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Abstract

Cost models are broadly used in query processing to drive the query optimiza-
tion process, accurately predict the query execution time, schedule database
query tasks, apply admission control and derive resource requirements to
name a few applications. The main role of cost models is to estimate the
time needed to run the query on a specific machine. In a multi-cloud environ-
ment, this is insufficient due to two reasons: firstly, the machines employed
are not defined a-priori, and secondly, time estimates need to be comple-
mented with monetary cost information, because both the economic cost
and the performance are of primary importance. This work addresses these
two shortcomings and aims to serve as the first proposal for a bi-objective
query cost model that is suitable for queries executed over resources provided
by potentially multiple cloud providers. Moreover, our approach is applicable
to more generic data flow graphs, the execution plans of which do not neces-
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sarily comprise relational operators. We also discuss how the cost model can
become part of an optimizer and we validate its accuracy through real case
studies.

1. Introduction

More and more companies and organizations consider moving their infras-
tructures and applications on the cloud, motivated by the promise of clouds
to achieve economies of scale. One of the most attractive features of cloud
computing is that it provides an alternative to the procurement and man-
agement of expensive computing resources, which are associated with high
upfront investments and considerable human effort, respectively.

Cloud technology has evolved significantly and nowadays, is considered as
robust and trustworthy. It leverages several traditional notions of distributed
computing, such as the virtualization of resources and the provision of virtual
machines (VMs), typically at a certain monetary cost. Such VMs come with
several names depending on the provider; for example, Google calls them
“machine types”, Amazon calls them ‘‘instance types” whereas other names
include ‘‘server sizes” [1], but in all cases they refer to the provision of
specific hardware combination of compute, memory and I/O resources. Cloud
resources are not limited to emulations of raw physical machines; they can
also cover provision of software middleware, databases and specialized tools.
The proliferation of cloud options has raised the following problem faced by
cloud users: which cloud providers should be chosen to execute a specific task
on the cloud? This issue is not only important but also complex, especially
when the requested resources can be offered by multiple providers. A key
point to answer this question is to provide estimates of both the running time
and the monetary cost; this is exactly the topic of our work.

We focus on database queries and more generic data-flow tasks that can
be executed over remote resources provided by multiple providers [2, 3]. For
example, assume a database query that joins data from cloud-enabled data
stores, such as anonymized population census data and commercial data
offered by a set of providers. Or, analyzing patient data using a series of
specialized cloud-enabled services, as described in [4]. In such scenarios, to
be in a position to take final allocation decisions, we need to be able to
accurately estimate the running time of the tasks on cloud resources and the
price to use such resources.
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Estimating query execution time plays an important role in several appli-
cations and processes, including query optimization, scheduling, admission
control and allocation of resources [5]. Typically, the query cost models are
applied to physical execution plans and assume that the physical resources
to be employed in query execution are predefined. These cost models either
encapsulate a component to estimate the cardinalities of the data processed
or accept such cardinality statistics as input; in the output, they produce
an estimate of the query running time. Examples of such cost models in a
distributed environment are provided in [6, 7]. In a multi-cloud environment,
providing information only about the running time for specific processors is
insufficient because (i) the machines employed are not defined a-priori, and
(ii) time estimates need to be complemented with monetary cost information.
This work addresses these two shortcomings.

The main contribution of this work is the proposal of a database query
cost model that provides estimates of both the expected running time and the
economic cost associated with running a specific query over VMs provided
by one or more cloud providers. The cost model is modular and can be
applied to arbitrary DAG (directed acyclic graph) data flows apart from
simple query execution plans consisting of relational operators. It supports
the main modes of fee charging to date, which leverage the pay-as-you-go
approach. Nevertheless, the modularity of our proposal allows for easily
plugging-in further models for running time and cost estimates, while the
model is not tailored to any specific charging policy. In this work, we show
how our proposal can be used to derive running time and monetary cost
estimates through a detailed example and a validation case study on a real
cloud infrastructure. We also explain how the cost model can be fitted into
an optimizer.

The remainder of this paper is structured as follows. In the next section,
we provide background material and discuss related work. In Section 3, we
give the details of our cost model. Section 4 deals with the validation case
studies. We conclude in Section 5.

This article is an extended version of the paper in [8].1 The main parts
of the new material comprise the following items (in order of significance):
(i) extensions to the evaluation with additional real experiments to consider

1Received a best paper-award; see http://sigappfr.acm.org/MEDES/14/index.php?
option=com_content&view=article&id=30&Itemid=31
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multi-cloud settings (discussed in Section 4.3); (ii) extensions to the discus-
sion on how the cost model can be merged with optimizers (discussed in
Section 3.3); (iii) clarifications on the assumptions and extensions to the
cost model to better consider parallelism and overlaps in the time domain
(discussed in Sections 3.1 and 3.2.2, respectively); and (iv) elaboration on
the existing cost models for distributed queries (discussed in Section 2.2).

2. Background

Before delving into cost model’s details, we provide a brief overview of the
main pricing policies currently adopted by cloud providers and are meant to
be supported by our cost model. We also discuss the main factors involved
in the cost of developing and maintaining a cloud infrastructure. In the
last part of this section, we present the currently established cost models for
distributed queries, which do not consider economic costs. Finally, we show
how our proposal complements bi-objective optimizers that are suitable for
multi-cloud database queries.

2.1. Cloud Pricing Policies and Costs

Cloud providers offer VMs at a specific price. The price depends on
several factors including the computational characteristics of the VM, the
reservation time and mechanism, and whether the VM comes with specific
software installed (e.g., as typically occurs in PaaS/SaaS settings) or not.
The price of VMs typically differs among providers, even when the offered
VMs share the same characteristics.

2.1.1. VM characteristics related to charging

A main characteristic that affects the charging fee is the exact type and
volume of computational resources that each client requests. There is a
significant deviation in the price depending on CPU speed2, memory and
storage space. Usually providers have some fixed combinations of the above
components, so that they offer complete pre-specified VM options to users
aiming to cover a broad range of needs. In addition, some providers allow
their customers to build their own combination of resources, i.e., to customize
their VMs. Some examples are Amazon Web Services3 and CloudSigma4,

2CPU power is often abstracted through the use of the so-called ECU units.
3http://aws.amazon.com/ec2/instance-types/
4http://www.cloudsigma.com/#features
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respectively. Finally, some providers, like Amazon5 and Rackspace6 follow a
hybrid approach and offer additional storage space with extra cost on top of
pre-specified VM instances.

