist in centralized environments.

Overall, the focus of distributed AdQP is different due te fhct that overhead
and scalability issues are more involved, while load maneeg# is performed at a
different level. The techniques described in the sequelesdsome of these issues.

8 Anastasios Gounaris and Efthymia Tsamoura and Yannis Mpoolos

Fig. 1 Example of a distributed eddy architecture. The dashed Bhew the statistics flow among
the eddy operators, while the solid lines show the tuple flow.

4 AdQP for Distributed Settings: Extensionsto Eddies

The original eddies implementation in [2] and its variantntioned in Section 3
cannot be applied to a distributed setting in a straightésdymanner. This is due to
the fact that the eddy architecture is inherently centedlin the sense that all tuples
must be returned to a central eddy; obviously, this paradiégms to a single-point
bottleneck, unnecessary network traffic and delays wheratqs are distributed.
This section presents solutions to these problems.

4.1 Techniques

In [62], a distributed eddy architecture is proposed, widoks not suffer from the
limitations mentioned above. More specifically, in [62]ckbalistributed operator is
extended with eddy functionality. Moreover, a distribuesltly reaches routing de-
cisions independently of any other eddies. Each operadmeplthe received tuples
in a first-come first-served queue. After a tuple has beenegsad, it is forwarded
to the local eddy mechanism, which decides on the next opdtsit the tuple may
be passed to based on the tuple’s execution history andt&tsitiThe operators in
the distributed eddy framework learn statistics duringcetien and exchange such
information among them periodically, e.g., after somesiofttime have passed or
after having processed a specific amount of tuples. As iiitivadl eddies, routing
decisions need not take place continuously; on the contitegy may be applied to
blocks of tuples in order to keep the associated overheadllbjvFig. 1 shows an
example of a distributed eddy architecture in a sharedimgttiuster of three sites.
The differences between centralized and distributed sdalie not only at the
architectural level. The distributed eddies executiorageym may be employed to
minimize the result response time or to maximize the tupieughput. For both ob-

Adaptive query processing in distributed settings 9

Table 1 Adaptive control in Distributed Eddies [62]

Measurement: The eddy operators exchange statistics periodically deéggu(i) the selectivity,
(ii) the cost and (iii) the tuple queue length of the operatbey are responsible for.

Analysis-Planning: The routing is revised periodically employing routing s tailored to dis-
tributed settings. The routing decisions are made for gga@ipuples.

Actuation: The planned decisions take effect immediately; no speakinent is needed since
operators’ internal state is not considered.

jectives, it can be easily proved that the optimal policysists of multiple execution
plans that are active simultaneously, in the spirit of [Tidte that AdQP techniques
typically consider the adaptation of a single executiom pieat is active at each time
point. However, analytical solutions to this problem aretipalarly expensive due
to the combinatorial number of alternatives, and, in additthey require the exis-
tence of perfect statistical knowledge; assuming the excst of perfect knowledge
in a centralized statistics gathering component is not ksteaapproach. So, the
efficiency of distributed eddies relies on the routing pekc Interestingly, the most
effective routing policies are different from those propo [2].

More specifically, several new routing policies are introgiiin [62], in addition
to those proposed for centralized eddies. Basic routingipslfor centralized ed-
dies includeback-pressure, which considers operator load, attery, which favors
the most selective operators. In thabectivity cost routing policy in [62], both the
selectivity and the cost of the operators are considerecconzbined manner. Al-
though the above policy considers two criteria, it does noster the queuing time
spent while a tuple waits for processing in an operator'siigpieue. Thus tuples are
routed to an operator regardless of its current load. Inrdalevercome this weak-
ness, theselectivity cost queue-length policy takes into account the queue lengths
of the operators as well. Contrary to the spirit of centedizddies, the policies
mentioned above are deterministic rather than probabilisbte that this property
is orthogonal to adaptivity. Finally, two more policies @r@posed that route tuples
in a probabilistic way that is proportional to the squareh# imetrics estimated by
the selectivity cost and the selectivity cost queue-lepgtities, respectively. Ac-
cording to the experiments of the authors of [62], takinggtfjgare of the metrics
exhibited better performance than taking the metrics alone

Overall, during the monitoring phase, the raw statistied tteed to be collected
from each operator include its average tuple queue lentgttselectivity and its
processing cost. The routing policies effectively plan adgptations. The actuation
cost incurred when an alternative routing is adopted isigidg; the tuples are
simply routed according to the new paths. Cases where thetatm overhead
cost is non-negligible, e.g., where operators create afttlihnternal state, which is
affected by adaptations, are not investigated. The highFRummary of distributed
eddies in [62] is given in Table 1.

10 Anastasios Gounaris and Efthymia Tsamoura and Yanni®Mpoulos

Table2 Adaptive control in [72]

Measurement: The eddy operators exchange statistics periodically. Kobhanged statistics in-
clude (i) the average tuple queue length of the operatorgigride number of output tuples that
are generated by the operators for the number of input tspieslied to them.

Analysis-Planning: The routing is revised periodically. The back-pressure thedottery based
routing policies are employed for batches of tuples.

Actuation: The planned decisions take effect immediately; no spemakinent is needed since
operators’ internal state is not considered.

The work of Zhouet al. in [72] extends the distributed eddies architecture pro-
posed in [62] with SteMs [56]. SteMs add extra opportunit@sadaptivity, since,
apart from operator ordering, they can also change the jgorithm implementa-
tion (e.g., index-based vs. hash join) and the data sourasanethods (e.g., table
scan vs. indexed access based on an attribute’s colummtanes The local eddy
operators utilize the traditional back-pressure and thterp-based routing strate-
gies proposed for centralized settings [2]. In a distridugetting, the former routing
strategy is used to accommodate the network transmissemds@and site workload
conditions, while the latter reflects the remote operatse¢ectivity. Note that, as
in [62], statistics are exchanged among the remote eddgrimtdic time intervals,
while routing decisions are made for groups of tuples. Thassics required by an
eddy operator in [72] include (i) the average tuple queugtleof the operators, and
(i) the number of output tuples that are generated by theatpes. As in [62], the
overhead incurred when an alternative routing is enforisedegligible (see Table
2). Finally, FREddies is a distributed eddies frameworkdfoeery optimization over
P2P networks [36], which shares the same spirit as [62, 72].

