
Declarative expression and optimization
of data-intensive flows

Georgia Kougka and Anastasios Gounaris

Department of Informatics
Aristotle University of Thessaloniki, Greece

{georkoug,gounaria}@csd.auth.gr

Abstract. Data-intensive analytic flows, such as populating a dataware-
house or analyzing a click stream at runtime, are very common in modern
business intelligence scenarios. Current state-of-the-art data flow man-
agement techniques rely on the users to specify the flow structure without
performing automated optimization of that structure. In this work, we
introduce a declarative way to specify flows, which is based on anno-
tated descriptions of the output schema of each flow activity. We show
that our approach is adequate to capture both a wide-range of arbi-
trary data transformations, which cannot be supported by traditional
relational operators, and the precedence constraints between the vari-
ous stages in the flow. Moreover, we show that we can express the flows
as annotated queries and thus apply precedence-aware query optimiza-
tion algorithms. We propose an approach to optimizing linear conceptual
data flows by producing a parallel execution plan and our evaluation re-
sults show that we can speedup the flow execution by up to an order of
magnitude compared to existing techniques.

1 Introduction

Data-intensive analytic flows are typically encountered in business intelligence
scenarios and are nowadays attracting renewed interest, since they go beyond
traditional Extract - Transform - Load (ETL) flows [19, 16]. ETLs are a special
form of data flows used to populate a data warehouse with up-to-date, clean and
appropriately transformed source records. They can be considered as a directed
acyclic graph (DAG), similar to scientific and business workflows, capturing the
flow of data from the sources to the data warehouse [18]. Next generation busi-
ness intelligence (BI) involves more complex flows that encompass data/text
analytics, machine learning operations, and so on [16]; in this work we target
such BI flows.

Our motivation is twofold. Firstly, modern data flows may be particularly
complex to be described manually in a procedural manner (e.g., [16]). Secondly,
the vast amount of data that such flows need to process under pressing time
constraints calls for effective, automated optimizers, which should be capable
of devising execution plans with minimum time cost. In this work, we target
two correlated goals, namely declarative statement and efficient optimization.

Declarative statement of data flows implies that, instead of specifying the ex-
act task ordering, flow designers may need to specify only higher-level aspects,
such as the precedence constraints between flow stages, i.e., which task needs to
precede other tasks. An example of an existing declarative approach is the De-
clare language that is based on linear temporal logic [12]. We follow a different
approach that bears similarities with data integration mediation systems and
allows the flow to be expressed in the form of annotated SQL-like queries.

Regardless of the exact declarative form a flow can be expressed, such declara-
tive approaches are practical only under the condition that the system is capable
of taking the responsibility for automatically devising a concrete execution plan
in an efficient and dependable manner; this is exactly the role of query opti-
mization in database systems, which also rely on declarative task specifications,
and we envisage a similar role in data flow systems as well. Although traditional
query optimization techniques cannot be applied in a straightforward manner,
we propose an approach to optimizing linear conceptual data flows by producing
a parallel execution plan, inspired by advanced query optimization techniques.

The contribution of this work is as follows. We demonstrate how we can ex-
press data flows in a declarative manner that is then amenable to optimization
in a straight-forward manner. To this end, we use an annotated flavour of SQL,
where flow steps are described by input and output virtual relations and anno-
tations are inspired by the binding patterns in [5]. Our approach to declarative
statement does not rely on the arguably limited expressiveness of relational al-
gebra in order to describe arbitrary data manipulations, like those in ETLs, and
is adequate to describe the precedence constraints between data flow tasks. In
addition, we present optimization algorithms for logically linear flows that take
into account the precedence constraints so that correctness is guaranteed. As
shown in our evaluation, the approach that allows for parallel execution flows
may lead to performance improvements up to an order of magnitude in the best
case, and performance degradation up to 1.66 times in the worst case compared
to the best current technique.