Installed software is equally important. The software that is used (e.g.,
databases, operating systems, and so on) may be open-source or commer-
cial. Generally, VMs with pre-installed open source software are less expen-
sive than those with commercial software due to licensing fees. The built-
in support for or the existence of programming frameworks (e.g., Apache
Hadoop) increases the cost. The same holds for non-functional features,
such as monitoring services, security features, ease of migration, and so on.
Other price factors are the data transfer and geographical position of VMs.
Some providers have additional charges for data transfer either from or to
their servers and also apply different rates depending on the geographical
location of the servers running the VMs (e.g., Amazon’s EC2 policy7).

A cost model needs to be VM-independent to be usable in a multi-cloud
environment. Our cost model is not tailored to any specific hardware charac-
teristics. Rather, it provides generic formulas that can be calibrated accord-
ing to the specific VM types at the disposal of a consumer of cloud resources.

2.1.2. Cloud Costs

The development and maintenance of cloud infrastructure requires the
investment of a big amount of money that is amortized over a long time
period. Except from the initial purchase costs, a cloud data center is expen-
sive to maintain and run. The major development cost is the acquisition of
the raw servers and network infrastructure. In addition, cloud data centers
have high energy needs and require special power and cooling infrastructure,
which incurs extra cost [9]. Licenses for software, such as OS and virtual-
ization software, constitute an additional expense. Finally, there is the cost
for the real estate, where the data center physically resides [10]. The most
important economic cost related to maintenance cost is due to the significant
power consumption. It is usually the 15-20% of the total budget [9, 11].
Other costs include the network expenses, which are the costs for communi-
cating with the end users, and the salaries of the data center technicians and
the rest of employees.

5http://aws.amazon.com/ebs/
6http://www.rackspace.com/cloud/block-storage
7http://aws.amazon.com/ec2/pricing/
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The cost of running a cloud infrastructure directly impacts on the charges
requested by the end users for its usage. However, in our cost model, we do
not deal with the issue of configuring the price of the VM options offered by
the cloud providers taking into account their actual cost. Rather, we assume
that the charges are fixed and provided as input parameters to our model.

2.1.3. Charging Models

The charging models are orthogonal to the VM characteristics and the
costs for developing and running cloud infrastructures. Here, we review the
most important charging models, which are all supported by our cost model.

The most common charging model is the “Pay-as-you-go” one, where the
customer is charged for the actual period she uses the infrastructure. The
usage periods are monitored in different granularities though; i.e., providers
may have different minimum time unit for charging. For example, one
provider’s minimum time unit may be 1 hour and another’s 5 minutes. So,
if someone uses the former infrastructure for 1 hour and 23 minutes, she will
be charged as if she used the infrastructure for 2 hours, whereas, in the lat-
ter case the price will be for 1 hour and 25 minutes. The trend is the time
granularity to further decrease and charge per minute or even per seconds of
resource usage [1].

The “Pay-as-you-go” charging model is encountered in three main forms
in Amazon EC2, but those forms are essentially generic to any cloud provider:

• On-demand Instance, where the payment is done after the use of the
infrastructure charging for as long as the customer used it, without any
other commitment, as explained above.

• Reserved Instance, where the customer pays a small fee upfront for a
specific time (e.g., a month or a year) and after that, she is charged like
the on-demand policy for the time using the infrastructure, but with a
great discount on the fee.

• Spot Instance, which is like an auction. The customer bids whatever
price is willing to pay for the infrastructure and, if the bid is above the
current spot price, she gets the VM and is charged for the actual usage
period but with a lower price than that of the on-demand policy. The
drawback is that, if the spot price goes above the customers bid price,
her VM will be shut down.
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An additional charging model is the “Committed VM”. In this model,
the client rents the infrastructure for a predefined time. This predefined time
can be from one month to a year, or even more in some cases. During this
time, the customer can use the infrastructure whenever she wants without
any extra cost (except maybe network traffic). Usually, it is less expensive
than “Pay-as-you-go” when the usage is high. An example of this model is
GoGrid.8

2.2. Existing Cost Models and Other Related Work

Cost models for distributed queries do not consider the economic cost
associated and are limited to scenarios where the physical resources are pre-
defined. A typical approach is presented in [6], where the query execution
time is split into the time needed to execute CPU tasks, retrieve and store
data to the disk and send data across hosts. More specifically, the total cost
is given by the following formula:

TotalCost = ccpu#instructions+ cI/O#I/Os+ cmsg#messages+ ctr#bytes

where ccpu, cI/O, cmsg and ctr denote the cost in time units to execute an
instruction on the cpu, perform a disk I/O access, initialize and receive a
message and transmit a byte over the network, respectively. Apparently, the
last two components correspond to the communication cost and differentiate
this cost model from its counterparts for centralized databases. If we are
interested in the wall-clock time, which will be referred to in this work as
TotalTime, then time overlaps need to be considered.

[7] provides more detailed cost functions but follows the same approach
as in [6]. The additional details correspond to splitting each relational oper-
ator into its more elementary operations, which is commonly done for non-
distributed database queries (e.g., [5]).

More sophisticated approaches to distributed cost modelling, such as [12,
13], perform more efficient and dynamic cost function calibration but still
suffer from the main limitation mentioned above, that is they do not combine
time costs with monetary costs. Nevertheless, for the time cost estimates,
our work can fully encapsulate such proposals; later we show how we do this
with regards to [5] and [14].

8http://www.gogrid.com/products/cloud-servers#pricing
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Figure 1: An analysis DAG (left) and example user and provider cost-delay functions
(right) [16].

Finally, the work in [15] defines the tradeoff between performance and
cost, when running an application over a different number of VMs of the
same type in the same data center under volatile load. Our problem is
different, since we consider cases where the applications consist of several
subtasks that can run on different types of VMs, which are possibly provided
by multiple providers.

