
Minimization of the response time in parallel database queries:
an adaptive cost-aware MPC-based solution

Christos A. Yfoulis , Anastasios Gounaris and Dimitris Tzolas

Abstract— Load balancing in partitioned database queries
is a significant issue in efficient data management of large
datasets. When such queries are processed in a volatile and
unpredictable setting, as is the typical case today, continuous
workload re-assignments need to take place to ensure that the
workload allocated to each participating machine reflects its
actual capabilities, so that the query response time is minimized.
The main challenge is to continuously adapt the load balancing
policy, while considering the inherent control cost. The problem
is modeled as a constrained optimization problem and, in this
work, we present an efficient and effective MPC-based solution,
which improves upon previous work.

Keywords : MPC, load balancing, parallel database
queries

I. I NTRODUCTION

Improving the efficiency of the execution of database
queries is a persistent topic in data management research
given also the increasingly vast volumes of data that are con-
tinuously produced and processed by modern applications.
Traditionally, parallelism plays a key role in speeding-up
the query execution. Three forms of parallelism have been
identified in query processing, namely independent, pipelined
and partitioned [4]. The most performance boosting (in terms
of minimization of query response time) parallel technique,
which is also the topic of this work, is partitioned parallelism.
A query plan consists of multiple operators and the execution
of a single query operator may benefit from partitioned
parallelism when this operator is instantiated several times
across different physical nodes with each instance processing
a distinct data partition.

In partitioned parallelism, the response time is determined
by the slowest instance. As such, partitioned parallelism
must be accompanied by load balancing techniques in order
to yield performance benefits. Informally, load balancing
is responsible for assigning work to machines in a way
that reflects their capabilities. There are two main types
of challenges in load balancing. Firstly, modern queries are
particularly long-running, and, in addition, the execution en-
vironment is volatile, which calls for continuous adaptations
of the workload allocations across the machines participating
in the query execution. Secondly, query operators, such as
joins and aggregations [7], build up internal state, which can
grow quite large; during work reassignments, parts of this

Anastasios Gounaris is with the Dept. of Informatics, Aristotle University
of Thessaloniki, Greece. E-mail:gounaria@csd.auth.gr

Christos A. Yfoulis and Dimitris Tzolas are with the Automation Dept.,
ATEI of Thessaloniki, Greece. E-mails:cyfoulis@teithe.gr,
tzolas@autom.teithe.gr

state are moved from one machine to another, which incurs
significant time cost.

In our previous work, to address the problem of balancing
the load of a partitioned query across multiple heteroge-
neous machines, an adaptive MIMO LQR controller in
discrete-time has been designed in [8], [9]. In general, LQR
controllers can encapsulate the cost to enforce a response
(e.g., the cost to move state from one machine to another)
along with the cost of deviations from the ideal state in a
unified cost function. However, there are certain limitations
associated with an LQR-based methodology as explained in
[8], [9]. These limitations include the loss of controllability
and the incorporation of constraints.

The contribution of this work is the proposal of an adaptive
MPC (Model Predictive Control) scheme that also overcomes
the afore-mentioned limitations. More specifically, the strat-
egy proposed is more suitable for volatile, unpredictable
settings and supports the direct incorporation of the con-
straints without strict controllability requirements, while still
inheriting all desirable characteristics of the LQR optimal
control strategy. We also demonstrate, with the help of
simple MATLAB simulations, that our approach provides an
efficient solution to the problem in question and gives more
degrees of freedom for future extensions and improvements.

Related Work: The problem we deal with is an example
of developing autonomic solutions for data management.
In principle, autonomic computing can benefit from control
theory techniques [14]. Several applications of control theory
to computing systems are presented in [1]. The usage of LQR
in a database environment has been proposed in [5] with the
aim of adjusting the sizes of memory pools in a database
system. An interesting approach to enforcing desired utiliza-
tion set points under a range of dynamic workloads with the
help of a controller appears in [6], where the methodology
adopted is based on diffusive load balancing. In a different
setting and under the assumption that there exists a detailed
mathematical model of the system, cost-aware load balancing
has been investigated in a [3]. Finally, MPC controllers for
solving different computing problems have been employed
in [11], [13].

Structure: The remainder of this paper is structured as
follows. Section II formally describes the load balancing
problem and presents the main concept behind the LQR
approach proposed in previous work. The presentation of our
new MPC controller is in Section III, whereas, in subsection
III-B, we conduct some representative simulation experi-
ments. In Section IV we comment on some implementation
issues and future work. Section V concludes the paper.

