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Abstract. Business Process Model and Notation (BPMN) provides a
standard for the design of business processes. It focuses on bridging the
gap between the analysis and the technical perspectives, and aims to
deliver process automation. The aim of this work is to complement this
effort by transferring knowledge from the related field of data-centric
workflows aiming to provide automated performance optimization of the
business process execution. As a key step towards this goal, the contribu-
tion of this work is to provide a methodology to map BPMNv2.0 models
to annotated directed acyclic graphs, which emphasize the volume of the
tokens exchanged and are amenable to existing automated optimization
algorithms. In addition, concrete examples of mappings are given, while
the optimization opportunities that are opened are explained.

1 Introduction

BPMN has become an international standard for designing workflows. In prin-
ciple, the basic promise of BPMN is the same diagram prepared by a business
analyst to be used for automating the execution of that process on a modern
process engine. This however remains a vision that rarely happens in practice
and the gap between the business and the technical perspectives remains [8]. As
a result, the executable workflow of business processes is either manually de-
signed in order to provide enterprize-specific configurations or derived by simple
procedures using toolkits from established vendors (e.g., Bigazi, IBM, Oracle).
Either way, any performance optimization responsibilities rest with experienced
IT technicians.

In this work, a different approach is advocated, according to which perfor-
mance optimization is automated. First, this type of automation relieves consid-
erable burden from workflow designers. Second, automated optimization yields
intrinsically more flexible and resilient workflows. Increased flexibility stems from
the fact that several equivalent alternatives are investigated by the optimizer
thus providing more options. Also, when external conditions that impact on the
workflow performance evolve, automatically re-optimizing the workflow is im-
portant for efficiently adapting to the new setting to attain resilience. Third,
performance issues are playing an increasingly important role in modern BPM,
which becomes more data- and process-intensive, e.g., in order to cope with big
data [2] giving rise to the need for performance optimization. Finally, optimizers



for automatically deriving execution details is an integral component in systems
that aim to allow end users to submit the process definition at a more declarative
level, e.g., as discussed in [7].

Performance optimization is a field that has been largely investigated in
databases (e.g., [5]) and data-centric flows (e.g., [9, 6]). Although these tech-
niques cannot solve the problem of business process optimization in its entirety,
they can form a starting point for automated performance optimization, as ex-
plained in this work. The key first step is to bridge the modeling gap: data-
centric flows are typically represented as directed acyclic graphs (DAGs) and
optimization techniques rely on statistical metadata, such as cost per task invo-
cation and selectivity, which can be regarded as annotations to these DAGs. We
adopt the same modeling abstraction for business processes, and we explain how
BPMNv2.0 elements are translated to such annotated DAGs. The intention is
to keep using the BPMN standard and the mapping to a DAG, along with the
subsequent optimizations, to occur in a way transparent to the process designer
automatically. In summary, the main contributions of this paper is the intro-
duction of an annotated DAG-based approach to BPMNv2.0 modeling along
with concrete examples of mappings of the main BPMNv2.0 elements, and the
presentation of the optimizations enabled.1

In the remainder of this section, a motivating example and an overview of
related work is provided. Next, we elaborate on our DAG modeling abstraction.
In Sec. 3, the proposed mappings of the main BPMNv2.0 elements are provided.
The optimization opportunities and the open research issues are discussed in
Sec. 4 and 5, respectively.

Motivating Example. A sub-process that is encountered in banks for pro-
cessing loan requests is as follows. Upon receiving a customer application, an
employee fills in the applicants personal details, and then performs a series of
tasks contacting trusted services from third parties on the web. Such tasks in-
clude the following: to import additional customer personal data, to check if the
applicant is on any black list, to check the borrowing capacity and to check the
information with the help of the national credit bureau. If any of these checks
fails, the process aborts and the application is rejected. Finally, the third party
services are invoked by providing the customer’s SSN identity number.

This scenario is simple but capable of showing a set of optimization issues
involved. We give some examples: Which is the optimal sequence to contact the
third-party services in terms of performance, given that several orderings are
valid (e.g., it does not matter whether the check of the borrowing capacity precedes
the check regarding the black lists and vice versa)? Should the invocations be
performed in parallel? Should an employee fill full personal details only after the
checks have passed? In the envisaged approach, one can take these decisions
automatically, in a principled manner in the sense that cost-based algorithms
(which may well be accompanied by theoretical optimality guarantees) can be
employed. Further discussion on this is deferred to Section 4.