2.3. How can the cost model be used?

Our setting is depicted in Figure 1. We assume that there exists a cen-
tralized optimizer that builds an execution plan in the form of a query tree,
that is, vertices correspond to operators and data flows from bottom to top;
the root node produces the final query results. At this stage, there is no
locality information about which VM each operator is executed on. After
that, the execution plan is decomposed into smaller sub-queries, where each
subquery corresponds to an execution stage. Those stages will be referred
to as strides. Before a stride begins its execution, all the lower strides must
have been completed. In the figure, we provide an example of a query plan
decomposed in four strides.

Assume now that for each stride, each cloud provider is capable of provid-
ing a bid as shown in the bottom right of the figure. Each cloud provider can
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offer multiple combinations of type and number of VMs at a different cost,
and each such combination may result in different expected execution time.
In the generic case, the complete offer per provider per stride is described
by a continuous function. In addition, we assume that each user specifies
her own function that represents the worst acceptable trade-off. We further
assume that the total monetary cost of the query plan is the sum of the cost
of each stride; similarly, the total time delay is the sum of the delays in each
stride. The aim of a multi-cloud optimizer is to derive an optimal assign-
ment of strides to VMs. This is equivalent of determining exactly one bid
point from the set of all bids for each stride, so that the total monetary cost
maximizes the difference from the user-supplied function. We are interested
in this difference, which is termed as user satisfaction, because it captures
the savings from the worst acceptable payment.

The problem above involves the computation of the pareto frontier and
is NP-hard [17]. A simpler version of this problem has been investigated
in the context of the Mariposa distributed query processing system [2, 17],
where the bid of each provider for each stride is a single point rather than
a continuous function. The proposal in [16] generalizes the initial solutions
allowing arbitrary non-increasing cloud provider functions and guarantees
optimal solutions with bounded relative error in pseudo-polynomial time.

The main problem with the above multi-cloud optimizers is that to date,
there is no mechanism to provide the cloud provider bids, which serve as their
input. This work aims to complement the proposals in [2, 17, 16] and provide
such a mechanism. So, apart from the fact that a bi-objective cost model is
significant in its own right, our proposal serves a secondary purpose, namely
to assist in rendering the existing approaches to multi-cloud optimization
applicable in practice. A more complete example is provided in Section 3.3.

3. Our cost model

The model we are presenting is used for estimating the time and the
economic cost of a query plan executed on cloud-based VMs. To achieve
this, we have built on top of the single-objective cost models described in
[5] and [14], although we can encapsulate additional single-objective models.
Also, our model can be applied to more generic data flows that are still
expressed as DAGs. For simplicity, we start assuming that our process is a
traditional query plan, and at the end of this section, we generalize.
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3.1. Assumptions

Before we describe the cost model’s rationale and functions, we need to
state the assumptions we make:

• The shape of the query plan and the operator ordering have already
been chosen by a centralized optimizer.

• There exists a mechanism that decomposes the query plan into strides
in place. The strides can be produced either manually, or in an auto-
mated manner, e.g., using the same partitioning approach as in [18].
Each stride comprises vertices that can refer to sub-queries in the orig-
inal query plan, that is groups of simple database operations, or stand-
alone operations. Our model does not distinguish between these two
cases and treats each stride vertex as a non splittable operator. All
operators within the same stride can be executed in parallel.

• Every operator can be executed only on one processing node. The
number of VMs that will be used in every stride can be up to the
number of the query plan vertices that the stride comprises. As such,
there is no intra-operator parallelism, where an operator runs on several
processors9.

3.2. The Cost Model

Our cost model is modular and consists of components that model the
charging policies, the computational and the communication execution time,
respectively. Based on those components, the economic price is derived as
explained below.

3.2.1. Modeling the charging policies and fees

In the first part, we model the charging policies described in Section 2
and we map them to specific VM offers. The notation is as follows:

• P a
t : Denotes the charging policies of the providers, where:

– a: identifies the type of charging policy; the following list is ex-
tensible:

∗ a=1: corresponds to On demand Instance;

9We use the terms node, processor and VM interchangeably.
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∗ a=2: corresponds to Reserved Instance;

∗ a=3: corresponds to Committed VM ;

∗ a=4: corresponds to Spot Instance;

– t: denotes the charging time unit of charging in minutes; for ex-
ample, if providers may charge either per minute of usage or 5
minutes or per hour, then t ∈ {1, 5, 60}. In policies where the
actual usage is not monitored, as may happen in the Committed
VM one, t is set to its minimum value, i.e, typically 1 minute, to
allow for more detailed model estimates.

• VMk: denotes the specific VM instance, where 1 ≤ k ≤ |Available V Ms|.

• Fpr(P
a
t , V Mk) = (fa, fu): denotes the price offer from cloud provider

pr for the VM instance VMk according to the pricing policy P a
t . It

consists of two parts: fa corresponds to the amortized price per time
unit for the policies that involve an upfront fee payment (e.g., Reserved
Instance), whereas it is normally 0 for the On demand Instance policy;
fu corresponds to the fee related to the actual VM usage, which is set
to 0 for the Committed VM policy.

3.2.2. Estimation of Execution Time

To estimate the time that a query takes to be executed on a specific VM,
we use the following formula:

TotalT ime =
∑n

s=1
max(S

VMk→k′
s,1→i , ..., S

VMk→k′
s,ms→j ) (1)

where:

• n = the number of strides.

• ms = the number of operators in the s-th stride.

• S
VMk→k′
s,i→j = OVMk

s,i + T
VMk→k′
s,i→j , where:

– OVMk
s,i = time to execute i-th operator of s stride on VMk.

– T
VMk→k′
s,i→j = time to transfer the data produced by operator i of

the s-th stride, which runs on VMk, to node j, which runs on
VMk′ . Typically, j belongs to the (s+1)-th stride, but this is not
necessary to allow for arbitrary complex execution tree plans. The
following conditions hold:

11



∗ 1 ≤ s ≤ n,

∗ 1 ≤ i ≤ ms,

∗ 1 ≤ j ≤ ms+1,

∗ 1 ≤ k ≤ |Available V Ms|

The rationale behind the TotalTime formula is that: (i) all strides are
executed sequentially in a bottom-up fashion, and (ii) all operators belonging
to the same stride are executed in parallel. In general, we expect these
conditions to hold. Moreover, by taking the maximum in Equation 1, we
silently assume that the execution of one operator does not interfere with
the execution of the other operators in the same stride. Unfortunately, this
is not always the case. One notable exception is when the network forms a
kind of bottleneck in a way that, when several upstream operators send data
to a specific operator in another stride, the total amount of elapsed time is
the sum of the individual sending times. In general, we can alternatively use
the following formula:

TotalT ime =
∑n

s=1

∑ms

i=1
S
VMk→k′
s,i→j (2)

Equations 1 and 2 can be further elaborated in a straightforward manner,
if only a subset of operators interfere with each other. In that case, the
execution time of those operators is summed and then we treat them as
a single meta-operator, the execution of which fully overlaps in the time
domain with the remainder of operators on the same stride. Then we can
apply Equation 1.