II. PROBLEM DESCRIPTION ANDBACKGROUND

The load balancing problem can be formalized as follows.
Let P be the degree of intra-operator parallelism. The
workload proportion that each of the participating nodes
receives at discrete timek is u1(k), u2(k), · · · , uP (k), with
the constraints

∑P

i=1 ui(k) = 1, ∀k andui(k) ≥ 0, ∀k. Each
node possesses a certain amount of statesi(k), i = 1 . . . P .
ci(k) denotes the cost (overhead) to reach statesi(k) from
statesi(k − 1), as a result of a change inui(k).
y1(k), y2(k), . . . , yP (k) define the expected values for the

completion time of each of the participating nodes given the
workload allocation at timek. The role of the load balancer is
to estimate theui(k+1) values that minimize the following

max(yi(k + 1) + ci(k + 1)), i = 1 . . . P (1)

It can be shown that the workload allocation is optimal
if y1(k) = y2(k) = . . . = yP (k). Essentially, the load bal-
ancing objective defined in (1) includes a trade-off between
(a) reaching the optimal workload allocation, and (b) the
cost for reaching such an allocation, which is due to state
movements.

We assume the existence of a centralized controller that
receives feedback from each machine and controls the work-
load distribution policy. The controller’s output vectory(k)
is aP ×1 vector with the values of the expected completion
time for each node. The input vectoru(k) is a P × 1
vector of our manipulated variables, which are the workload
allocations at timek. According to the load balancing
requirement, all outputs are equalized to their optimal value,
which is their averagey(k) = 1

P

∑P

i=1 yi(k). Hence we have
to design a tracking controller so that the outputs follow a
time-varying reference trajectoryy(k), which is specified as
a linear combination of measured outputs, i.e. their average.

In the LQR regulation controller proposed in [8], [9],
this tracking requirement was typically transformed to a
regulation problem and adynamic state feedback strategy,
which is the state-space analog of a PI (proportional integral)
controller. This strategy allowed tracking of a time-varying
reference input and possessed also disturbance rejection
properties, due to the presence of an integrator for each state.
These properties are absolutely essential in our problem, due
to the unpredictability of machine load, the time-varying
reference input imposed by the balancing requirement, and
the presence of measurement noise as well as modeling
inaccuracies. In this LQR framework, the problem of de-
veloping a load balancer that considers the overhead of its
decisions, is transformed to the problem of defining theQ

and R matrices. The former captures the requirement for
quick convergence to the optimal state, whereas the latter
aims to reflect the overhead of such a convergence. It should
be noted that, in each step, the matrixB(k) is updated and
a new LQR optimization problem is solved to specify new
controller gains that are subsequently mapped to workload
allocation proportions.

However, the LQR-based balancer suffered from several
limitations. The problem imposes two types of constraints

on the control inputs, i.e.ui(k) ≥ 0 and
∑P

i=1 ui(k) = 1.
The presence of the equality constraint in particular, poses
serious difficulties in LQR. Moreover, it has been shown
that, due to the balancing requirement, the full-order model
suffers from loss of controllability. To solve this, a reduced-
order design has been followed, in which the LQR controller
is used forP − 1 nodes only. The allocation of the last
machine is given byuP (k) = 1 −

∑P−1
j=1 uj(k) to ensure

that the equality constraint is satisfied. The bound constraints
0 ≤ ui(k) ≤ 1 , ∀k can be satisfied only by careful selection
of the LQR parameters. Moreover, the LQR in in [8], [9]
penalized input values, whereas, in a more realistic case,
only changes to these values should be penalized.

III. D ESIGN OF THEMPC CONTROLLER

The inherent difficulties, limitations and the special char-
acteristics of the load balancing problem, as explained briefly
above, suggest a natural way forward toward the use of MPC
ideas. The main advantages are:

• Direct incorporation of constraints into the design,
whereas, in LQR, constraints are considered indirectly.

• The finite horizon of MPC does not rely on strict
controllability assumptions.

• The MPC cost function (to be presented later) penalizes
changes in the input rather than exact input values.

• There exist additional adaptivity features, such as using
time-varying weighting matrices at different iteration
steps or along the prediction horizon, which can model
the current conditions more accurately.