1 A more extended version of this work is in [3].



Related Work. Automatically devising executable workflows that speed-
up execution or improve on other performance metrics is an overlooked area
in business process management (BPM). Performance optimization is consid-
ered in the context of process redesign, which covers several topics, as discussed
in [1]. Some examples are to divide an existing process into two or more sep-
arated processes, to eliminate obsolete activities, to assign tasks to the more
specialized person and, in general, to perform judicious responsibility assign-
ment, and to buffer requests to external information sources. The most relevant
heuristics to database-like optimization are the so-called “business process be-
havior heuristics”, which include re-sequencing, knock-out, and parallelism. Re-
sequencing covers the optimizations that involve changing the execution order
of activities, while preserving the process semantics and correctness. A specific
form of re-sequencing is to move activities that check conditions, which if not
met, lead to process termination, as early as possible. Such activities are termed
as knock-out ones. Parallelism deals with decisions as to whether some activi-
ties should be executed in a sequential or a time-overlapping fashion. We target
exactly these form of optimizations, but in a cost-based manner instead of using
ad-hoc heuristics. Finally, there are techniques that restrict their optimizations
in the data management tasks within business processes, e.g., [9].

2 The proposed DAG-modeled abstraction

In data-centric flows, which are also described as DAGs, each graph vertex corre-
sponds to a task. The tasks manipulate data (e.g., extract sentiment information
from tweets, combine user identifier numbers with customer info from an under-
lying database, and so on), and the edges denote how the transformed data flow
across the tasks. Since performance in these data-centric flows is directly depen-
dent on the volume of data being processed and the capacity of the execution
engines, the optimization methodologies aim to process as fewer data as possible
and make judicious assignment of tasks to resources. For the former, the key
idea is to prune unnecessary data, that is data that do not contribute to the
flow final desired result, as early as possible.

In business processes, the things that flow across tasks are “tokens”. So, our
DAGs emphasize the volume of the tokens flowing rather than the business logic
and the control of the flow. Each BPMN task corresponds to a vertex in the
DAG. A directed edge connects each ordered pair of vertices, between which a
transmission of tokens takes place in the context of the process.

The goal of the performance optimization is to improve the average perfor-
mance across multiple process executions. Performance can be crisply defined in
several ways, e.g., in Section 4 we sum the costs of each activity, which reflects
how efficiently tokens are processed. Statistical metadata drive the optimization
procedure. This metadata are typically extracted from log files. The exact type
of metadata depend on the specific optimization problem, but two types are
most commonly encountered: selectivity and cost (per invocation). Selectivity
is the average ratio of output to input tokens. For example, a task that, for



each given recipe, triggers a task to prepare a single meal has selectivity 1. If a
task performs a check and may cause early process termination in case of the
test failure, the selectivity is lower than one. Analogously, if a task produces
multiple tokens per input token on average, its selectivity is above one. In all
the cases, the output tokens flow across all outgoing edges of the corresponding
vertex. The cost of a task is measured in the same units as the performance
criterion. If performance is measured in time units, then the task cost is the
average time needed to execute that task. In BPMN processes, things (captured
by tasks) have to be done under certain circumstances (captured by gateways);
in our DAG-based approach, the statistical metadata play an important role in
considering the gateways semantics through annotations to vertices.

Apart from the statistical metadata, there are two other categories of meta-
data needed. The first category covers dependency constraints between task
pairs, i.e., whether a task must precede another one in any execution plan to
preserve semantic correctness or whether two tasks must be placed on distinct
DAG branches, where each DAG branch corresponds to a different execution
path. The second category captures behavioral characteristics, such as whether
the task can be parallelized, so that its workload is executed by multiple execu-
tors in parallel, and whether a task can operate in a pipelined manner, i.e., to
be capable of producing output tokens before consuming its entire input.

A distinctive feature of our proposal is that BPMN tasks correspond to DAG
vertices but the opposite does not necessarily hold. We employ the notion of
artificial tasks termed as dummy tasks. Overall, the combination of normal and
dummy tasks with appropriately set statistical metadata allow for modeling the
token flow in business processes and paves the way for performance optimization,
as discussed next.