The rationale of S
VMk→k′
s,i→j , defined as the sum of the local computation

cost and the data transmission cost of each operator, is that each operator
first completes its local execution and then starts transmitting data to its
consumer. If pipelining is supported, then data transmission starts as soon as
the first results are ready. When the data to be processed is large, as expected
in cloud settings, the local computation and data transmission operations
overlap almost fully, and the time cost of an operator becomes S

VMk→k′
s,i→j =

max(OVMk
s,i , T

VMk→k′
s,i→j ). Overall, any combination of TotalTime and S

VMk→k′
s,i→j

types of estimation is valid, and it rests with the query optimizer to choose
the most appropriate one in each setting.

To calculate OVMk
s,i , we can employ the technique described in [5] although

our approach is orthogonal to the way OVMk
s,i is estimated. According to [5],

the equation for calculating the cost of an operator given a specific VMk is:
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OVMk
s,i = nTcVMk

= nsc
VMk
s + nrc

VMk
r + ntc

VMk
t + nic

VMk
i + noc

VMk
o (3)

cVMk
is a vector of statistical metadata for the instance VMk. The values

of c depend only on the underlying hardware and can be found through a
simple calibration procedure. This also means that the calibration of c has to
be done only once for every VM that we want to test, since it is independent
of specific queries.

n is a vector of statistics of the data processed by the operator in the form
of cardinalities. For estimating the cardinalities n, Wu et al. in [5] propose a
sampling-based approach. These values depend only on the query plan and
not on the hardware that will be used to execute the query. Since the query
plan is only one and is known, it is possible to calculate the cardinalities with
this method without incurring big overhead.

To calculate T
VMk→k′
s,i→j we use, as our basis, the model described in [14],

along with the results of cardinality estimation used for estimate the execu-
tion time of the operator on the i-th node. With the cardinality estimation
results, we can calculate the size of produced data X, that will be trans-
ferred over the network. We can employ different cost estimation formulas
depending on the physical position of the nodes. The nodes i and j of the
stride s and s+ 1 respectively, can belong either to the same cluster or to a
different one. In the first case we have intra-cluster communication, while in
the second we have inter-cluster communication. These cases are examined
as follows.

• Intra-cluster communication, where we have two subcases:

– Same VM instance (k = k′): the j-th operator is executed on the
same node as the i-th operator executed. This means that the
produced data are already in the same VM. So we have:

T VMk→k
s,i→j = 0

– Different VM instance (k ̸= k′): the j-th operator is executed on
a different VM instance than the i-th operator, but in the same
cluster u. This means that data (X) has to be transferred from
node i to node j. In this case:

T
VMk→k′
s,i→j = Cu

k→k′(X) = αk,k′X + βk
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where αk,k′ is the communication cost to transfer one unit of data
from node k to node k′ and βk is the communication startup cost.

• Inter-cluster communication. In this case, operator i is executed on a
node in cluster u, while operator j is executed on a node in cluster v.
So the transfer time is estimated by the following formula:

T
VMk→k′
s,i→j = Cu

k→gu(X) + Cgu,gv(X) + Cv
gv→k′(X) (4)

where:

– Cgu,gv(X) is the communication cost forX amount of data between
cluster u and v through their gateways gu and gv respectively.

– Cu
i→gu(X) is the transmission cost between node k and the gateway

node (gu) in cluster u.

– Cv
gv→j(X) is the transmission cost between gateway node (gv) and

node k′ in cluster v.

Typically, the second of the components above dominates, so Equation 4
is approximated as:

T
VMk→k′
s,i→j ≃ Cgu,gv(X)

3.2.3. Monetary Cost Estimation

The third part of our model is the estimation of the cost of a query in
monetary units. To estimate this, we need to combine the pricing offers of
the different providers with the time estimation of our model. The total price
depends on the execution time of each operator and the associated fee:∑n

s=1

∑ms

i=1
Price(S

VMk→k′
s,i→j , Fpr(P

a
t , V Mk), Fpr(P

a
t′ , V Mk′)), (5)

where Price, computes the fee for using a VMk for S time based on the P a
t

charging policy and transferring data to VMk′ .
Assume that Fpr(P

a
t , V Mk) = (fa, fu) and Fpr(P

a
t′ , V Mk′) = (f ′

a, f
′
u).

Then Price is estimated as follows:

Price = (fa + fu)⌈
S
VMk→k′
s,i→j

t
⌉+ (f ′

a + f ′
u)⌈

T
VMk→k′
s,i→j

t′
⌉
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capturing the fact that data transfer results in concurrent usage of both the
sender and the receiver VMs.

It is worth noting that there are several alternatives when defining fa,
depending on the expected usage of the model. For example, if the user is not
interested in the pre-paid amount, then fa can be set to zero for any charging
policy. Also, if the cost estimation is used to decide whether to request
further VMs in addition to those already reserved, then fa for the on-demand
instances may include the amortized cost of the reserved instances instead of
being 0. The formulas presented above are generic enough to support such
scenarios. Finally, it is straightforward to extend them to support charges
based on the volume of the data transferred across the network.

3.3. An Example

To give a better view of our model, we will present a simple example.
Suppose we have query q that is executed in two strides executed sequentially
so that we can employ Equation 1 for time cost estimates. The query consists
of two operators, one in each stride. For simplicity we will assume that:

• The time to transfer the intermediate data from Stride 2 to Stride 1 is
1 hour (60 mins) if the VMs of each stride are different, or 0 if it is the
same VM. The data transfer takes place after the completion of local
execution.

• There is no charge for data transfer between the nodes that execute
the query. Usually this only happens when the nodes are of the same
provider.