Structure: Sec. 2 presents our approach to declarative statement of data flows
with a view to enabling automated optimization. The optimization algorithms
for linear flows along with thorough evaluation of performance improvements are
in Sec. 3. In Sec. 4 and 5 we discuss related work and conclusions, respectively.

2 Declarative statement of data flows

We map each flow activity1 to a virtual relation described by a non-changing
schema. More specifically, each activity is mapped to a virtual annotated relation
R(A, a, p), where (i) R is the task’s unique name that also serves as its identifier;
(ii) A = (A1, A2, · · · , An) is the list of input and output attributes, which are
also identified by their names; (iii) a is a vector of size equal to the size of A,
such that the i-th element of a is “b” (resp. “f”) if the i-th element of A must
be bound (resp. free); and (iv) p is a list of sets, where the j-th set includes the
names of the bound variables of other virtual relations that must precede R.Aj .

1 The terms flow tasks and activities are used interchangeably.

The notation of the a vector is aligned to the notation of binding patterns
in [5], and allows us to distinguish between the attributes that need to be-
long to the input (the bound ones) and the new attributes that are produced
in the output (free attributes). In other words, a binding pattern for a rela-
tion R means that the attributes of R annotated with b must be given as in-
puts when accessing the tuples of R, whereas the attributes annotated by f
denote the new attributes derived by the task invocation. For example, the
relation Task1(A : (X,Y, Z), a : (bbf), p : ({Task2.X}{NULL}{NULL}))
corresponds to an activity called Task1, which needs to be given the values of
the X and Y attributes as input and returns a new attribute Z. Attribute X
must first be processed by Task2. For brevity, this relation can also be writ-
ten as Task1(Xb,Task2, Y b, Zf) Additionally, we treat data sources as specific
data-producing activities, where all attributes are annotated with f . Linear con-
ceptual flows comprise a single data source.

The following statements hold: (a) The output data items of each flow task
are regarded as tuples, the schema of which conforms to the virtual relations
introduced above. (b) Data sources are treated as specific data-producing activ-
ities, where all attributes are annotated with f . (c) The flow tasks, even when
they can be described by standard relational operators (e.g., when they simply
filter data), they are always described as virtual relations. (d) The relations can
be combined with standard relation operators, such as joins and unions; con-
crete examples are given in the sequel. (e) For each attribute X that is bound
in relation R, there exists a relation R′, which contains attribute X with a free
annotation. (f) A task outputing a free attribute must precede the tasks that
employ the same attributes as bound attributes in their schema. (g) Simply rely-
ing on b/f annotations is inadequate for capturing all the precedence constraints
in ETL workflows, where there may exist a bound attribute that is manipulated
by a filtering task and also appears in the bound grouping values of an aggre-
gate function: in that case, the semantics of the flow may change if we swap
the two activities, as also shown in [6]. For that reason, it is always necessary
to define the p list of each activity. (h) Although most ETL transformation can
be described by static schemas, there may be data flow activities, such as some
forms of pivots/unpivots [3] that cannot be mapped to the virtual relations as
defined above, because the schema of their output cannot be always defined a-
priori. (i) Tasks need not correspond to ETL transformation solely; they can
also encompass intermediate result storage.

Precedence constraints of a flow form a directed acyclic graph (DAG) G in
which there is a node corresponding to each flow task and directed edges from
one task to another define the presence of precedence constraint between them.
A main goal of the annotations is to fully capture the precedence constraints
among tasks. This goal is attained because the edges in the precedence graph
can be derived from the p list of each activity and the (f) item above.