4.2 Summary

The proposals described above are an essential step tothardpplication of ed-
dies in DQP. However, a common characteristic is that thienigeies in this cate-
gory tend to avoid costly adaptations that involve manifioireof operators’ internal
state in order to diminish the risk of causing performangeession. A side-effect
of such a reserved policy is that further opportunities tpriove the performance
of AdQP may be missed, as shown by successful relevant erarapAdQP tech-
niques in centralized settings (e.g., [16, 21]. Anothereptation is that more re-
search is needed in order to understand what type of routilicjgs is more efficient
in distributed settings, and what are the benefits of prdiséibiversus deterministic
routing and of routing policies that are closer in spirit nflalgorithms [17].

Adaptive query processing in distributed settings 11

5 AdQP for Distributed Settings: Operator Load Management

Load management can be performed at several levels; attopéreel load man-

agement, the main unit of load is an operator instance. ta-mperator load man-
agement, the different operator instances correspondetsame logical operator,
which implies that partitioned parallelism is employed ad@ptivity is concerned
with only a part of the query plan. On the other hand, integrapor load manage-
ment deals with adaptations that consider the whole plath,operator instances
may correspond to different logical operators.

5.1 Intra-operator load management

Horizontal partitioning is a common approach to scale dpesan a shared-nothing
cluster [19]. In horizontal partitioning, an operator igided into multiple instances.
Each such instance is placed on a different site and proedgtsrent subsets of the
input data. The operators on the different sites can worlamaltel. Thus the result
of the operator is given by aggregating the partial reshlswere produced by the
different operator instances. For example, the result eani-join operatoA x Bis
given by the union of the partial results x B, i =1,...,P, whereP is the degree of
parallelism, i.e., the number of operator instances thak\voparallel on different
data.A; andB; correspond to the subsets of data that are processediat thesite
and are partitioned according to the join attribute.

5.1.1 Background

A straight-forward way to enable query plans to benefit frartifoned parallelism
without modifying the operators, such as joins and aggesgas through the in-
sertion ofexchanges [30]. The exchange operator is one of the most notable non-
intrusive attempts to parallel operator evaluation. Therafor does not modify or
filter any tuples but aims to distribute tuples across d#ffeoperator instances. The
exchange operator is logically partitioned into two comguatis that may be hosted
on different sites. The consumer component resides at aiomToperator instance
and waits for tuples coming from the upstream producer dpemastances. The
producer component encapsulates the routing logic: itsgarsible for routing the
tuples to the consumer operator instances. The most comouting policies are
hash-based, value range-based and round-robin.

Fig. 2(top) shows an example of the partitioned executich@hash-joirA x B
in a shared-nothing cluster of four sites using an exchapgeador. The tuples from
the left relationA are used to build the hash-table, while the tuples fBypnobe the
hash-table. As the different operator instances in sitesd12?awork in parallel, the
time needed to complete the evaluation of the join operajoals the time needed
by the slowest operator instance. Consequently, load enicak can degrade the

12 Anastasios Gounaris and Efthymia Tsamoura and Yanni®Mpoulos

Hash tables on the
join attribute

Site 2

exchange_ exchange_
consumer consumer

Outgoing tuple queues of
the producer component

exchange_ exchange_
producer producer

Scan(A) Scan(B)
Site 3 Site 4

State partitions
moved from

Outgoing tuple queues of
the producer component

exchange_ exchange_

producer producer
Scan(A) Scan(B)
Site 3 Site 4

Fig. 2 Top: example of executing a hash-join over a shared-notbinster using the exchange
operator. Bottom: example of state relocation.

overall query performance. Load balancing aims to minintieeoverall query re-
sponse time by “fairly” redistributing the processing Il@adong the consumer sites.
By fairly is meant that the amount of work to be done on ead@hrsitist be propor-
tional to the capabilities of the site. In a volatile envinoent, the capabilities of
participating machines or the relative size of the probiagifons may change at
runtime. However, modifications to the routing policy sattihe partitioning reflects
better the current conditions lead to incorrect resultiegsithese modifications are
followed by the relocation of the corresponding buckethimtiash tables. This phe-
nomenon is common to any partitioned operator that buildsraaintains internal
state during its execution. An example of state relocas@mbwn in Fig. 2(bottom),
where parts of the hash-table in Site 1 are moved to the fzda-of Site 2 if the
routing policy changes at runtime and more tuples are rawot&ite 2.

Adaptive query processing in distributed settings 13

5.1.2 The Flux approach

Flux [59] is an operator that can be deemed as an extensidmetproposals of
the exchange andver [1] mechanisms, accounting for adaptive load balancing of
stateful operators, such as windowed equi-joins and ghygp-Two policies are
proposed for adaptive load balancing in clusters for ggdtwith ample and lim-
ited main memory, respectively. The first policy aims to sf@nload (which entails
state relocation as well) from an overloaded consumer tmeirsstance to a less
loaded consumer operator instance taking into account thielyorocessing speed
and idle times of consumers, while the second policy exténelSormer by con-
sidering memory management as well. The goal of the loachbalg policy in a
cluster with ample main memory is to maximize tuple throughthrough the min-
imization of utilization imbalances and the number of stateoved. On the other
hand, the constrained memory load-balancing policy tielsaiance memory use
across the cluster to avoid or postpone pushing statesisko d

In Flux, instead of having only one state partition per cansuinstance, each
consumer instance holds multiple “mini”-partitions. ThEsn effective mechanism
for enabling fine-grained balancing [20]. In order to pemnfdoad balancing the
following functionality is added. First, the consumer campnts maintain execu-
tion statistics tracked over monitoring periods. The nwimgd statistics differ with
respect to the execution environment, i.e., whether thetetinas ample main mem-
ory or not. In the first case, the statistics are (i) the nunalbéuples processed per
partition at the consumer side and (ii) the amount of timedbesumer operator
instance has spent idle, i.e., the amount of time the consaomponent, which
resides on the corresponding consumer operator instarads, for input to arrive.
From these statistics, the actual utilization of each nsdgerived. In the second
case, i.e., when the aggregate main memory in the clustenited, the runtime
statistics are (i) the available main memory at each consside, and (i) the size
of the partitions, along with indications of whether theg aremory-resident or not.
Second, the adaptations are coordinated by a global ctartrdhe controller is re-
sponsible for collecting the runtime statistics from th@saumer components and
issuing movement decisions for load balancing.

In both policies mentioned above, load balancing is peré&atiperiodically and
proceeds in rounds, where each round consists of two pheséstistics collection
phase and a state relocation phase. The duration of thealatation phase impacts
on the length of the next monitoring period with a view to @mg scenarios where
most of the time is spent shifting state partitions arourdoAin order to minimize
the number of partition moves, for a given pair of sites, omhe state partition
is considered for movement, namely the one that reduceditlmation imbalance
between the donor site and the receiver, provided thatakheeshold requirements
are met.