• All the data that the query needs, including the initial data and the
intermediate data, fit completely in the storage space provided by the
specific instance. This implies that we do not have any extra cost for
storage space.

We have two IaaS providers, A and B, with their provided VMs presented
in Table 1. The charging policies are in Table 2. The pricing offers based on
those charging policies can be seen in Table 3 along with their respective fa
and fu values. Finally, the estimated time to execute each operator on the
provided VMs (OVMk

s,i ) can be seen in Table 4.
In Figure 2, we present a diagram of the estimated execution times along

with the estimated monetary costs for the query q for every combination of
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VM Providers ECU Memory Storage

VM1 A, B 3 3.75 GiB 1 x 4 SSD
VM2 A 6.5 7.5 GiB 1 x 32 SSD
VM3 B 6.5 15 GiB 1 x 32 SSD
VM4 B 13 15 GiB 2 x 40 SSD
VM5 A 14 7.5 GiB 2 x 40 SSD

Table 1: Example of VM instances taken from AWS

Pricing Policy Charging Time Unit

P 1
60 Hour

P 1
5 5 Min

P 2
60 Hour

P 3
1 Month

P 3
1 3 Month

Table 2: Pricing policies

VMs with On demand and Reserved charging policies in Table 3. Black bul-
lets represent the On-demand model, while the white ones correspond to the
Reserved Instance model. In general, the monetary cost is inversely propor-
tional to the execution time and Reserved Instance pricing is less expensive
than On demand. In Figure 2, the rightmost combination (A) is to allocate
both operators to VM1, which is the less expensive albeit the slowest VM,
while combination C corresponds to the mapping of the two query strides to
VM5 → VM4, which are the faster and most expensive VMs.

It can be seen that some VM combinations dominate some others, i.e.,
they are both more efficient in terms of execution time and less expensive.
This is attributed to the different charging policies (e.g., charges for each
hour or for each 5 min period of usage). One other factor is the fact that,
in some combinations, both operators are executed on the same VM, and as
such, there is no data transfer across the network, which leads to reduced
execution time and monetary cost. For instance, for combination D on the
diagram, VM5 is used for both operators. Due to the absence of intermediate
data transfer, this combination has both lower cost (by 60$) and running time
(by 60 mins) under the On demand policy than combination B for example,
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Pricing Policy fa fu Description

On-demand
FA(P

1
60, V M1) 0 5 5$/Hour

FA(P
1
60, V M2) 0 17 17$/Hour

FB(P
1
5 , V M3) 0 1.70 1.70$/5Min

FB(P
1
5 , V M4) 0 4.80 4.80$/5Min

FA(P
1
60, V M5) 0 60 60$/Hour

Reserved Instance
FA(P

2
60, V M2) 0.685 15 15$/Hour+500$/Month

FA(P
2
5 , V M3) 0.057 1.5 1.50$/5min+500$/Month

FA(P
2
5 , V M4) 0.057 4.3 4.30$/5min+500$/Month

FA(P
2
60, V M5) 0.685 53 53$/Hour+500$/Month

Committed VM
FA(P

3
1 , V M1) 0.1667 0 7300$/Month

FB(P
3
1 , V M1) 0.1826 0 8000$/Month

Table 3: Pricing offers in the example

VM1 VM2 VM3 VM4 VM5

OVMk
2,1 2000 min 1200 min 1150 min 650 min 610 min

OVMk
1,1 500 min 310 min 300 min 150 min 130 min

Table 4: Example of estimated execution times

where data has to be transferred from VM4 to VM5.
In this example, we do not have any extra cost for the transfer of in-

termediate data between strides. If we had such a cost, we could use the
cardinality estimation to determine the size of data transferred. Since we
know the data that to be transferred and the charging policies of the IaaS
providers, we are able to determine the cost for transferring data between
strides. Also, in the example, we have assumed that all the data, including
initial and intermediate data, fits completely in the storage space. If this is
not the case, we can estimate the data volume that needs to be stored based
on the cardinality estimates, and then estimate the monetary cost for using
extra storage space.
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Figure 2: Time and monetary cost combinations for the example query

3.3.1. Fitting the cost model into an optimizer

The role of the optimizer is to choose the most appropriate combination
of VMs, considering both time and monetary cost. The example discussed
above is simple but adequate to provide insights into the complexity of the
problem when every VM combination is examined. More specifically, the
average time complexity of estimates for each stride is proportional to the
number of pricing offers, the number of available VMs and the number of
stride vertices. The estimates of the complete query plan are exponential in
the number of strides. As such, an optimizer that relies on examining ex-
plicitly each combination is not practically feasible. Nevertheless, not every
combination needs to be examined, since a big portion of such combina-
tions are dominated by others, i.e., for both criteria there exists at least one
combination that is equal or better.

Producing non dominated combinations is the same as producing the
pareto curve. An optimizer can build an exact pareto curve with the help
of a simple pseudopolynomial dynamic programming algorithm. The sketch
of such an algorithm is given in [17], and here we present a more complete
description. The algorithm computes for each operator in each stride, the
minimum monetary cost C to compute the query plan up to that operator
provided that the time does not exceed a delay threshold d. This is repeated
for all possible d values, which range from the minimum time granularity
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tmin (typically 1 minute) to the maximum possible total time dmax in steps
of size equal to tmin. Detecting an upper bound for dmax is trivial, since we
can sum the maximum S

VMk→k′
s,i→j values over all operators in the plan.

The algorithm builds a 2-dimensional array Ci
s(k, d) for each operator

i = 1 . . .ms for each stride s = 1 . . . n, where 1 ≤ k ≤ |AvailableV Ms| and
tmin ≤ d ≤ dmax. It starts from the bottom strides and proceeds to the
top ones. The C arrays are completed column-by-column. A specific cell
keeps the minimum economic cost of computing the query plan up to the
corresponding operator in time no more than d and having the results of
that operator residing at VMk.