2.1 Flow Examples

Linear Flows Our first example is taken from [18] and is illustrated in Fig. 1. It
is a linear flow that applies a set of filters, transformations, and aggregations to a

Fig. 1. A linear ETL flow.

single table from the TPC-H decision support benchmark. In particular, the flow
consists of 5 activities: (i) NotNull, which checks the fields PartKey, OrderKey
and SuppKey for NULL values. Any NULL values are replaced by appropriate
special values (or the tuple is dropped). (ii) DeriveFnc, which calculates a value
for the new field Profit that is derived from other fields and more specifically
by subtracting the values of fields Tax and Discount from the value in ExtPrice.
(iii) Currency, which alters the fields ExtPrice, Tax, Discount and Profit to a
different currency. (iv) CheckStat, which is a filter that keeps only records whose
return status is false. (v) Aggregation1, which calculates the sum of ExtPrice
and Profit fields grouped by values in PartKey and LineStatus.

All activities can be mapped to virtual relations, and the whole ETL can
be modelled as a Select-Project-Join (SPJ) query in order to provide online
updates to the view in Fig. 1. It is important to note that the relevant at-
tributes of the source relation, LineItem, are annotated as free attributes. Also,
the PartKeyb,CheckStat attribute in the aggregation activity contains a task an-
notation, which allows us to define that the aggregation must only be performed
after the CheckStat activity in order to ensure semantic equivalence with the
flow in Fig. 1. Finally, in Aggregation1, the attributes PartKey and LineStatus
have the same values with PartKeyGroup and LineStatusGroup, respectively,
but the latter are annotated as free attributes in order to facilitate manipulation
statements that build on the grouped values.

Se l e c t PartKeyGroup , LineStatusGroup , UpdatedSumProfit ,
UpdatedSumExtPrice

From LineItem (PartKeyf ,OrderKeyf ,SuppKeyf ,Discountf ,Taxf ,ExtPricef , · · ·) on
NotNull (PartKeyb ,OrderKeyb ,SuppKeyb) on
DeriveFnc (PartKeyb ,Profitf) on
Currency (PartKeyb ,ExtPriceb ,Discountb ,Profitb ,Taxb) on
CheckStat (PartKeyb ,ReturnStatusb on
Aggregation1 (PartKeyb,CheckStat , LineStatusb , Profitb , ExtPriceb ,

ReturnStatusb ,LineStatusGroupf ,PartKeyGroupf ,

UpdatedSumProfitf ,UpdatedSumExtPricef)
Where LineItem . PartKey = NotNull . PartKey and

LineItem . PartKey = DeriveFnc . PartKey and
LineItem . PartKey = Currency . PartKey and
LineItem . PartKey = CheckStat . PartKey and
CheckStat . PartKey = Aggregation1 . PartKey

In the above example there are several precedence constraints that can auto-
matically derived from the annotated query: LineItem must precede all other ac-
tivities, DeriveFnc must precede Currency and Aggregation1, whereas CheckStat
must precede Agregation1 as well. Although those constraints seem restrictive,
they do not preclude other flow structures, e.g., CheckStat to be applied earlier
and Currency to be applied at the very end to decrease the number of total
currency transformations.

Fig. 2. A more complex ETL flow.

More complex flows Fig. 2 shows a more complex flow on top of two real
data sources, also taken from [18]. The tasks employed are: (i) NotNull, which
checks the field Cost for NULL values, so that such values are replaced or the
tuple is dropped. (ii) dollar2euro, which changes the values in Cost from dollars
to euros. (iii) A2E, which alters the format of the field Date from american
to european. (iv) Aggregation, which calculates the sum of costs grouped by
date, (v) Selection, which filters the (aggregated) cost field according to a user-
defined threshold. Although we can describe this flow as a complex nested query,
for clarity, we use two SPJ sub-queries. Note that, if the flow contains branches,
these can be modeled as separate sub-queries in a similar manner. Also, although
the selection task can easily be described by a simple select relational operator,
we treat it as a separate relation.