The steps that take place when state partitions are retbérat® one site to an-
other are roughly the following: quiescing the partitionk® moved, transferring
the state partitions to the corresponding consumer sitésestarting the partition
input stream. During quiescing, the consumer and the perdxchange messages

14 Anastasios Gounaris and Efthymia Tsamoura and Yanni®Mpoulos

Table 3 Adaptive control in Flux [59]

Measurement: The following statistics are reported periodically frone tlocal consumer com-
ponents to the central controller: (i) the number of tuplexpssed per partition at the consumer
side, (ii) the amount of time the consumer instance has sgient(iii) the available main memory
at the consumer side, and (iv) the size of the partitions.

Analysis-Planning: Load balancing is coordinated by a central controller, Wwhdetects imbal-
ances based on the measurements received. In case of icgmléme controller forms pairs of
sites that will exchange state partitions based on thdization (in non memory-constrained clus-
ters) or their excess memory capacity (in memory-constthiciusters) with the help of several
thresholds.

Actuation: The steps are the following: (i) stall the input to the stagifions to be relocated, (ii)
wait for in-flight tuples to arrive, (iii) transfer the stapartitions to the corresponding consumer
sites, and (iv) resume processing. The time spent for statement will be used to define the next
monitoring period length.

in order to ensure that all in-flight tuples have been prassnd, as such, the con-
sistency of the results is guaranteed. In addition, dutiegstate movement period,
each producer component marks the candidate state padgistalled and buffers
the incoming tuples for that state. After the state movenwperformed success-
fully, all buffered tuples are redirected to the consumegrafor instances that are
selected to be the new hosts and the producer componentseaektecting tuples.

The policy for load balancing in a memory-constrained esvinent is similar
to the one described above. However, in such an environreaté-movement is
guided by the excess memory capacity criterion. The excesaary capacity at
a consumer site is defined as the difference between thenetalory size of the
local states and the total available main memory. Simildihéoprevious policy, the
state partitions selected to be moved are those that redadmbalance in excess
capacity between pairs of sites. Flux can also perform stmymmemory manage-
ment, in the sense that each consumer site may autonomaatiedo push and
load state partitions into and from disks, respectively nound-robin fashion. The
full details of the Flux adaptive load balancing approach ba found in [59]; a
summary is presented in Table 3. Note that Flux can be congieed with fault
tolerance capabilities [60].

5.1.3 Improvementson the Flux approach

Patonet al. proposed some modifications to the original Flux operatdb#j. In

one of the proposed variants, the execution proceeds as oritfinal Flux operator
but state partitions are replicated instead of simply beioeged. This entails higher
memory requirements but, at the same time, manages to rétunamber of future
state movements. In another variant, which assumes opgiaiidding hash tables,

Adaptive query processing in distributed settings 15

Table4 Adaptive control in [45]

Measurement: The following statistics are reported periodically frone tlocal sites to the cen-
tral controller: (i) that available main memory on the siié, the size of partitions and (ii) the
corresponding number of tuples that are generated from peatition.

Analysis-Planning: State relocation decisions are triggered by the centrairalter, when the
available main memory imbalances exceed a user-defineshibic based upon the productivity
of each partition and the memory available.

Actuation: Similar to Flux [59] followed by a disk cleanup procedure nder to produce results
from the disk resident state partitions.

each hash-table bucket is randomly assigned to three Aitéssh-table build or
probe phase, a tuple is sent to the two most lightly loadedhefthree candidate
sites that are associated with the bucket that the tuplesisdtato. During the probe
phase, if a probe tuple matches a build tuple, the join algarigenerates a result
from the probe occurred at the least loaded site, unless #tehing (build) tuple
is stored only on the other two sites. This variant reducesattaptation overhead,
which is mainly due to state movements, but incurs signifieganounts of extra
work. Also, in [54], more advanced mechanisms for the a@nathase are investi-
gated, which aim to cancel planned adaptations when theceegbbenefit does not
outweigh the adaptation overhead.

Liu et al. have proposed techniques that deal with load balancingecahsary
memory management of partitioned, stateful operators intagrated manner [45].
As in Flux, the state relocation decisions are guided by glsinontroller, which
periodically collects run-time statistics that are logafionitored at the remote sites
during fixed-length time periods and triggers run-time ddtpns. The criteria that
guide the load balancing process are (i) the available maimony at each site, (ii)
the partition sizes and (iii) the number of generated tufsta® each partition.

State relocation is triggered by the controller when thélalbke main memory
imbalances among the sites exceed a user-defined thregidldr that case, the
most productive partitions from the site with the least dé memory are moved
to the site with the most available memory. Regarding seagnthemory man-
agement, two different approaches can be followed. Ond &m@roach is to push
the less productive partitions at each site into disk, winenamount of available
memory is less than a user-defined threshold. Another glaatoach is to find
the overall less productive partitions among all the sitebsta push them into disk.
The steps that take place during state relocation are sitoithose in Flux with the
addition of a disk cleanup procedure to produce results tlendisk resident state
partitions. The main characteristics of the integratedaagh in [45] are summa-
rized in Table 4.

The work in [32] extends Flux by supporting multiway windahstream joins
that are not necessarily equi-joins; moreover it focusethercombination of load
balancing and the so-called diffusion overhead. Load lzatanis considered by

16 Anastasios Gounaris and Efthymia Tsamoura and Yanni®Mpoulos

Table5 Adaptive control in [32]

Measurement: The following statistics are reported periodically frone tlocal processing sites
and the aggregation site to the controller: (i) the usagetl@dapacity of the local CPU, memory
and bandwidth resources (ii) the results throughput. Tiérobler also monitors (jii) the input data
streaming rates.

Analysis-Planning: The controller, apart from dynamically routing input tuplelynamically se-
lects the master stream and adapts its window segment length

Actuation: The algorithm provides for special treatment of the intenally duplicated tuples in
order to ensure result correctness.

allocating tuples to the less loaded machines. Diffusioerlogad corresponds to
tuple replications and intermediate join result transfigrrwhich is needed to en-
sure correct result generation. Two algorithms are presemthich rely on partial

tuple duplication. The first adaptively chooses a masteast; based on which the
other streams are transferred, while the second builds apgreedy solution of

the weighted set cover problem [13]. The advantage of bgpincegehes is that the
routing is not based on the value of the tuples. Table 5 suimasthe main char-

acteristics.