Let x = OVMk
s,i . For simplicity of notation, we can assume that each VM

comes with a single pricing policy, so that each k can be mapped to a single
(fa, fu) pair. The recursive function used to drive the dynamic programming
approach is as follows:

Ci
s(k, d) =

{
∞ when x > d

mincostis(k, d) otherwise

mincostis(k, d) = min



(fa + fu)⌈
x

t
⌉+∑

v∈Children(i)

Cv
s−1(k, d− x)

min( Ci
s(j, d− T

VMj→k

s,i→∗ )+

(fa + fu + f ⋆
a + f ⋆

u)⌈
T

VMj→k

s,i→∗

t
⌉) ∀j ̸= k

The rationale of mincost is to check the following two cases for each com-
bination of VM and acceptable total time: either to perform the computation
of the ith operator of the sth stride directly on VMk or to compute that op-
erator at another place and transfer the results to VMk. For the latter,
we examine the (already computed) optimal solutions for all VMj, j ̸= k
(corresponding to the (f ⋆

a + f ⋆
u) pair) and we take their minimum.

The global solution is in the array of the root operator (typically Cn
1 ).

Taking the minimum of each column provides the less expensive cost for
a given time threshold thus yielding only the pareto curve instead of all
combinations. The optimizer can choose the exact allocation either with the
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help of user-defined functions (as mentioned earlier) or through conversion
of the bi-objective optimization problem to a single-objective one with a
constraint on the other optimization criterion. For example, it can choose the
solution with the lowest total time that has economic cost below a supplied
threshold.

3.4. Generalizations

The cost model described in this section can be generalized in two main
ways not covered previously: to support arbitrary data analysis flows and
intra-operator parallelism.

Data analysis flows are typically represented as directed acyclic graphs
(DAGs), which can be naturally split in multiple stages, exactly as the query
plans we consider do. The main difference between arbitrary data flows
and query plans is that query execution plans consist of operators from the
extended relational algebra, whereas data flows also encompass data and text
analytics, machine learning operations, and so on [3]. The implication in our
cost model is in the way OVMk

s,i is estimated. The approach in [5] cannot
apply because it is specific to atomic query operators; so we need to resort
to micro-benchmarking solutions, e.g., as described in [19, 20]. The rest of
the cost model details remain the same.

Regarding intra-operator parallelism, the extensions are straightforward
as well. We can assume that, if we fix the degree of intra-operator parallelism,
then we can modify the query execution plan, so that each instance of a
partitioned operator appears as a separate query plan vertex. Then, we can
apply the cost model without any modification.

Finally, a shortcoming of the monetary cost estimation in Section 3.2.3
is that a VM that receives data from a remote host is activated and, if it
does not start processing its results immediately, it may not be de-activated.
The formula presented does not capture this, but it is straightforward to
devise more sophisticated formulas that keep track of the first time a VM is
activated until it finishes the execution of all the tasks allocated to it.

4. Validation Case Study

In this section, we demonstrate how exactly the cost model is used in a
real multi-cloud environment. The first part shows how the cost model is
calibrated in a single cloud infrastructure and how we derive time estimates.
Monetary cost estimates are covered by the example in Section 3.3. We then
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αk,k′(ms/bytes) βk (ms)
k′ = 1 k′ = 2 k′ = 3

k = 1 - 6.29e-05 5.54e-05 8.61e02
k = 2 6.60e-05 - 6.39e-05 9.05e02
k = 3 5.67e-05 6.09e-05 - 1.08e03

Table 5: Network α and β parameters

present more complex settings that employ multiple cloud infrastructures
and depart from relational database queries.

4.1. Simple Experimental Setting and Model Calibration

For our experiments we used okeanos. okeanos is a IaaS platform for
the Greek Academic and Research Community [21]. More specifically, we
used 3 VMs with the following hardware configurations:

• 2 VMs (VM1 and VM3) : 60GB Disk, 4GB Ram, 1-core x 2.1GHz

• 1 VM (VM2): 40GB Disk, 2GB Ram, 1-core x 2.1GHz

Our software setup includes the installation of PostgreSQL 9.1.11 on
Linux Kernel 3.2.0-58-generic. The data we used come from the TPC-H
decision support benchmark and the database size is 26GB.

To use the cost model, we need to parameterize the time estimates for
data transfer, writing (resp. reading) raw data to (resp. from) disk and for
the relational operators. For the calculation of the network speed, our case
is that the VMs belong to the the same cluster. So the network formula is
given by:

T
VMk→k′
s,i→j = Cu

k→k′(X) = αk,k′X + βk

where αk,k′ is the communication cost to transfer one unit of data from node
k to node k′ and βk is the startup cost.

To find α and β, we conducted two experiments with different X for every
combination of VMs. We used the command dd of unix to produce two files
and the command scp to transfer these files between servers and measure
the network performance. We repeated this experiment 10 times for each X
value and then calculated the mean time. Since we have a linear function,
we can calculate α and β with simple maths. The results are presented in
the Table 5.
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VM1 VM2 VM3

Read Speed (MB/s) 291.60 255.30 43.88
Write Speed (MB/s) 100.83 106.20 96.39

Table 6: Disk Performance in MB/s

Next, to estimate the query time correctly, we need to know the read and
write speed of the disk of every VM. We measure the sequential speed using
the dd unix tool while we set the block size to 4096 bytes. Again, we repeated
the measurements 10 times and we calculated the mean values. The results
are presented in Table 6.

Finally, to estimate the execution time OVMk
s,i of relational operators ex-

ecuted by postgreSQL, we need both cost units c and cardinalities n. For
cardinalities n, we assume that they can be calculated with the method de-
scribed in [5] and thus are accurately known. To calculate c, we have used
the calibration queries from [5]. We have calculated only the cost units that
are involved in the experiments in the next part; the results are in Table 7.
The queries are:

• SELECT * FROM R

R is memory resident. This query is used to find cpu tuple cost.

• SELECT COUNT(*) FROM R

R is memory resident. This query along with the previous are used to
find cpu operator cost.

• SELECT * FROM R

R does not fit in memory. With the help of the first query, this query
is used to find seq page cost.

where seq page cost gives the time cost to sequentially perform an I/O oper-
ation accessing a disk page. cpu tuple cost is the time to retrieve and process
a tuple. cpu operator cost captures the extra cost of applying a hash or an
aggregate function to a tuple (that cost is not covered by cpu tuple cost).