A. MPC formulation

In what follows, we present the design of a typical model
predictive scheme suitable to our load balancing problem. We
first derive a mathematical formulation in the common MPC
framework, by defining an appropriate reference trajectory
and its associated cost function, relative to the load bal-
ancing requirements and constraints. Then, the formulation
is transformed to a constrained least-squares or quadratic
programming problem, so that the design can be based on
existing solvers.

Our cost function is in the standard MPC form, i.e. it
is a finite horizon quadratic criterion with positive definite
weighting matrices

J =

Hp∑

i=1

‖ y(k + i|k)− r(k + i|k) ‖
2
Q(i)

+

Hu−1∑

i=1

‖ ∆u(k + i|k) ‖
2
R(i) (2)

The variablesy(k), r(k),u(k) are theP × 1 output, refer-
ence input and input vectors at discrete timek, respectively.
Hp, Hu are the prediction and control horizons.

Our state-space model comes in the standard form

xm(k+1) = Am(k)x(k) +Bm(k)u(k) , y(k) = xm(k)
(3)

where we assume that the outputs coincide with the states,
all vectors have dimensionP ×1 and all matrices areP ×P .
Further assumptions in [8] are that the nodes are independent,
i.e. the matricesAm(k) andBm(k) can be assumed diagonal
and they are time-varying, since their entries are related to
the time units required for each of the participating machines
to process a unit of workload, which is the inverse of the
processing speed of the machines, and, as such, can capture
both changes in the computational capacity, e.g., due to load
change, and data skews. Because these entries are not only
affected by the controller’s reallocation decisions, but also
from other unpredictable jobs running on remote machines,
adaptive (self-tuning) control ideas could be useful to ensure
more accurate estimates of their real values at every step
from our feedback measurements. A systematic design along
this path falls into the area ofadaptive MPC and requires
careful theoretical study and testing with real world data,
which are outside of the scope of this paper, and will be
considered in future work. Another choice could be to use
simplified approximate models as in [9] and rely on the
controller’s robustness and disturbance rejection properties to
account for the modeling inaccuracies. Nevertheless, we next
present a generic MPC formulation which is suitable for both
design choices. In the following we assume that the matrices
Am(k),Bm(k) have been obtained using e.g. a standard off-
line or on-line black-box identification procedure [10] on the
basis of input-output data.

In a general formulation of the MPC problem [12], we
consider the following augmented state-space model with
additional output disturbances

x(k + 1) = A · x(k) + B ·∆u(k) (4)

y(k) = C · x(k) + d(k) (5)

with new state vectors and system matrices defined as

x(k) =

[
∆xm(k)
h(k)

]

, h(k) = [0 I]x(k) (6)

A =

[
Am 0P×P

Am IP×P

]

, B =

[
Bm

Bm

]

, C = [0 I] (7)

where we distinguish between the actual measured output
y(k) and the outputh(k) obtained in the absence of any
disturbance. This model is of an incremental form for the
control and hasP embedded integrators.

In our setting, the number of outputs is equal to the number
of inputs, hence we expect to be able to control each of
the measured outputs independently with zero steady-state
errors. This can be ensured if we manage to deal with the
uncertainties and disturbances present, which requires inte-
gral action and unbiased predictions. The integral action is
ensured with the embedding of integrators in the augmented
model. Unbiased predictions in a stochastic setting require
the use of a disturbance predictor (observer). The simplest
approach is to use a disturbance observer on the basis of
the constant output disturbance assumption (DMC scheme)
[12], i.e. in the formd̂(k+ i|k) = d̂(k|k), hence unchanged
during the prediction horizon. The disturbance is estimated

by comparing the measured output with the predicted one,
i.e. d̂(k|k) = y(k) − ĥ(k|k − 1). Assuming similarly a
constant matrixB(k) during the prediction horizon, this
model lends itself to a natural MPC implementation with
the following output prediction equations

ĥ(k + 1|k) = C[Ax(k) +B∆u(k)]

ĥ(k + 2|k) = C[A2x(k) +AB∆u(k) +B∆u(k + 1)]

...
...

ĥ(k +Hu|k) = C[AHux(k) +A(Hu−1)B∆u(k) +

. . .+AB∆u(k +Hu − 1)]

ĥ(k +Hu + 1|k) = C[A(Hu+1)x(k) +AHuB∆u(k) +

. . .+B∆u(k +Hu − 1)]

...
...