Query I:
WITH Q (PKEY , COST , DATE) AS (
(S e l e c t ∗
From PARTS1(PKEY f , COST f , DATEf) on

NotNULL(PKEY b , COST b)
Where PARTS1.PKEY = NN.PKEY)

UNION
(Se l e c t PKEY , UpdatedAggCOST , DATEgroup

From PARTS2(PKEY f ,COST f ,DATEf) on
do l l a r 2 eu ro (PKEY b ,COST b) on
A2E(PKEY b ,DATEb) on
Aggregation (PKEY b ,DATEb ,COST b ,DATEgroupf ,UpdatedAggCOST f)

Where PARTS2.PKEY = do l l a r 2 eu ro .PKEY and
PARTS2.PKEY = A2E.PKEY and
PARTS2.PKEY = Aggregation .PKEY)

)
Query II:
(S e l e c t ∗
From Q (PKEY f , COST f , DATEf) on

Se l e c t i o n (PKEY b , COST b)
Where Q.PKEY = Se l e c t i o n .PKEY)

Real-world analytic flow The data flow, which is depicted in Fig. 3, shows
a real-world, analytic flow that combines streaming free-form text data with
structured, historical data to populate a dynamic report on a dashboard [16]. The
report combines sales data for a product marketing campaign with sentiments
about that product gleaned from tweets crawled from the Web and lists total
sales and average sentiment for each day of the campaign. There is a single
streaming source that outputs tweets on products and the flow accesses four
other static sources through lookup operations.

Fig. 3. A real-world analytic flow.

The exact flow is as follows. When a tweet arrives as a timestamped string
attribute (tag), the first task is to compute a single sentiment value in the range
[-5 +5] for the product mentioned in the tweet. Then, two lookup operations are
performed: the former maps product references in the tweet and the later maps
geographic information (latitude and longitude) in the tweet to a geographi-
cal region (region attribute in the figure). The Expr task converts the tweet
timestamp to a date. Then, the sentiment values are averaged over each region,
product, and date. On a parallel path, the sales data have been rolled up to
produce total sales of each product for each region and day. The rollups for sales
and sentiment are joined in a pipelined fashion and finally the specific campaign
of interest is selected and used to filter the result based on the information of
the campaign data store [16]. In this final stage, we consider that the Sales and
Campaign non-streaming sources are hidden behind the Aggregation2 and Selec-
tion look-up tasks, respectively. The annotated query that describes this flow is
shown below.

Se l e c t ∗
From Tweet (tagf ,timestampf) on

Sentiment Anal (tagb ,sentimentf) on
LookupID (tagb , productIDf) on
LookupRegion (tagb , regionf) on
Expr (tagb ,timestampb ,datef) on
Aggregation1 (tagb ,sentimentb ,productIDb ,regionb ,dateb ,

productIdGroupf , dateGroupf , regionGroupf , AvgAggSentimentf) on
Aggregation2 (productIDf ,regionf ,datef ,totalAggSalesf) on
Se l e c t i o n (productIDf ,campaignIDf ,dayBegf ,dayEndf ,regionb)

Where Tweet . tag = Sentiment Anal . tag and
Tweet . tag = LookupID . tag and
Tweet . tag = LookupRegion . tag and
Tweet . tag = Expr . tag and
Tweet . tag = Aggregation1 . tag and
Aggregation1 . productID = Aggregation2 . productID and
Aggregation1 . r eg i on = Aggregation2 . r eg i on and
Aggregation1 . date = Aggregation2 . date and
Aggregation1 . productID = Se l e c t i o n . productID and
Aggregation1 . r eg i on = Se l e c t i o n . r eg i on

2.2 Are data flows queries?

The consensus up to now is that ETL and more generic data flows cannot be
expressed as (multi-) queries, due to facts such as the presence of arbitrary
manipulation functions that cannot be described by relational operators, and
the presence of precedence constraints [4, 13]. We agree that data flows cannot
be described as standard SQL queries just by regarding manipulation functions
as black box user-defined functions (UDFs). Nevertheless, as shown above, we
can express data flows in an SQL-like manner, where the distinctive features are
that (i) data manipulation steps are described through virtual relations instead
of relational operators or UDFs on top of real relations; and (ii) the attributes are
annotated so that precedence constraints can be derived. Our methodology thus
does not suffer from the limitations when mapping a flow to a complex query
with as many relations as the original data sources, which loses the information
about precedence constraints.