[66] addresses the same problem as in [32]. In [66], the natfd®ipelined State
Partitioning (PSP) is introduced, where the operator state partitioned into dis-
joint slices in the time domain, which are subsequentlyrifiisted across a cluster.
Compared to [32], the approach in [66] does not duplicatetaples and benefits
from pipelined parallelism to a larger extent.

5.1.4 Summary

The previous discussion shows that, for the problem of ioparator load balanc-
ing in DQP, several solutions with different functionalitgve been proposed. These
solutions also differ in the trade-off between running tnesxds (which denote the
unnecessary overheads when no adaptations are actuallye@qand actuation
costs, which may accompany the execution of adaptivitysiees. The original
Flux proposal is a typical example of an approach with lowbead but potentially
high actuation cost, whereas other proposals in [54] nigidglae latter cost at the
expense of higher overheads. Regarding the risk of causirigm@nance regression
due to costly adaptations, a limitation of the techniquestinaed above is that they
do not consider the cost of moving operator state during ldening phase explic-
itly. The work in [29] fills this gap and revisits the problerh[69] by following a
control-theoretical approach, which is capable of incoating the overhead associ-
ated with each adaptation along with the cost of imbalantethre planning phase
of the adaptivity loop. Initial results are shown to be prsimg, when machines ex-

Adaptive query processing in distributed settings 17

perience periodic load variations. This is because thesydbes not move operator
state eagerly, which is proven to be a more efficient appr{iz&in

5.2 Inter-operator load management

While the techniques discussed in the previous sectioroparfoad balancing at
intra-operator level, the approaches in this section perflmad management at
inter-operator level. In particular, two representatamnilies of techniques that cor-
respond to different approaches to inter-operator loadagament are presented.
The former, which is exemplified by [70], discusses coopezdbad management
with a view to achieving load balancing, whereas the lagremplified by [9], is
concerned with a setting where each node acts both autorstynand selfishly.
However, both groups of techniques deal with the problemyofadhically real-
locating operators to alternative hosts without perfogréacondary memory man-
agement. Since no secondary memory managementis dongeketsat take place
during the operator relocation process are the followingtélling the inputs of the
operators to be moved and local buffering of the operatogsui data, (i) move-
ment of the operators (along with the data inside their makstates) to their new
locations and (iii) restarting of their execution. Thesepst constitute the typical
operator migration procedure.

5.2.1 Cooperativeload management

The work in [70], which is part of the Borealis project, asgaithat data streams
are processed on several sites, each of which holds some opé#rators. Load bal-
ancing in [70] is treated as the problem not only of ensurirag the average load
(e.g., CPU utilization) of each machine is roughly equal, dso of minimizing
the load variance on each site and maximizing the load @iioelamong the pro-
cessing sites. The rationale of the approach is describ#tkifollowing example.
Suppose that there exist load measurements of two opetatstsd on the same
site that have been taken during the lashonitoring periods; these measurements
form two time-series. If both time series have a small catieh coefficient ([53]),
then, allocating these operators on the same site is a geadbidcause it means
that when one operator is relatively busy, the other is npp&ting these operators
on the same site, the load variance of the host is minimized sviview to min-
imizing end-to-end latency. The average end-to-end |gtelegrades when highly
correlated operators are co-located, since the operatyd¥msimultaneously busy.
In addition, if the load time series of two sites have a largealation coefficient,
then, their load levels are naturally balanced. Followhmabove rationale, the pro-
posal in [70] tries to balance the load of a distributed emwinent by placing lowly
correlated operators (in terms of load) at the same sitdewhaximizing the load
correlation among the processing sites.

18 Anastasios Gounaris and Efthymia Tsamoura and Yanni®Mpoulos

Table 6 Adaptive control in Borealis [70]

Measurement: The sites periodically report the site/operator load stias to the central con-
troller. The controller retains themost recent load statistics for each site/operator.

Analysis-Planning: The variance and the correlation is computed. Operatocaéhm is triggered
periodically by the central controller. The operator r&iisition algorithm first detects pairs of
sites and then defines the operators to be moved.

Actuation: The re-distribution decisions are enforced through openatigration, which incurs
non-negligible cost. This cost is only implicitly taken argiccount.

Under the proposed load balancing scheme, adaptation®dm@mped periodi-
cally. The site and operator loads are locally monitored éixed-length time pe-
riods and are reported to a single controller, which takes lealancing decisions.
The load of an operator during a monitoring period is defiretha fraction of the
CPU time needed by that operator in order to process incotuplgs (that arrived
during that monitoring period) over the length of the moriitg period. The load
of a site during this period is defined as the sum of the loadsldfs hosted op-
erators. Note that the controller keeps only the site andabdpeload statistics of
the k most recent monitoring periods. Several algorithms ar@gsed in [70] for
load balancing. However, all of them follow the same pattgiven a site pair, they
decide which operators to transfer between the sites. Tagairs are decided by
the controller based on their average load (the mean valaesité’s load time se-
ries) following a procedure similar (to an extent) to the aised in Flux[59]. The
proposed load balancing algorithms aim to optimize diffiém@bjectives, i.e., the
amount of load (operators) that is moved between a pair oésiod the quality of
the resulting operator mapping. The former technique clemsioperator migration
cost implicitly. A summary of the adaptivity characterstis given in Table 6.

In the context of the same project, a technique for failueovery, which is
equipped with dynamic load balancing characteristics le@sproposed [37]. The
proposed technique aims to provide low-latency recovecase of a node’s failure
using multiple servers for collectively taking over theu&gd actions. In particular
the data that is produced and the data that is in the intetagdssof query frag-
ments is backuped on a selected site. A site’s failure is athblt other sites, which
host backups and collectively rebuild the latest aggresfatie of the failed server.
However, new queries that may be submitted for executiormanges in the input
streaming rates may change the sites’ load and consequbathailure-recovery
time. To solve this problem, the proposal in [37] may adagyivelocate the query
fragment backups and move them from heavily loaded sitesstolbaded ones.