ĥ(k +Hp|k) = C[AHpx(k) +A(Hp−1)B∆u(k) +

. . .+A(Hp−Hu)B∆u(k +Hu − 1)]

which, under the constant output disturbance assumption,
lead to the prediction equations for the actual output

ŷ(k + i|k) = ĥ(k + i|k) + d(k|k) , 1 ≤ i ≤ Hp (8)

To compute the tracking error term in (2) we first need to
express the predictions in the form

Y (k) = Ψx(k) + Θ∆U(k) + Γ d̂(k) (9)

where Y (k),∆U(k) are vectors collecting the variables
along the whole horizon, i.e.

Y (k) =






x̂(k + 1|k)
...

x̂(k +Hp|k)




 , (10)

∆U(k) =






∆u(k + 1|k)
...

∆u(k +Hu − 1|k)




 (11)

with the matricesΨ,Θ,Γ defined accordingly

Ψ =








CA

CA2

...
CAHp








︸ ︷︷ ︸

PHp×Hp

, Γ =








IPXP

IPXP

...
IPXP








︸ ︷︷ ︸

PHp×Hp

, (12)

Θ =













CB 0 . . . 0

CAB CB . . . 0
...

. . .
. . .

...
CA(Hu−1)B CB

...
. . .

. . .
...

CA(Hp−1)B CA(Hp−Hu)B













︸ ︷︷ ︸

PHp×PHu

(13)

Next, a suitable reference trajectoryr(k) in (2) must be
defined according to the load balancing requirement, i.e.

r(k + i|k) =
1

P

P∑

j=1

yj(k + i|k) , i = 1, . . . , P (14)

To this end, we define a newP × 1 vector t(k) given by
t(k + i|k) = (

∑P

i=1 yj(k + i|k)) · [1 . . . 1]
T to form

T (k) =
1

P






t(k + 1|k)
...

t(k +Hp|k)




 (15)

Now we are in the position to express the error term in our
cost function as

E(k) = Y (k)− T (k) = W · Y (k) , W =
1

P
· diag{Sp}

(16)
whereW is a block diagonalPHp×PHp matrix consisting
of blocksSp : P × P with

Sp(i, j) = −1, i 6= j , Sp(i, i) = 1 , ∀i, j = 1, . . . , P

Combining (9) and (16) yields

E(k) = Ψ̃x(k) + Θ̃∆U(k) + Γ̃ d̂(k) (17)

whereΨ̃ = W ·Ψ , Θ̃ = W ·Θ , Γ̃ = W · Γ.
Next, the constraints of the load balancing problem have

to be added. The constraints are in the form of linear
inequalities (allocation bounds) and linear equalities (load
balancing requirements)

0 ≤ uj(k + i|k) ≤ 1 ,

P∑

j=1

∆uj(k + i|k) = 0 (18)

with j = 1, . . . , P , i = 1, . . . , Hu. After some manipu-
lations, they can be cast into the MPC optimization in the
form

Ω1 ·∆U(k) ≤ ω1−ω2 ·u(k− 1) , Ω2 ·∆U(k) = 0 (19)

Ω1 =

















1 0 . . . 0
1 1 . . . 0
...

...
. . .

...
1 1 . . . 1
−1 0 . . . 0
−1 −1 . . . 0
...

...
. . .

...
−1 −1 . . . −1

















︸ ︷︷ ︸

2PHu×PHu

ω1 =















1
1
...
1
0
...
0















︸ ︷︷ ︸

2PHu×1

ω2 =















1
1
...
1
−1
...

−1















︸ ︷︷ ︸

2PHu×1

(20)

Ω2 =








1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0

...
. . .

...
0 . . . 0 . . . 1 . . . 1








︸ ︷︷ ︸

Hu×PHu

(21)

On the basis of the analytical formulation of the previous
subsection, it is trivial to transform our MPC formulation to a

standard constrained least squares or quadratic programming
formulation. In our simulator the controller is implemented
using eitherlsqlin or quadprog solver in Matlab. Their
computational complexity is polynomial to the product of
the number of machines, and the control and the prediction
horizons, hence we expect a tractable overhead at least for
medium-sized problems.

B. Simulation results

In this section, we present some examples to illustrate the
behavior of the MPC controller. The examples are based on a
simple simulator in Matlab. Figure 1 shows simulation results
for 2 machines and different time-varying loads, i.e. for
step changes, periodic(sinus) noise-free, and periodic poisson
loads. In the case of periodic poisson loads, online system
identification using Recursive Least Squares (RLS) [2] is
used. The parameter estimates for theai(k), bi(k) i = 1, 2,
i.e. the entries of the diagonal matricesAm,Bm in (3), are
depicted in Figure 2.