3 Optimization of linear flows

Having transformed the flow specification to an annotated query, we can treat
the flows as multi-source precedence-aware queries and benefit from any existing
optimization algorithms tailored to such settings. We treat flow tasks as black-
box operators. Note that we do not have to use multi-way joins regardless of the
numerous joins appearing in the SQL-like statements, as in [17]. In this section,
we firstly define the cost model, we then propose four optimization algorithms
for minimizing the total execution cost in time units, and finally, we investigate
the performance benefits.

Our optimization algorithms require that each flow activity is described by
the following metadata:

– Cost (ci): We use ci = 1/ri to compute response time effectively, where ri is
the maximum rate at which results of invocations can be obtained from the
i-th task.

– Selectivity (seli): it denotes the average number of returned tuples per input
tuple for the i-th service. For filtering operators selectivity is always below 1,
for data sources and operators that just manipulate the input, it is exactly
one, whereas, for operators that may produce more output records for each
input record, the selectivity is above 1.

– Input (Ii): The size of the input of the i-th task in number of tuples per input
data tuple. It depends on the product of the selectivities of the preceding
tasks in the execution plan.

Our aim is to minimize the sum of the execution time of each task. As such,
the optimal plan minimizes the following formula: (Iici + I2c2 + ...+ Incn).

In the following, we present our optimization approaches. Due to lack of
space, we present only the main rationale.

PGreedy: The rationale of the PGreedy optimization algorithm is to order the
flow tasks in such a way that the amount of data that is received by expensive

Fig. 4. A single linear conceptual data flow (left), along with its precedence constraints
(middle) and two logically equivalent parallel execution plans (right).

tasks is reduced because of preceding filtering activities that prune the input
dataset. Its main distinctive feature is that it allows for parallel execution plans,
as shown in Fig. 4, where on the left part of the picture, a linear flow and its
precedence constraints are depicted, while on the right two equivalent parallel
execution plans of the same flow are presented (which both preserve all the
precedence constraints). More specifically, depending on the selectivity values,
the optimal execution plan may dispatch the output of an activity to multiple
other activities in parallel, or place them in a sequence. To this end we adapt
the algorithm in [17] with the difference that instead of considering the cost Iici
in each step, we consider the (1 − seli)(Iici). The latter takes into account the
selectivity of the next service to be appended in the execution plan and not only
the selectivity of the preceding services. We refer the reader to [17] for the rest
of the details. The complexity is O(n5) in the worst case.

Swap: The Swap algorithm compares the cost of the existing execution plan
against the cost of the transformed plan, if we swap two adjacent tasks provided
that the constraints are always satisfied. We perform this check for every pair of
adjacent tasks. Swap is proposed in [15], where, to the best of our knowledge, the
most advanced algorithm for optimizing the structure of data flows is proposed.
The complexity of the Swap algorithm is O(n2).

Greedy: Greedy algorithm is based on a typical greedy approach by adding
the activity with the maximum value of (1− seli)(Iici), which meets the prece-
dence constraints. The time complexity of Greedy algorithm is O(n2). It bears
similarities with the Chain algorithm in [21]; latter appends the activity that
minimizes Iici. Similarly to Swap and contrary to PGreedy, it builds only linear
execution plans.

Partition: The Partition optimization algorithm forms clusters with activi-
ties by taking into consideration their availability. Specifically, each cluster con-
sists from activities that their prerequisites have been considered in previous clus-
ters. After building the clusters, each cluster is optimized separately by checking
each permutation of cluster tasks. Like Greedy, it was first proposed for data
integration systems, and the details are given in [21]. Partition runs in O(n!)
time in the worst case, and is inapplicable if a local cluster contains more than
a dozen of tasks.