Wanget al., in [67], deal with a problem that is similar to the one in [7The
distinct feature of this work is that operator placemeniglens are based on mech
anisms inspired by the physical world. In the physical wpedch physical object
tries to minimize its energy, whereas its behavior is drivgseveral types of poten-

Adaptive query processing in distributed settings 19

tials and the potential energy of an object depends on tregitotof other objects.
In [67], each query operator is considered as a physicatglifee potential energy
of which reflects its output latency and depends on the sifleoarthe network load
conditions. The operator/site load is estimated as in whjle the network load ac-
counts for the overhead incurred by the network transmissias in [70], operator
redistribution is performed by a single controller at pdi@ctime intervals. All exe-

cution sites monitor the operator/site and network loadi@@ns over fixed-length
time periods and send the appropriate statistics to this@ier. The controller per-
forms load balancing utilizing heuristics that approxietite optimal solution. In
order to minimize the overhead that is incurred during ofperanovement, only

the most loaded operators are considered for redistribuiibe fact that network
conditions are considered helps in mitigating the risk afgening non-beneficial

adaptations, which is more likely to occur in [70].

5.2.2 Non-cooper ative load management

The problem of load management in the Medusa project, wikiehpredecessor of
Borealis, is treated under a different perspective, adngrih which the distributed
systems are regarded as computational economies and thogoaents provide com-
putational resources and accept to host and execute opsfratm other participants
at a specified price [9]. Another difference with the loadapaing techniques that
are presented so far is that there is no single controll¢diheides which operators
should be transferred to other hosts. In contrast, the luestisle independently on
the amount of load to transfer or accept.

In Medusa, the hosts aim to select an appropriate operdtar eeder to maxi-
mize the difference between the payment they receive ancostancurred locally
when processing this operator set. They negotiate withrdtbsts the amount of
load to transfer or receive and the corresponding paymeotdjn contracts. The
operator relocation process is not triggered at predefimeel periods, but when,
firstly, a site becomes overloaded and, secondly, anotlatrofrerloaded) site is
willing to accept at least part of the former’s site load ircleange of a payment.
To this end, the overloaded sites select a maximal set ofatqarthat they are
more costly to process locally than to offload, and offer theranother site. Each
site continuously accumulates load offers and may perédigiaccept subsets of
offered operators, on the grounds of higher unit-pricersff@s such, the negotia-
tion is asynchronous. If a new site accepts some of the affeperators, operator
migration takes place. Note that in [9], a negotiation sohésnalso proposed for
non fixed-price contracts, due to the implications the fipeide contracts may lead
to. Table 7 summarizes the main characteristics of this tadalpad management
approach.

20 Anastasios Gounaris and Efthymia Tsamoura and Yanni®Mpoulos

Table 7 Adaptive control in Medusa [9]

Measurement: Each site monitors its load.

Analysis-Planning:

The operator relocation process is triggered asynchréyousen (i) a site becomes overloaded

and (ii) another site (not-overloaded) is willing to accggart of) its load in exchange of payment.

The overloaded sites select a maximal set of operatorsithatare costly to process locally. Each

not overloaded site, in turn, continuously accumulated tiféers and periodically accepts subsets
of offered operators.

Actuation: Typical operator migration, where operator migration beed is considered small.

5.2.3 Summary

This section discussed two different approaches to inperator load management.
For cooperative scenarios, the solutions presented @resting but still suffer from
significant limitations, such as centralized control medsim and increased risk
to cause performance degradation due to the fact that thetaae costs are not
considered during planning explicitly. On the other hamdnon-cooperative sce-
narios an interesting alternative is proposed, accordirvghich each node decides
autonomously. Although the latter approach is more scejaibi issue that merits
further investigation is to assess the messaging overindaath approaches: in de-
centralized settings, nodes exchange messages in oraado decisions as part of
a negotiation protocol, whereas in centralized settingsles transmit monitoring
information.

5.3 More Generic Solutions

Intra-operator and inter-operator load management tgalesican be combined to-
gether. An example appears in [27], which considers panttil pipelined queries
running on distributed hosts. Intra-operator load manageiis responsible for bal-
ancing the load across partitioned operator instances iayathat reflects the run-
time machine capacities. Inter-operator load manageraeesponsible for detect-
ing bottlenecks in the pipelines and removing them by irgirepthe degree of par-
titioned parallelism of the operators that form the botleks. Another interesting
feature of the same work is that operator state is not remfreed any machine.
Moreover, slow machines, for which the proportion of the kload assigned is
decreased, do not participate in building operator statecatew sites. The respon-
sibility for state movement rests with operators upstrearihé query plan, which
hold copies of data mainly for fault tolerance purposes atdkpense of higher
memory requirements.

Adaptive query processing in distributed settings 21

A combination of inter- and intra-load management has begpqgsed for stream
processing systems as well. This can be achieved throudtsliming and splitting
techniques, respectively [11]. Distributed eddies candveraged to behave in a
similar way, too. However, understanding the interplaynaen efficient resource
allocation and load balancing is a challenging topic beedhs goals are often
conflicting, as explained also in [62].

6 AdQP for Distributed Settings: Other techniques

In this section, we present techniques that deal with thblpro of adaptive query
optimization in distributed environments where the issagsnot investigated at
the operator level. In particular, we discuss proposalsaftaptive parallelization
of queries and web service (WS) calls (e.qg., [64], [57],]6&ldditionally, a few
works that propose robust algorithms for distributed quegtimization are briefly
described (e.g., [34], [22]).

In [64], an adaptive technique is proposed that aims to dpéirthe execution of
range queries in a distributed database. The tables arzontally partitioned and
the resulting partitions are replicated at multiple sterhgsts. In order to minimize
the query response time, the queries are executed in gafdéehosts that store the
data of interest are firstly identified, and then, the idesdifiosts process the same
query using the local data partitions. However, settingnlaaimum level of paral-
lelism does not necessarily minimizes the result conswnptte, since, if a query
is sent to too many storage hosts, results may be returnid than the client who
submitted the query can consume them. Apart from that, shiregome more com-
plicated when multiple queries run in parallel and need t®as the same storage
hosts due to disk contention, which may slow down all queiiessolve this prob-
lem, Vigfussonret al. have proposed an algorithm that can adaptively (i) detegmin
the optimal parallelism level for a single query and (ii) sdhle queries to the stor-
age hosts. In order to find the optimal parallelism level fmtequery, the algorithm
randomly selects to modify the number of hosts that pro¢esgtery in parallel for
a short period. If this change results in an increase in tie@tctonsumption rate,
then the change is adopted. The algorithm also employs &tgrltased approach
in order to schedule queries to hosts. The work in [57] dedlsavsimilar problem,
where adaptive approaches are explored for paralleliaflg o WSs. Also, in [38],
substitution of data sources on the fly is supported to tad&ia source failures.