Figure 3 shows results for 3 machines. In this figure
similar periodic poisson load profiles are also used. In all ex-
periments we setHu = 5, Hp = 10 andQ(i) = Ip , R(i) =
10 · Ip , whereIp is theP ×P identity matrix. The periodic
poisson loads are generated by using periodic (sinus) load
profiles corrupted by random job arrivals according to the
poisson distribution.

The results show good performance in the sense that the
controller manages to keep the expected completion time of
both perturbed and non-perturbed machines roughly equal
(see right column in the figures); i.e., the controller appears
to be capable of dealing with the load balancing problem in
the presence of variable and noisy loads, uncertainties and
disturbances.

IV. I MPLEMENTATION AND FUTURE WORK

In our real implementation, we compute at each discrete
stepk the increment∆u(k) and specify the current input as
u(k) = ∆u(k) + u(k − 1). This policy requires a feasible
set of initial conditions, which is taken asx(0) = 1

P
·

[1 1 . . .1], i.e. equal shares among all machines are initially
assumed. Furthermore, a common practice in computing
system –in order to smooth out the stochastics present– is to
apply a moving average filter [10] to the output feedback
measurementsy(k) to form a filtered versionyf (k), i.e.
yf (k) = c · y(k) + (1− c) · y(k − 1) , 0 ≤ c ≤ 1.

A number of comments regarding our experimentation
with the proposed algorithm are discussed below; these
comments also pave the way for more systematic related
future work.

• In our simulation experiments we did not face any
problems regarding the loss of controllability identified
in the LQR setting. This permitted a full-order design.
This is attributed to the new MPC setting, which is
based on a finite horizon and a different formulation.

• It appears that the MPC framework proposed for the
specific load balancing problem has good feasibility
properties –for proper horizonHp, Hu choices–. The

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
machine load

time steps
5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple allocation

time steps
5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4
expected completion times

time steps

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
machine load

time steps
5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple allocation

time steps
5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4
expected completion times

time steps

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
machine load

time steps
10 20 30 40 50 60 70 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple allocation

time steps
10 20 30 40 50 60 70 80

0

0.5

1

1.5

2

2.5

3

3.5

4
expected completion times

time steps

Fig. 1. Examples with two machines. Left column: the load of the machines. Middle column: the tuple allocation. Right column: the expected completion
times. Top row: step change type of load on one of the machines. Middle row: periodic(sinus) noise-free load. Bottom row:periodic poisson load.

0 10 20 30 40 50 60 70 80
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Model 1 parameters

time steps
0 10 20 30 40 50 60 70 80

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Model 2 parameters

time steps

Fig. 2. Typical online system identification for the previous example with two machines for periodic poisson load. Left:estimated parameters for machine
1. Right: estimated parameters for machine 2.

5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

10
machine load

time steps
5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple distribution

time steps
5 10 15 20 25 30 35 40 45

0

1

2

3

4

5

6
expected completion times

time steps

Fig. 3. Example with three machines for periodic poisson load. Left: the load of the machines. Middle: the tuple allocation. Right: the expected completion
times.

feasibility of the algorithm has been tested thoroughly
by imposing highly variable loads, unknown permanent
disturbances, and structured and unstructured uncertain-
ties. This is of course also attributed to the simple
but restrictive form of the constraints, which keep the
control inputs bounded and the allowable control moves
limited. These suggest that the MPC algorithm is well-
posed, i.e. there are guarantees of recursive feasibility.
Further analysis and proofs are necessary in future
work.

• The MPC scheme appears to be a “safer” environment
for the load balancing problem compared to the LQR
framework, where we experienced limitations, such as
need for a reduced-order design for ensuring control-
lability and constraint satisfaction, need for careful
selection of the weighting matrices to respect constraints
etc. The key advantage of the MPC scheme is that
these are overcome with the direct incorporation of
constraints. The framework allows also further consid-
erations to be made such as addition of extra realistic
constraints, e.g. rate amplitude constraints –related to
rate of load transfer–, or state constraints, e.g. when
working with normalized loads. Moreover, further more
advanced adaptive policies could be tested, e.g. the use
of time-varying weighting matricesQ(i),R(i) so that
the current conditions are better reflected.

• Fault detection and safety mechanisms in cases where
some of the remote machines are becoming slow or
even fail to respond due to overload or other undesirable
phenomena are essential in our setting.