3.1 Experiments

In our experiments, we compare the performance of the afore-mentioned algo-
rithms. The data flows considered consist of n = 5, 10, 25, 50, 100 activities and
we experiment with 6 combinations of 3 selectivity value ranges and 2 sets of

5 10 25 50 100
0

0.5

1

1.5

2

2.5

total number of flow activities(n)

flo
w

 e
xe

cu
tio

n
co

st
(t

im
e

un
its

)

PGreedy

Greedy

Partition

Swap

Fig. 5. Performance when sel ∈ [0, 2],
cost ∈ [1, 10] and 25% prec. constraints.

5 10 25 50 100
0

2

4

6

8

10

12

14

16

total number of flow activities(n)

flo
w

 e
xe

cu
tio

n
co

st
(t

im
e

un
its

)

PGreedy

Greedy

Partition

Swap

Fig. 6. Performance when sel ∈ [0.5, 2.5],
cost ∈ [1, 10] and 25% prec. constraints.

5 10 25 50 100
0

5

10

15

20

25

30

total number of flow activities(n)

flo
w

 e
xe

cu
tio

n
co

st
(t

im
e

un
its

)

PGreedy

Greedy

Partition

Swap

Fig. 7. Performance when sel ∈ [1, 3],
cost ∈ [1, 10] and 25% prec. constraints.

5 10 25 50 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

total number of flow activities(n)

flo
w

 e
xe

cu
tio

n
co

st
(t

im
e

un
its

)

PGreedy

Greedy

Partition

Swap

Fig. 8. Performance when sel ∈ [0, 2],
cost ∈ [1, 10] and 50% prec. constraints.

constraint probabilities. The cost value range is the same for all the sets of ex-
periments: ci ∈ [1, 10]. The results correspond to the average of the data flow
response time in 20 runs after removing the lowest and highest values to reduce
the standard deviation. In each run, the exact selectivity, cost values and the
constraints for each task are randomly generated.

In the first experiment, the selectivity values in each run are randomly gener-
ated so that sel ∈ [0, 2] (thus only half of the tasks are selective) and cost ∈ [1, 10]
with 25% probability of having precedence constraints between two activities.
The normalized results are shown in Fig. 5. A general observation in all our
experiments is that Swap consistently outperforms Greedy and Partition. From
Fig. 5, we can observe that Swap outperforms PGreedy as well. For n = 50, Swap
is 1.66 times faster. However, as less activities are selective, PGreedy yields sig-
nificantly lower cost than Swap. As shown in Figs. 6 and 7, those performance
improvement may be up to 22 times (one order of magnitude).

In the following experiment, we increase the probability of having a prece-
dence constraint between two activities. The more the constraints, the narrower
the space for optimizations. The results are presented in Figs. 8-10, which follow
the same pattern as above. In the worst case, Swap is 1.23 times faster than
PGreedy, and, in the best case, PGreedy is 3.15 times faster. The general con-

5 10 25 50 100
0

0.5

1

1.5

2

2.5

total number of flow activities(n)

flo
w

 e
xe

cu
tio

n
co

st
(t

im
e

un
its

)

PGreedy

Greedy

Partition

Swap

Fig. 9. Performance when sel ∈ [0.5, 2.5],
cost ∈ [1, 10] and 50% prec. constraints.

5 10 25 50 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

total number of flow activities(n)

flo
w

 e
xe

cu
tio

n
co

st
(t

im
e

un
its

)

PGreedy

Greedy

Partition

Swap

Fig. 10. Performance when sel ∈ [1, 3],
cost ∈ [1, 10] and 50% prec. constraints.

clusions drawn is that Greedy and Partition are never the optimal choices, and
PGreedy outperforms Swap if less than half of the tasks are selective.