3 BPMNv2.0 Symbol Mapping

In this section, we describe how we can model the main elements of BPMNv2.0 to
our annotated DAGs. The examples are deliberately simple, to convey easier our
message, and they are drawn from the Camunda platform.2 To avoid confusion,
the tasks in our DAGs are depicted as circles rather than rounded rectangles.
We explicitly discuss activities and gateways; [3] includes also event discussion.

Task. An ordinary task, independently of its exact type (e.g., manual, service,
business rule, and so on), is mapped to a distinct vertex in our model. The cost
metadata is the average cost in time units to execute that task, and its selectivity
is the average ratio between the output and input tokens.

For example, in Fig. 1, there is the task “prepare meal”. This task is triggered
after it has received the menu suggestions from the previous task. If the average
time to prepare a meal is c pm, then the cost of that vertex takes that value. The
selectivity is set to 1, because, for each suggestion, there is a single meal prepared.

2 http://camunda.org/bpmn/reference/



Fig. 1. Mapping a loop and an ordinary task.

The loop tasks, like the
“suggest dish” one in the fig-
ure, require a bit more at-
tention, because they exe-
cute more than one time on
average. Let us suppose that
the average number of times
the task is activated is n and
the average time cost to exe-
cute each time is c sd. There
are two ways to handle this
case. First, we can insert a zero cost dummy task before “suggest dish”. The
selectivity of the dummy task is set to n, whereas the cost of the vertex corre-
sponding to “suggest dish” remains c sd. However, the selectivity of this vertex
needs to become 1/n to account for the fact that even if n times the “suggest
dish” task is executed, there is always one token passed on to the subsequent
task. The second option is not to use a dummy task and amortize the cost of
the vertex, so that it captures the fact that, on average, it is executed n times
and thus becomes n× c sd. Both options are shown in Fig. 1.

In the previous examples both tasks are not parallelizable. The multiple
instance tasks can be modeled in the same way as the loop ones, but the difference
is that they can be parallelized up to a parallelism degree of n.

Fig. 2. Mapping a compensation task.

Compensation Tasks Com-
pensation tasks can be mapped
to our DAG with the help of
dummy tasks as well. Con-
sider the example in Fig. 2,
where a book trip task with
cost c bt is associated with
a compensating task cancel
trip with cost c ct. Let as
also assume that the prob-
ability of not triggering the
compensating task and continuing the normal execution is p1, whereas the prob-
ability of canceling the trip is p2=1-p1. The mapping to our DAG involves two
dummy tasks, which do not contribute to the cost, but control the amount of
flow to each of the two branches in a way proportional to the afore-mentioned
probabilities through setting their selectivities accordingly. The preceding task
in this example sends its output to both branches in line with the edge inter-
pretation in our DAG model, and it is the responsibility of the dummy tasks
to perform the filtering. The dependency constraints state that none of the two
initial tasks should precede the other, i.e., the optimizer cannot place them in
a sequence. Note that a simpler mapping would also be possible in cases where



the two branches merge just after the book and cancel tasks. In that mapping,
we could omit the dummy tasks and have only the book trip task with selectiv-
ity set to 1 and a weighted cost equal to p1 × c bk + p2 × c ct. This mapping
does not capture the complete business logic, but is adequate for performance
optimization. Similarly, if there are subsequent tasks following book trip but no
output edge for cancel trip, we could have a single task with the weighted cost
as above and the selectivity being equal to p1.

Subprocess and Call Activities. Subprocesses do not pose any specific chal-
lenge per se with regards to their mapping. However, for optimization purposes,
it is always more desirable to expand them in order to broaden the optimization
search space of the algorithms, provided that those algorithms are capable of
navigating efficiently through the expanded search space. Also, from the perfor-
mance point of view, call activities can be treated like ordinary activities in the
way described above.

Fig. 3. Mapping an ad-hoc task (top) and an event
subprocess (bottom).