Wau et al. proposed an adaptive distributed strategy for approxilpateswering
aggregate queries in P2P networks [68]. In particular, dataples are distributed
to sites for further processing. At each processing siteallaggregates are com-
puted that are subsequently sent to a coordinator site jvgoimbines them in order
to produce the global aggregate value. The proposed syratiptively grows the
number of processing nodes as the result accuracy incraditea view to mini-
mizing the query response time.

22 Anastasios Gounaris and Efthymia Tsamoura and Yanni®Mpoulos

Hanet al. have proposed an extension to the initial proposal of pssive opti-
mization in [47] to account for distributed environmentd][3This distributed pro-
posal proceeds similarly to its centralized counterpatHplan fragmentis marked
at special points, where the optimality of the overall plan be validated. The exe-
cution sites monitor the cardinalities of the local intetiage results at these special
points and send a positive or negative vote for re-optironab the controller; if
the observed cardinality lies in the validity range, them ¥bte for re-optimization
is negative, otherwise it is positive. The controller enygla voting scheme in order
to decide whether re-optimization must be triggered or 8eteral voting schemes
are proposed in [34]. For example, in timajority voting scheme, re-optimization is
triggered if at least half of the total execution sites vatere-optimization. On the
other hand, in thenaximum voting scheme, re-optimization is triggered if at least
one site sends a positive vote independently of the votaghbaother sites send.
Another extension to [47] is presented in [22]; the work i@][focuses on queries
that access data from remote data sources.

Finally, some earlier proposals defer resource allocatiecisions until more
accurate information about data statistics becomes &ei(a.g., [33, 71, 50]).

7 Conclusions and Open | ssues

In this chapter, we investigated the state of the art in ibisted adaptive query
processing. The main techniques developed so far deal sgtles such as exten-
sions to eddies (e.g., [62]), intra-operator load balagn¢eng., [59]), inter-operator
load balancing (e.g., [70]) and inter-operator load mansagg with selfish hosts
(e.g., [9]). These techniques differ significantly fromitheentralized counterparts,
both in their objectives and in their focus. The objectiveslistributed AdQP are
more tailored to distributed settings, whereas more atter$ paid to issues relat-
ing to the adaptivity cost, which is significant, especiallyen operators and data
are moved over the network. Nevertheless, most of the tqaksiconsider the in-
creased adaptivity cost in an implicit heuristic-based nesyywith the exception of
the work in [29]. Apart from the adaptation costs, the ovgratformance of AAdQP
techniques needs to be investigated in a more systematicsimag only very few
works are accompanied with theoretical guarantees abeutitehavior [6].

Other issues that have not been adequately addresseddrsdalability and the
interplay between distinct ADQP techniques. Decentrdlaantrol in co-operative
settings has been discussed in [62], but it is still an opsneidiow to apply the
same approach in broader scenarios. Moreover, the retaipibetween load bal-
ancing and efficient resource allocation should be furtikptaged. Also, in stream
environments, load management may include load sheddihgigues as well; itis
worth conducting research to better understand the raktiip between the AAQP
techniques presented in this chapter and load sheddingoa@tyies (e.g., [24]).
For example, when the data production rate of a streamirgy stairce increases
beyond the capacity of the consuming operator, any teclkerfiqun the following

Adaptive query processing in distributed settings 23

is applicable: to perform load shedding or to move the corsuma more power-
ful node or to increase the degree of intra-operator pdisatieof the consumer and
subsequently perform load balancing. An interesting meseisue is to develop
hybrid techniques that combine these different approasitbsa view to improving
efficiency.

An additional interesting topic for further research is marely to combine dif-
ferent query processing techniques, but also to combineFPAd{th more generic
adaptive techniques in distributed settings. For exantpk problem of load bal-
ancing has also been studied in the area of P2P networks[@5g55, 23]); it is
not clear how AdQP behaves when applied to an adaptively geghdistributed in-
frastructure. AAQP in distributed settings may also bothetiie from and influence
techniques in distributed workflow processing (e.qg., [4Bipally, advanced AdQP
techniques should be coupled with techniques that mitidpt@eed for adaptivity,
such as robust initial operator allocation (e.g., [69]).

References

1. Arpaci-Dusseau, R.H.: Run-time adaptation in river. ATMns. Comput. Sysp1(1), 36-86
(2003)

2. Avnur, R., Hellerstein, J.M.: Eddies: Continuously atilap query processing. SIGMOD
Record29(2), 261-272 (2000)

3. Babcock, B., Chaudhuri, S.: Towards a robust query opgmiA principled and practical ap-
proach. In: Proceedings of the 2005 ACM SIGMOD Internati@@nference on Management
of Data, pp. 119-130 (2005)

4. Babu, S., Bizarro, P.: Adaptive query processing in tlekilog glass. In: Proceedings of the
2nd Biennial Conference on Innovative Data Systems Res¢@I®OR), pp. 238-249 (2005)

5. Babu, S., Bizarro, P., DeWitt, D.: Proactive re-optintiza. In: Proceedings of the 2005 ACM
SIGMOD International Conference on Management of Datalpp-—118 (2005)

6. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widdm Adaptive ordering of pipelined
stream filters. In: Proceedings of the ACM SIGMOD InternaibConference on Manage-
ment of Data, pp. 407-418. ACM (2004)

7. Babu, S., Munagala, K., Widom, J., Motwani, R.: Adaptieeting for continuous queries.
In: ICDE, pp. 118-129 (2005)

8. Babu, S., Widom, J.: Continuous queries over data stre8@&VIOD Record30(3), 109-120
(2001)

9. Balazinska, M., Balakrishnan, H., Stonebraker, M.: @amitbased load management in feder-
ated distributed systems. In: Proceedings of the 1st ceméeron Symposium on Networked
Systems Design and Implementation (NSDI), pp. 15-28 (2004)

10. Bizarro, P., Babu, S., DeWitt, D., Widom, J.: Contensdzhrouting: Different plans for dif-
ferent data. In: Proceedings of the 31st International €&emice on Very Large Data Bases
(VLDB), pp. 757-768 (2005)

11. Cherniack, M., Balakrishnan, H., Balazinska, M., Csri®., Cetintemel, U., Xing, Y.,
Zdonik, S.B.: Scalable distributed stream processingCIBR (2003)

12. Chu, F.C., Halpern, J.Y., Gehrke, J.: Least expectetlquezry optimization: What can we
expect? In: Proceedings of the Twenty-first ACM SIGACT-SIGBFSIGART Symposium
on Principles of Database Systems, pp. 293-302. ACM (2002)