4.2. Running time estimates

In our experiments, we tried to validate whether our cost model can
predict with adequate precision the execution time of a query. We used the
PostgreSQL database only for the operators of the bottom strides. All the
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Optimizer Parameter (ms) VM1 VM2

seq page cost 2.16e-02 3.21e-02
cpu tuple cost 3.76e-04 3.48e-04

cpu operator cost 2.17e-04 2.48e-04

Table 7: Cost units of our VMs

Figure 3: Plans of the experiments.

other operators are implemented with unix scripts. The cost units c were
used only to predict the running time of the PostgreSQL operators. To
calculate the time of operators implemented with scripts, we treated them
as black boxes, we executed them with different inputs and measured their
performance.

Experiment 1

The query of the first experiment is:

SELECT c nationkey, count(*)
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Estimated Values (ms) Actual Values (ms)
Exp. 1 15531 16172
Exp. 2 3131 3285

Table 8: Results of actual execution time and estimated time

FROM customer

GROUP BY c nationkey

The corresponding plan is presented in Figure 3 on the left.
For the execution of the above query, we use two VMs (VM1 and VM2).

VM1 is used for stride 1, while VM2 runs stride 2. The execution is split in
three steps as follows:

1. SCAN, PROJECT and SAVE1 are executed on VM1 with as single
SQL sub-query submitted to the postgeSQL database.

2. TRANSFER is performed using the unix scp command.

3. LOAD1, GROUP BY and SAVE2 is implemented as a single unix script
running on VM2.

We sum the execution time of each of the above steps to calculate the
total actual execution time of the query. Our experiments were repeated 10
times, and their mean value is in the Actual Values column of Table 8.

To find the estimated execution time, we used the actual cardinality.
For the calibration of the execution time of the GroupBy operator, we first
applied this operator on a set of 1 million random numbers for 10 different
times. Again, the total time is given by the sum of the times of the three
steps and the results are in Table 8 (see the Estimated Times column). From
the table, we can observe that the deviation between the actual and the
estimated times in that experiment is less than 4%.

Experiment 2

The query of the second experiment is:
SELECT nation.n name, count(*)

FROM customer, nation

WHERE customer.c nationkey = nation.n nationkey

GROUP BY nation.n nationkey

The detailed execution plan can be seen in Figure 3 on the right. We can
observe that the database optimizer has performed an optimization, which
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pushes the group-by under the join yielding significantly lower execution
times.

For the execution of this query, we use three VMs. VM1 and VM2,
which have both PostgreSQL database installed, are used for the bottom
stride, while VM3 executes the top stride. The execution consists of three
sequential steps:

1. SubQuery1 and SubQuery2 are executed in parallel on VM1 and VM2,
respectively.

2. The intermediate data is transferred with the help of scp as previously.

3. SubQuery3 is implemented as unix script (using join command) that
runs on VM3.

The total time is estimated by adding the maximum estimated time of
subqueries 1 and 2 in Stride 2 along with the data transfer from the first
stride to the second one. Then we add the estimated time of subquery3. The
average results of the 10 runs are in Table 8. Again, the deviation of the
estimates from the actual running times is low (4.69%). It is important to
clarify that the VMs used were not installed on dedicated machines. On the
contrary, the cloud infrastructure in our experiments is heavily used by a big
community that shares the physical resources provided.

4.3. Validation using multi-cloud NoSQL databases

The previous experiments showed the accuracy of the model in a single
cloud setting. We now move to a multi-cloud environments and we focus
on queries that access HBase, a widespread NoSQL system. We employ
three Hbase clusters. The version of HBase in each cluster is 0.94.20 on top
of Hadoop 1.2.1. To produce the data, we have modified the YCSB’s v0.1.3
table loading module to create records/rows of 100KB each (10 fields of 10Kb
each in every row). The rows are distributed according to pre-specified (i.e.,
pre-split) regions. All the region data fit into the main memory so that there
are no disk accesses due to caching.

The three clusters consist of 12 VM in total and run on three distinct
cloud infrastructures. In each cluster, 1 VM plays the role of the master
HBase server, and the rest are region server VMs. Figure 4 depicts the
actual set up, which comprises:

• Our own private cloud infrastructure, which is supported by the ganeti
v2.11 cluster virtual server management software. It physically resides
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Figure 4: Our experimental topology.

at the premises of the Aristotle University of Thessaloniki, Greece.
Our infrastructure consists of 2 physical host machines (host 1, host 2)
where we create the first 8 VMs. The host machines, and thus every
created VM, are inter-connected through a local network with 1 Gbps
(100MB/sec) network speed. The connection speed to the internet is
100 Mbps (11 MB/sec). Every VM has 2 VCPUs (at 2.0GHz), 7GB
RAM (5.8GB dedicated to HBase) and 100GB of storage. The database
created consists of 70K rows and the total database size is 7GB, that
is 1GB per region server.

• The okeanos cloud infrastructure, which was introduced earlier and
on which we have spawned 2 VMs to create a 2-node HBase cluster
(1 region server VM9, 1 master server VM10). The VM characteristics
are 2 VCPUs (at 2.1GHz), 6GB RAM (4.8GB dedicated to hbase) with
100GB and 40GB of storage for the two VMs, respectively. We have
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created a database with 7K rows and total size of 700MB. The database
is pre-split into two equi-sized regions. The VMs physically reside in
Athens, Greece.

• The profitbricks10 cloud infrastructure , where we have created a 2-
node HBase cluster hosting a database of 700MB of size with 7K rows
placed in one region. The corresponding VMs are VM11 and VM12.
The VM characteristics are 2 VCPUs (at 2.8GHz), 5GB RAM (3GB
dedicated to HBase) and 50GB of storage. The VMs physically reside
in Germany.

In the experiments we use a client machine that either collects or joins
the data from multiple VMs. The client VM is running in our private cloud
infrastructure but on a different host machine, in order not to interfere with
the HBase cluster’s resources. The characteristics of the client VM are: 8
VCPUs (4.7GHz), 20GB RAM, and 500GB of storage.

4.3.1. Model Calibration

In order to use our model, we need to find the parameters for data transfer
and local reads from the HBase servers. In order to avoid interference to the
data transfer speed due to disk accesses, we employed the iperf tool11, which
can measure the maximum TCP bandwidth. We have used the same formula
as in Section 4.1 (corresponding to the approximate version of Equation 4).
To compute the α and β values, we have collected measurements using the for
different time intervals (i.e. 1sec, 2sec, 5sec, 10sec, 20sec) with 10 iterations
for each setting and then applied linear regression. The calls were made by
the client to the master of every Hbase cluster (i.e., VM8, VM10, and VM12,
respectively). The results are presented in Table 9.