Regarding the time needed for the optimizations, even when n = 100, the
time for running PGreedy and Partition is approximately a couple of seconds
using a machine with an Intel Core i5 660 CPU with 6GB of RAM. Thus it can
be safely considered as negligible.

4 Related Work

Modern ETL and flow analysis tools, such as Pentaho’s platform2, do not sup-
port declarative statement of flows and automated optimizations of their struc-
ture. Declare is an example of a declarative flow language [12]; contrary to our
proposal, it is based on linear temporal logic and can be used only through a
graphical interface in the context of Yawl3. Declare can capture precedence con-
straints, and, as such, may stand to benefit from the optimizations proposed in
this work, but does not perform any optimizations in its own right.

The potential of data management solutions to enhancing the state-of-the
art in workflow management has been identified since mid 2000s. An example of
strong advocates of the deeper integration and coupling of databases and work-
flow management systems has appeared in [14]. Earlier examples of developing
data-centric techniques of manipulating workflows include the prototypes de-
scribed in [7, 11, 9], which allow workflow tasks to be expressed on top of virtual
data tables in a declarative manner but do not deal with optimization, although
they can be deemed as enabling it. Other declarative approaches to specifying
workflows, such as [1, 22], are not coupled with approaches to capturing prece-
dence constraints and optimizing the flow structure either.

Data management techniques have been explored in the context of ETL
workflows for data warehouses in several proposals, e.g., [4, 13, 15]. In [15], the
authors consider ETL workflows as states and use transitions to generate new
states in order to navigate through the state space. The main similarity with
our work is the mapping of workflow activities to schemata, which, however,

2 http://www.pentaho.com/
3 http://www.yawlfoundation.org/

are not annotated and thus inadequate to describe precedence constraints on
their own. Focusing on the physical implementation of ETL flows, the work in
[18] exploits the logical-level description combined with appropriate cost models,
and introduces sorters in the execution plans. In [16], a multi-objective optimizer
that allows data flows spanning execution engines is discussed.

Another proposal for flow structure optimization has appeared in [20], which
decreases the number of invocations to the underlying databases through task
merging. In [10], a data oriented method for workflow optimization is proposed
that is based on leveraging accesses to a shared database. In [6], the optimiza-
tions are based on the analysis of the properties of user-defined functions that
implement the data processing logic. Several optimizations in workflows are also
discussed in [2]. Our optimization approach shown in Section 3 is different from
those proposals in that it is capable of performing arbitrary correct task reorder-
ing. In our previous work, we employ query optimization techniques to perform
workflow structure reformations, such as reordering or introducing new services
in scientific workflows [8].

5 Conclusions
As data flows become more complex and come with requirements to deliver re-
sults under pressing time constraints, there is an increasing need for more efficient
management of such flows. In this work, we focused on data-intensive analytic
flows that are typically encountered in business intelligence scenarios. To allevi-
ate the burden to manually design complex flows, we introduced a declarative
way to specify such flows at a conceptual level using annotated queries. A main
benefit from this approach is that the flows become amenable to sophisticated
optimization algorithms that can take over the responsibility for optimizing the
structure of the data flow while taking into account any precedence constraints
between flow activities. We discuss optimization of linear conceptual data flows,
and our evaluation results show that we can speedup the flow execution by up
to an order of magnitude if we consider parallel execution plans. Our future
work includes the deeper investigation of optimization algorithms to non-linear
conceptual flows and the coupling of optimization techniques that reorder tasks
with resource scheduling and allocation in distributed settings.
Acknowledgements: This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge
society through the European Social Fund.

References
1. K. Bhattacharya, R. Hull, and J. Su. A data-centric design methodology for busi-

ness processes. In Handbook of Research on Business Process Modeling, chapter
23, pages 503–531, 2009.

2. M. Böhm. Cost-based optimization of integration flows. PhD thesis, 2011.
3. Conor Cunningham, Goetz Graefe, and César A. Galindo-Legaria. Pivot and un-

pivot: Optimization and execution strategies in an rdbms. In VLDB, pages 998–
1009, 2004.