• Our MPC formulation could be extended in a stochastic
setting to accommodate plant noise and disturbances. In
such a case, a Kalman filter could be added.

V. CONCLUSIONS

This work presents a novel approach to balancing parallel
query execution over machines with unpredictable time-
varying loads. The main challenge in this problem is to
perform workload adaptations judiciously, because adapta-
tions incur non negligible costs that, if not considered, may
lead to significant performance degradations. Our solution
employs an MPC controller. Simple MATLAB simulations
show improvements on our recent LQR-based proposal for
the same problem, which suffered from significant limitations
in the way the load balancing problem was modeled. More
specifically, the design presented in this work is capable
of encapsulating the constraints that are inherent to load
balancing optimization problems and does not rely on strict
controllability assumptions. Apart from the improved design,
our dynamic balancing technique is characterized by im-
proved performance and effectiveness and less sensitivityto
configuration parameters.

In this paper a first step has been taken, with the im-
plementation and testing of our proposed MPC controller
using simple MATLAB simulations. Immediate future plans
include the experimentation with the specialized MATLAB
simulator used in [8]. Furthermore, the use of adaptive

control ideas, and the feasibility, recursive stability and
fault-safety properties are further interesting paths forfuture
work, for which analytical work and theoretical proofs are
required. Extension of the MPC controller to an adaptive
hybrid or supervisory MPC control scheme shall be naturally
considered. Finally, it is very important to incorporate the
controller in a real environment and investigate the actual
impact of measurements delays and noise, as well as the
real overhead times of the proposed controller schemes.

VI. A CKNOWLEDGEMENTS

C. Yfoulis and A. Gounaris have been supported by the
ATEI grant titled “Advanced control of computing systems”.

REFERENCES

[1] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Yu, and X. Zhu. Intro-
duction to control theory and its application to computing systems. In
Z. Liu and C. Xia, editors,Performance Modeling and Engineering,
pages 185–216. Springer-Verlag, 2008.

[2] K. J. Åström and B. Wittenmark.Adaptive Control. Addison-Wesley,
Reading, MA, USA, 1995.

[3] J. Birdwell, T. Zhong, J. Chiasson, C. Abdallah, and M. Hayat.
Resource-constrained load balancing controller for a parallel database.
In Proceedings of the American Control Conference, 2006.

[4] D. J. DeWitt and J. Gray. Parallel database systems: The future of high
performance database systems.Commun. ACM, 35(6):85–98, 1992.

[5] Y. Diao, J. L. Hellerstein, A. J. Storm, M. Surendra, S. Lightstone,
S. S. Parekh, and C. Garcia-Arellano. Incorporating cost ofcontrol
into the design of a load balancing controller. InIEEE Real-Time and
Embedded Technology and Applications Symposium, pages 376–387,
2004.

[6] Y. Fu, H. Wang, C. Lu, and R. S. Chandra. Distributed utilization
control for real-time clusters with load balancing. InRTSS ’06:
Proceedings of the 27th IEEE International Real-Time Systems Sym-
posium, pages 137–146, 2006.

[7] H. Garcia-Molina, J. D. Ullman, and J. D. Widom.Database Systems:
The Complete Book. Prentice Hall, 2001.

[8] A. Gounaris, C. A. Yfoulis, and N. W. Paton. An efficient load
balancing LQR controller in parallel databases queries under random
perturbations. In3rd IEEE Multi-conference on Systems and Control
(MSC 2009), 2009.

[9] A. Gounaris, C. A. Yfoulis, R. Sakellariou, and N. W. Paton. Efficient
load balancing in partitioned queries under random perturbations.
ACM Transactions on Autonomous and Adaptive Systems, to appear.

[10] J. Hellerstein, D. Tilbury, Y. Diao, and S. Parekh.Feedback Control
of Computing Systems. Wiley, 2004.

[11] D. Jia, X. Wang, C. Lu, and X. Koutsoukos. Deucon: Decentralized
end-to-end utilization control for distributed real-timesystems.IEEE
Trans. Parallel Distrib. Syst., 18(7):996–1009, 2007.

[12] J. M. Maciejowski.Predictive Control with Constraints. Prentice Hall,
Harlow, England, 2002.

[13] C.-Z. Xu, B. Liu, and J. Wei. Model predictive feedback control for
qos assurance in webservers.Computer, 41:66–72, 2008.

[14] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, and
K. Shin. What does control theory bring to systems research?SIGOPS
Oper. Syst. Rev., 43(1):62–69, 2009.