Adhoc. Adhoc subpro-
cesses contain several tasks
that can be executed at any
order. This is exactly the
sweet spot for database-like
optimization, which can de-
cide on the optimal order in
a principled manner. In Fig.
3(top), we present an exam-
ple with an adhoc subpro-
cess with 4 tasks that can
be executed in arbitrary or-
der. We map them in the
way shown in the right part
of the figure; all the tasks in
the adhoc subprocess are di-
rectly connected to the pre-
ceding task to denote that
there are no inter-dependencies among them and, as such, can be computed in
parallel (although the final decision rests with the optimizer as discussed later).
Also, we use a zero-cost dummy combiner task to aggregate the output tokens of
the adhoc tasks and call the next activity. The selectivity of that dummy task is
set to 0.25 because it outputs one token for every four tokens received as input.
Further, it is not pipelining, because it needs to consume all its four input tokens
in each execution, before creating an output token.

Event Subprocess. An event subprocess may be executed while the enclosing
subprocess is active. An example is presented in Fig. 3(bottom), where the en-
closing process is a task prepare meal, during which new guests can be included



(captured by the event task include guest). The costs of these tasks are c pm and
c ig, respectively. To map this case to our token-flow DAG, we insert a dummy
filtering vertex with selectivity equal to the probability of executing the event
subprocess p1. Note that, by definition, c ig is always less than c pm, and the
two activities cannot be executed sequentially.

Exclusive, Parallel and Inclusive Gateways. Gateways is a core BPMNv2.0
element and a distinctive feature of process-centric flows not appearing in data-
centric workflows. As such, their effective mapping is of high significance in our
approach. We distinguish between exclusive, parallel and inclusive gateways. An
example of an exclusive gateway is in Fig. 4, where there is an option during
meal preparation for the three dishes shown. Let us assume that the average
probability to select each of the three options is p1, p2, and p3, respectively; these
probabilities need to sum to 1 to account for the fact that always exactly one
option is selected. Then, we can insert zero cost dummy filtering tasks with their
selectivity set equal to the probabilities above. There is also a zero-cost unary-
selectivity dummy combiner task being responsible for synchronization, but this
is optional. To preserve the gateway semantics, the dependencies between these
vertices are that they cannot be placed in a sequence.

Fig. 4. Mapping an exclusive gateway.

Now, suppose that, in the
previous example, the gateway
is transformed to a parallel
one. Then the dummy tasks on
the left become optional (corre-
sponding to zero cost and se-
lectivity equal to 1), so that
the three previous options can
be directly connected to choose
recipe. However, the dummy
task on the right becomes com-
pulsory and its selectivity is set
to 1/3, derived by a generic for-
mula: ratio of 1 to the number
of tasks after the parallel gate-
way. This is to ensure that eat
meal receives a single token for
each choose recipe execution no
matter how many intermediate tasks are executed in parallel. In addition, the
dummy task on the right enforces synchronization.

Inclusive gateways allow tokens to flow across one, many or all paths, i.e.,
the combine certain features from the exclusive and parallel cases. The high-
level mapping shown in Fig. 4 holds for inclusive gateways as well, but with
all dummy tasks being compulsory. Contrary to the case of exclusive gateways,
the selectivities of the dummy tasks preceding the options can sum to a value
greater than 1. In addition, the dummy combiner task on the right part becomes



compulsory (as in parallel gateways) and its selectivity is set to the ratio of 1 to
the sum of the selectivities on the left.

Fig. 5. Mapping a more complex exclusive gateway.

Gateways and Loops. Gate-
ways are very common to
be accompanied by cycles in
business graph models, as
shown at the top of Fig.
5. We can combine the ap-
proaches presented earlier re-
garding loops and gateways
in order to render our graph
acyclic. The tasks belonging
to the loop path are placed
in a sequence with their cost
having been amortized as
shown in Fig. 1; the alter-
native of a dummy task in
that figure is also valid. Then,
the rest of the tasks after the
gateway are treated as in Fig. 4.

Event-based vs. Data-based Gateways In BPMNv2.0, there is a distinction
between data-based and event-based gateways. The former choose the routing
of a token to one or more paths according to data associated with the specific
token. The latter make decisions based on events happening. From the perfor-
mance point of view, there is no essential difference between these two cases.
For example, consider the exclusive case. Instead of monitoring the probabili-
ties of task activation, in an event-based exclusive gateway, we can monitor the
probability of corresponding events and set the selectivities in our DAG vertices
accordingly. Next, we discuss BPMNv2.0 events in detail.