13. Chvatal, V.: A greedy heuristic for the set-coveringlpeon. Mathematics of Operations
Research(3), 233-235 (1979)

24

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Anastasios Gounaris and Efthymia Tsamoura and Yanni®Mpoulos

Claypool, K., Claypool, M.: Teddies: trained eddiesreactive stream processing. In: Pro-
ceedings of the 13th International Conference on Databgstei@s for Advanced Applica-
tions (DASFAA), pp. 220-234 (2008)

Deshpande, A.: An initial study of overheads of eddié&MBOD Record33(1), 44-49 (2004)
Deshpande, A., Hellerstein, J.M.: Lifting the burderhistory from adaptive query process-
ing. In: Proceedings of the 30th International Conferent®&ery Large Data Bases (VLDB),
pp. 948-959 (2004)

Deshpande, A., Hellerstein, L.: Flow algorithms forgiel query optimization. In: ICDE,
pp. 754-763 (2008)

Deshpande, A., Ives, Z., Raman, V.: Adaptive query msiog. Foundations and Trends in
Databaseg(1), 1-140 (2007)

DeWitt, D., Gray, J.: Parallel database systems: Thedutf high performance database sys-
tems. Communications of the ACBB(6), 85—98 (1992)

DeWitt, D.J., Naughton, J.F., Schneider, D.A., Sesh&drPractical skew handling in parallel
joins. In: Proceedings of the 18th International Confeeeme Very Large Data Bases (VLDB),
pp. 27-40 (1992)

Eurviriyanukul, K., Paton, N.W., Fernandes, A.A.A.nden, S.J.: Adaptive join processing
in pipelined plans. In: EDBT, pp. 183—-194 (2010)

Ewen, S., Kache, H., Markl, V., Raman, V.: Progressivergptimization for federated
queries. In: Advances in Database Technology - EDBT 200634p-864 (2006)

Gedik, B., Liu, L.: Peercq: A decentralized and selffpming peer-to-peer information mon-
itoring system. In: ICDCS, pp. 490-499 (2003)

Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: Grubjoin: An adag, multi-way, windowed stream
join with time correlation-aware cpu load shedding. IEEBRME. Knowl. Data Engl9(10),
1363-1380 (2007)

Godfrey, B., Lakshminarayanan, K., Surana, S., KarpSRica, |.: Load balancing in dy-
namic structured p2p systems. In: Proceedings of the 23ri&inJoint Conference of the
IEEE Computer and Communications Societies (INFOCOM) 2253 — 2262 (2004)
Gounaris, A., Paton, N.W., Fernandes, A.A.A., SakiellarR.: Adaptive query processing:
A survey. In: B. Eaglestone, S. North, A. Poulovassilis (eéslvances in Databases, 19th
British National Conference on Databases, BNCOD, pp. 112062)

Gounaris, A., Smith, J., Paton, N.W., Sakellariou, RrnBndes, A.A., Watson, P.: Adaptive
workload allocation in query processing in autonomousrogneous environments. Distrib.
Parallel Database?b(3), 125-164 (2009)

Gounaris, A., Yfoulis, C.A., Paton, N.W.: Efficient lobdlancing in partitioned queries under
random perturbations. ACM Transactions on Autonomous atfapfive Systemso appear
Gounaris, A., Yfoulis, C.A., Paton, N.W.: An efficientldbalancing LQR controller in paral-
lel databases queries under random perturbations. InE&H Multi-conference on Systems
and Control (MSC 2009) (2009)

Graefe, G.: Encapsulation of parallelism in the volcapery processing system. In:
H. Garcia-Molina, H.V. Jagadish (eds.) Proceedings of 880IACM SIGMOD International
Conference on Management of Data., pp. 102-111 (1990)

Graefe, G.: Query evaluation techniques for large dasedh ACM Comput. Sur25(2), 73—
170 (1993)

Gu, X., Yu, P, Wang, H.: Adaptive load diffusion for mwlay windowed stream joins. In:
Proceedings of the 23rd IEEE International Conference da Bagineering(ICDE), pp. 146
—155 (2007)

Hameurlain, A., Morvan, F.: CPU and incremental memdigcation in dynamic paralleliza-
tion of SQL queries. Parallel Computig§(4), 525-556 (2002)

Han, W.S., Ng, J., Markl, V., Kache, H., Kandil, M.: Pregsive optimization in a shared-
nothing parallel database. In: Proceedings of the 2007 AGBNVEDD International Confer-
ence on Management of Data (SIGMOD), pp. 809-820 (2007)

Hellerstein, J.M., Franklin, M.J., ChandrasekaranP®&shpande, A., Hildrum, K., Madden,
S., Raman, V., Shah, M.A.: Adaptive query processing: Teldgy in evolution. IEEE Data
Eng. Bull.23(2), 7-18 (2000)

Adaptive query processing in distributed settings 25

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Huebsch, R., Jeffery, S.R.: Freddies: Dht-based adagtiery processing via federated ed-
dies. Technical Report No. UCB/CSD-4-1339, University afifdrnia (2004)

Hwang, J.H., Xing, Y., Cetintemel, U., Zdonik, S.: A ceogtive, self-configuring high-
availability solution for stream processing. In: Procegdi of the 23rd IEEE International
Conference on Data Engineering (ICDE), pp. 176 —185 (2007)

Ives, Z.: Efficient query processing for data integrat®h.D. thesis, University of Washington
(2002)

Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to soum®perties in processing data inte-
gration queries. In: Proceedings of the 2004 ACM SIGMOD rima¢ional Conference on
Management of Data, pp. 395—406 (2004)

Kabra, N., DeWitt, D.J.: Efficient mid-query re-optiration of sub-optimal query execution
plans. In: SIGMOD 1998, Proceedings ACM SIGMOD InternasiobBonference on Manage-
ment of Data, pp. 106-117. ACM Press (1998)

Kephart, J.O., Chess, D.M.: The vision of autonomic catimg. |IEEE ComputeB6(1), 41—
50 (2003)

Kossmann, D.: The state of the art in distributed queoggssing. ACM Computing Surveys
(CSUR)32(4), 422—469 (2000)

Kossmann, D., Stocker, K.: Iterative dynamic prograngna new class of query optimization
algorithms. ACM Trans. Database Sy25(1), 43—-82 (2000)

Lee, K., Paton, N.W., Sakellariou, R., Deelman, E., &edes, A.A.A., Mehta, G.: Adaptive
workflow processing and execution in pegasus. ConcurrendyCamputation: Practice and
Experience21(16), 1965-1981 (2009)