HBase cluster α (sec/bytes) β (sec)
private 8.507e-09 0.02989
okeanos 8.603e-08 -0.03273

profitbrick 8.62e-08 0.3137

Table 9: Network α and β parameters

10https://www.profitbricks.com/
11https://iperf.fr/
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Figure 5: SCAN to a single HBase cluster at a time.

Figure 6: SCAN to region servers from separate HBase clusters.

To compute the data retrieval operator’s cost we have applied local calls
(termed as SCANs) to the region servers, which hold the regions with the
requested data. The results are presented in Table 10.

1GB (sec) 700MB (sec) 350MB (sec)
VM1 - VM7 2.9995 - -

VM9 - 5.2305 2.9995
VM11 - 4.8164 1.6004

Table 10: SCAN local call execution times (in seconds) as a function of the data region
size requested
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Exp. ID Estimated Values Actual Values Deviation of estimates
SE1-private 12.16secs 10.79secs +12.97%
SE1-okeanos 68.34secs 65.28secs +4.69%

SE1-profitbricks 33.55secs 45.12secs -25.88%
SE2 21.29secs 20.95secs +1.62%
SE3 101.89secs 99.19secs +2.72%
SE4 101.89secs 101.78secs +0.1%

Table 11: Results of actual execution time and estimated time for distributed scans.

4.3.2. Running Time Estimates

In the first set of NoSQL experiments we apply scan queries, where the
client retrieves data from the HBase clusters. The details of the experiments
are as follows:

1. SCAN-Experiment-1 (SE1): We have requested data from one region
server from each of the cloud databases, as shown in Figure 5(left).
The region sizes are 1GB for the private cloud infrastructure, 700MB
for okeanos and 350MB for profitbreaks.

2. SCAN-Experiment-2 (SE2): We have requested 2GB of data from the
HBase cluster running on our private cloud infrastructure, which cor-
responds to reading data from two region servers, as shown in Figure
5(right).

3. SCAN-Experiment-3 (SE3): We have requested 700MB of data (i.e.,
data from one region server) from the HBase cluster running on the
okeanos cloud infrastructure and 350MB of data from the HBase cluster
running on the profitbricks cloud infrastructure; see Figure 6(left).

4. SCAN-Experiment-4 (SE4): We have requested data from one re-
gion server from each of the HBase databases concurrently; see Figure
6(right).

In all experiments the collect process on the client (Stride 2) takes negli-
gible time. The estimated and the actual times are shown in Table 11, where
it is shown that the accuracy is reasonably high apart from simply reading
the data from profitbricks. Interestingly, the accuracy is much higher for the
more complex settings of SE2, SE3 and SE4 rather than for SE1. As pre-
viously, we report the averages of 10 runs. For SE1 and SE2, the estimated
values were produced through simple application of Equation 1 and summing
the data transfer and local processing costs for each operator. For SE2, local
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Figure 7: JOIN from region servers in separate HBase clusters.

experiments show that the scans in the bottom stride in Figure 5(right) do
not fully overlap so that is is absolutely correct to take their maximum, but
despite this fact, the inaccuracy of the estimate is only 1.62%. The esti-
mates for the next experiments make use of Equation 2, since the internet
connection forms the main bottleneck. We can observe that we give the
same estimate for SE3 and SE4. This is because the client machine resides
on the same local network as our private cloud infrastructure, therefore the
bottleneck is only at the connection with the other two clouds. Therefore
the estimate of the time cost of the bottom stride in Figure 6(right) is the
maximum between (i) the scan at the private cloud and (ii) the sum of the
two other scans. According to the profiling metadata, the sum of the two
other scans dominates, and the estimate is the same as if only these two
cloud databases had been contacted.

In the second set of experiments we focus on more complex tasks that join
data from multiple cloud providers. We conduct two further experiments, as
shown in Figure 7. These experiments replace the simple data collection task
in SE3 and SE4 with a JOIN one.

To compute the join operator’s cost we have previously applied local join
calls on the client machine for 2-way and 3-way main memory nested loop
joins [22]. The details of the experiments are as follows:

1. JOIN-Experiment-1 (JE1): We have requested 700MB of data (7000
rows) (i.e., data from one region server) from the HBase cluster running
on the okeanos cloud infrastructure and 350MB of data (3500 rows)
from the HBase cluster running on the profitbricks cloud infrastructure;
see Figure 7(left).

2. JOIN-Experiment-2 (JE2): We have requested 100MB of data (1000
rows) from the private cloud infrastructure, 700MB of data (7000 rows)
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Exp. ID Estimated Values Actual Values Deviation of estimates
JE1 105.69secs 104.06secs +1.57 %
JE2 153.4secs 153.7secs -0.2%

Table 12: Results of actual execution time and estimated time for distributed joins.

(i.e., data from one region server) from the HBase cluster running on
the okeanos cloud infrastructure and 350MB of data (3500 rows) from
the HBase cluster running on the profitbricks cloud infrastructure; see
Figure 7(right). Before the join, we filter 25% of the rows.

The results are presented in Table 12. As for SE3 and SE4, the accuracy
is remarkably high, and the average deviation does not exceed 1.57% of the
actual value.

5. Conclusions

In this work, we present a bi-objective cost model that provides time and
monetary cost estimates of query plans running on VMs from multiple cloud
providers. Our cost model extends existing approaches that solely focus on
time estimates when tasks run on predefined machines and is tailored to a
multi-cloud environment where resources are used at a price. The cost model
is also applicable to generic data flow tasks, and through a detailed example
and validation case studies, we show how it can be employed in practice. In
addition, we explain how the model can become part of an optimizer.

There are several avenues to extend our work, since providing time and
cost estimates is a complex issue. Two of the most important directions
are to devise cost models that map tasks to the amortized cost of using the
infrastructure (rather than the price charged) and to perform more thor-
ough validation after having developed and established suitable benchmarks.
Finally, since conditions on clouds are dynamic, investigation of issues re-
lated to efficient model adaptation is required, taking also into account the
elasticity property of cloud databases.
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