4 Optimization Opportunities

The optimizer envisaged receives an initial mapping, and the set of statistical
and dependency metadata and derives an optimal execution plan. A key aspect
is to decide the exact order of task execution in a cost-based manner.

To provide insights into the benefits, we extend the motivating example,
where the ordering of some tasks is flexible thus generalizing adhoc tasks in
BPMN. Suppose a simple process, which contains n activities forming a chain
(i.e., there are no branches). If, due to dependency constraints, there is no flex-

ibility in the order, then this implies that there are n(n−1)
2 dependency edges,

either explicitly stated or implied through transitive closure. For example, a loan
pre-processing template may define the order in which the tasks for importing



contact information of the applicant, checking the borrowing capacity and con-
tacting the credit bureau take place, despite the fact that any ordering is valid.

Fig. 6. Example benefits when optimally reordering
activities.

Fig.6 shows the perfor-
mance improvements after
simulating 100 randomly gen-
erated DAGs, where there

are 0.75n(n−1)
2 and 0.5n(n−1)

2
dependency edges, n ranges
from 10 to 15, the selectiv-
ity of tasks ranges from 0.01
(extremely filtering) to 2, and
the cost ranges from 1 to 100.
The value distribution is uni-
form. The exact optimization
metric selected is the sum of
the average execution time for
each task. As baseline performance, which corresponds to normalized value 1, we
consider the running time of the initial DAG before re-orderings. In the figure,
we can see that, on average, there is a reduction in the running time by 25.62%
for the more constrained case; moreover, the average reduction becomes 40.37%,
for 50% constraints. Also, there are isolated runs, where the improvements can
be up to an order of magnitude, as shown by the maximum improvement plots
at the bottom of the figure. These numbers indicate how significant the per-
formance benefits can be, even in simple processes. Exploring all the orderings,
even in highly constrained settings, is an intractable problem. The techniques in
[6] show how the optimizer can navigate through the search space in a scalable
manner. Other performance optimization problems can be considered as well, as
discussed in [3].

5 Main Research Issues and Conclusions

Here, we mention the main research issues for developing complete solutions for
performance optimization in BPMN business processes.

– Need for dependency-aware optimization algorithms. Mapping BPMN mod-
els to our DAG abstraction is a necessary but not sufficient condition to
perform cost-based performance optimization. In the previous section, we
referred to several algorithmic techniques that consider only precedence con-
straints, i.e., constraints of the form that task A must precede task B. This
type of constraints needs to be complemented by (i) parallelism constraints
that enforce tasks to be placed in different execution paths; (ii) blocking vs.
pipelining information for each task; and (iii) parallelism capability infor-
mation, to define which tasks are amenable to parallel execution and up to
which degree of parallelism. More research is needed to develop solutions
that account for the complete range of constraints in business processes.



– Statistical Metadata Collection. The statistical metadata play a crucial role,
and their efficient collection requires special attention. Techniques like [4]
may act as a starting point. Challenges include the fact that statistics are
actually correlated, which means that changing the order of tasks may affect
their statistical metadata.

– Extensive Evaluation. There needs to be extensive evaluation using bench-
marks to reason with confidence about the actual capability of each proposed
optimization technique.

– Mapping to BPMN models and end-to-end solutions.Holistic solutions should
involve the mapping of the optimized execution plan back to a BPMN model
and, ideally, be exposed as a software plugin to existing platforms rendering
the optimization fully transparent to the process designer.

Finally, it should be remarked that, in BPM, optimization for performance
only is inadequate; the focus should also be shifted to aspects such as fault-
tolerance, reliability, economic cost and so on.

Summary. This work is motivated by the fact that currently, performance op-
timization of business process is a manual activity in the responsibility of the de-
signer. To address this limitation, automated performance optimizations should
be applied. We explain how we can build upon the knowledge in the data manage-
ment community to optimize data-intensive queries and flows. More specifically,
we discuss the annotated DAG modeling abstraction required to employ such
solutions, going through the handling of the main BPMNv2.0 elements in detail.
We provided insights into the potential performance benefits and identified the
main research issues for enabling automated optimization in BPM.
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