Liu, B., Jbantova, M., Rundensteiner, E.A.: Optimizstgte-intensive non-blocking queries
using run-time adaptation. In: Proceedings of the 2007 IRBEl International Conference
on Data Engineering Workshop (ICDEW), pp. 614-623 (2007)

Mackert, L.F., Lohman, G.M.: R* optimizer validationcaperformance evaluation for dis-
tributed queries. In: VLDB’86 Twelfth International Coménce on Very Large Data Bases.,
pp. 149-159 (1986)

Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh,Gilimdzic, M.: Robust query
processing through progressive optimization. In: Proeegsdof the 2004 ACM SIGMOD
International Conference on Management of Data, pp. 659{8704)

Nehme, R.V., Rundensteiner, E.A., Bertino, E.: Satifig query mesh for adaptive multi-
route query processing. In: Proceedings of the 12th Intermal Conference on Extending
Database Technology (EDBT), pp. 803-814 (2009)

Nehme, R.V., Works, K.E., Rundensteiner, E.A., BertlBo Query mesh: Multi-route query
processing technology. Proceedings of the VLDB Endowr2é2jt (2009)

Ozcan, F., Nural, S., Koksal, P., Evrendilek, C., Dogac,Dynamic query optimization in
multidatabases. |IEEE Data Eng. B@0(3), 38—45 (1997)

Ozsu, M., Valduriez, P. (eds.): Principles of DistramiDatabase Systems (Second Edition).
Prentice-Hall (1999)

Pang, H., Carey, M.J., Livny, M.: Memory-adaptive emtérsorting. In: 19th International
Conference on Very Large Data Bases., pp. 618—629 (1993)

Papoulis, A.: Probability, Random Variables, and Sastib Processes, 3rd edn.

Paton, N.W., Buenabad-Chavez, J., Chen, M., RamanywdrtSG., Narang, ., Yellin, D.M.,
Fernandes, A.A.: Autonomic query parallelization using-tedicated computers: an evalua-
tion of adaptivity options. The VLDB JournaB(1), 119-140 (2009)

Pitoura, T., Ntarmos, N., Triantafillou, P.: Replicatidoad balancing and efficient range
query processing in dhts. In: Proceedings of the 10th latesnal Conference on Extend-
ing Database Technology (EDBT), pp. 131-148 (2006)

Raman, V., Deshpande, A., Hellerstein, J.M.: Usingestabdules for adaptive query pro-
cessing. Processdings of the IEEE 19th International CGenée on Data Engineering Data
Engineering (ICDE) pp. 353-364 (2003)

Sabesan, M., Risch, T.: Adaptive parallelization ofrgggeover dependent web service calls.
In: Proceedings of the 25th IEEE International Conferent®ata Engineering (ICDE), pp.
1725 —-1732 (2009)

26

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Anastasios Gounaris and Efthymia Tsamoura and Yanni®Mpoulos

Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., EpR.A., Price, T.G.: Access path selec-
tion in a relational database management system. In: Riogeeof the 1979 ACM SIGMOD
International Conference on Management of Data. ACM (1979)

Shah, M., Hellerstein, J., Chandrasekaran, S., Frankli: Flux: An adaptive partitioning
operator for continuous query systems. In: ProceedingseofEEE 19th International Con-
ference on Data Engineering (ICDE), pp. 25-36 (2003)

Shah, M.A., Hellerstein, J.M., Brewer, E.A.. Highlya#able, fault-tolerant, parallel
dataflows. In: G. Weikum, A.C. Kdnig, S. Defloch (eds.) Rextings of the ACM SIG-
MOD International Conference on Management of Data, Para)jce, June 13-18, 2004, pp.
827-838. ACM (2004)

Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: Leo 42’s learning optimizer. In: VLDB
2001, Proceedings of 27th International Conference on Yarge Data Bases, pp. 19-28
(2001)

Tian, F., DeWitt, D.J.: Tuple routing strategies fortdimited eddies. In: Proceedings of the
29th International Conference on Very Large Data Bases ®)L.Pp. 333—-344 (2003)

Urhan, T., Franklin, M.J.: Xjoin: A reactively-scheddI pipelined join operator. IEEE Data
Engineering Bulletir23(2), 27-33 (2000)

Vigfusson, VY., Silberstein, A., Cooper, B.F., FonsdtaAdaptively parallelizing distributed
range queries. Proceedings of the VLDB Endown®{f}, 682—693 (2009)

Viglas, S.D., Naughton, J.F., Burger, J.: Maximizing tutput rate of multi-way join queries
over streaming information sources. In: Proceedings oR#ih International Conference on
Very Large Data Bases (VLDB), pp. 285—-296 (2003)

Wang, S., Rundensteiner, E.: Scalable stream join psotgwith expensive predicates: Work-
load distribution and adaptation by time-slicing. In: Rredings of the 12th International
Conference on Extending Database Technology (EDBT), pp-280 (2009)

Wang, W., Sharaf, M.A., Guo, Dzsu, M.T.: Potential-driven load distribution for disuited
data stream processing. In: Proceedings of the 2nd Intena@iVorkshop on Scalable Stream
Processing System (SSPS), pp. 13-22 (2008)

Wu, S., Jiang, S., Ooi, B.C., Tan, K.L.: Distributed aeliaggregations. Proceedings of the
VLDB Endowment2(1), 443-454 (2009)

Xing, Y., Hwang, J.H., Cetintemel, U., Zdonik, S.: Pdixg resiliency to load variations in
distributed stream processing. In: Proceedings of the 32ednational Conference on Very
Large Data Bases (VLDB), pp. 775-786 (2006)

Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic load distritaun in the borealis stream processor.
In: Proceedings of the 21st International Conference om Bagineering (ICDE), pp. 791—
802 (2005)

Yu, M.J., Sheu, P.C.Y.: Adaptive join algorithms in dymia distributed databases. Distributed
and Parallel Databasé&gl), 5-30 (1997)

Zhou, Y., Ooi, B.C., Tan, K.L.: Dynamic load managementdistributed continuous query
systems. In: Proceedings of the 21st International Confer@n Data Engineering (ICDE),
pp. 322-323 (2005)

Zhu, Y., Rundensteiner, E.A., Heineman, G.T.: Dynartaa pigration for continuous queries
over data streams. In: Proceedings of the 2004 ACM SIGMOErihattional Conference on
Management of Data, pp. 431-442 (2004)