4. U. Dayal, M. Castellanos, A. Simitsis, and K. Wilkinson. Data integration flows
for business intelligence. In Proc. of the 12th Int. Conf. on Extending Database
Technology: Advances in Database Technology, EDBT, pages 1–11. ACM, 2009.

5. D. Florescu, A. Levy, I. Manolescu, and D. Suciu. Query optimization in the
presence of limited access patterns. In Proc. of the 1999 ACM SIGMOD Int.
Conf. on Management of data, pages 311–322, 1999.

6. F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and
K. Tzoumas. Opening the black boxes in data flow optimization. PVLDB,
5(11):1256–1267, 2012.

7. Y.E. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti. Zoo: A desktop experiment
management environment. In Proc. of 22th Int. Conf. on Very Large Data Bases
VLDB, pages 274–285, 1996.

8. G. Kougka and A. Gounaris. On optimizing work ows using query processing
techniques. In SSDBM, pages 601–606, 2012.

9. D.T. Liu and M.J. Franklin. The design of GridDB: A data-centric overlay for the
scientific grid. In VLDB, pages 600–611, 2004.

10. R. Minglun, Z. Weidong, and Y. Shanlin. Data oriented analysis of workflow
optimization. In Proc. of the 3rd World Congress on Intelligent Control and Au-
tomation, 2000 - Volume 4, pages 2564 – 2566. IEEE Computer Society, 2000.

11. S. Narayanan, U. V. Catalyrek, T. M. Kurc, X. Zhang, and J.H. Saltz. Applying
database support for large scale data driven science in distributed environments.
In Proc. of the 4th Workshop on Grid Computing, 2003.

12. Maja Pesic, Dragan Bosnacki, and Wil van der Aalst. Enacting declarative lan-
guages using LTL: Avoiding errors and improving performance. In Model Checking
Software, pages 146–161. 2010.

13. T. K. Sellis and A. Simitsis. Etl workflows: From formal specification to optimiza-
tion. In ADBIS, pages 1–11, 2007.

14. S. Shankar, A. Kini, D.J. DeWitt, and J. Naughton. Integrating databases and
workflow systems. SIGMOD Rec., 34:5–11, September 2005.

15. A. Simitsis, P. Vassiliadis, and T. K. Sellis. State-space optimization of etl work-
flows. IEEE Trans. Knowl. Data Eng., 17(10):1404–1419, 2005.

16. A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Optimizing analytic
data flows for multiple execution engines. In Proc. of the 2012 ACM SIGMOD
Int. Conf. on Management of Data, pages 829–840, 2012.

17. U. Srivastava, K. Munagala, J. Widom, and R. Motwani. Query optimization over
web services. In Proc. of the 32nd Int. Conference on Very large data bases VLDB,
pages 355–366, 2006.

18. V. Tziovara, P. Vassiliadis, and A. Simitsis. Deciding the physical implementation
of ETL workflows. In Proc. of the ACM 10th Int. Workshop on Data warehousing
and OLAP DOLAP, pages 49–56, 2007.

19. P. Vassiliadis and A. Simitsis. Near real time ETL. In New Trends in Data
Warehousing and Data Analysis, pages 1–31. 2009.

20. Marko Vrhovnik, Holger Schwarz, Oliver Suhre, Bernhard Mitschang, Volker
Markl, Albert Maier, and Tobias Kraft. An approach to optimize data processing
in business processes. In VLDB, pages 615–626, 2007.

21. Ramana Yerneni, Chen Li, Jeffrey D. Ullman, and Hector Garcia-Molina. Opti-
mizing large join queries in mediation systems. In ICDT, pages 348–364, 1999.

22. Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde. A notation and system
for expressing and executing cleanly typed workflows on messy scientific data.
SIGMOD Rec., 34:37–43, 2005.

