
Mining Uncertain Graphs: An Overview

Vasileios Kassiano, Anastasios Gounaris, Apostolos N. Papadopoulos, and
Kostas Tsichlas

Department of Informatics
Aristotle University of Thessaloniki, Greece

{vkassiano,gounaria,papadopo,tsichlas}@csd.auth.gr

Abstract. Graphs play an important role in modern world, due to their
widespread use for modeling, representing and organizing linked data.
Taking into consideration that most of the “killer” applications require
a graph-based representation (e.g., the Web, social network manage-
ment, protein-protein interaction networks), efficient query processing
and analysis techniques are required, not only because these graphs are
massive but also because the operations that must be supported are com-
plex, requiring significant computational resources. In many cases, each
graph edge e is annotated by a probability value p(e), expressing its ex-
istential uncertainty. This means that with probability p(e) the edge will
be present in the graph and with probability 1 − p(e) the edge will be
absent. This gives rise to the concept of probabilistic graphs (also known
as uncertain graphs). Formally, a probabilistic graph G is a triplet (V , E,
p) where V is the set of nodes, E is the set of edges and p : E → (0, 1].
The main challenge posed by this formulation is that problems that are
relatively easy to solve in exact graphs become very difficult (or even in-
tractable) in probabilistic graphs. In this paper, we perform an overview
of the algorithmic techniques proposed in the literature for uncertain
graph analysis. In particular, we center our focus on the following graph
mining tasks: clustering, maximal cliques, k-nearest neighbors and core
decomposition. We conclude the paper with a short discussion related
to distributed mining of uncertain graphs which is expected to achieve
significant performance improvements.

Keywords: graph mining, network analysis, uncertain graphs

1 Introduction

Graph mining is an important research area with a plethora of practical appli-
cations [1, 12]. The main reason for this is the fact that graphs are ubiquitous
and, therefore, their efficient management and mining is necessary to guarantee
fast and meaningful knowledge discovery.

In its simplest form, a graph G(V,E), is composed of a set of nodes V , repre-
senting the entities (objects), and a set of edges E, representing the relationships
among the entities. An edge eu,v = (u, v) ∈ E connects a pair of nodes u, v,
denoting that these nodes are directly related in a meaningful manner. For ex-
ample, if nodes represent authors, then an edge between two authors may denote

that they have collaborated in at least one paper. As another example, in a so-
cial network application, an edge may denote that two users are connected by a
friendship relationship.

A special category of graphs, include graphs that introduce uncertainty with
respect to the existence of nodes and edges. For example, an edge e between nodes
u and v may exist or not. The existence of an edge depends on several factors
depending on the particular application under consideration. For example, in a
social network where the edge corresponds to a message exchange between two
users, the message will be sent with some probability (i.e., it is not sure that
user u will send a message to user v). As another example, consider a protein-
protein interaction network, where each node corresponds to a protein and each
edge denotes that two proteins are combined. In this case, we may realize that
proteins u and v interact in 70% of the cases, which means that the edge eu,v
will be present in the graph with a probability of 0.7.

Let G = (V,E, p) be an uncertain (a.k.a probabilistic) graph, where p : E →
(0, 1] is a function that assigns probabilities to the edges of the graph1. A widely
used approach to analyze uncertain graphs is the one of possible worlds, where
each possible world constitutes a deterministic realization of G. According to this
model, an uncertain graph G is interpreted as a set {G = (V,EG)}EG⊆E of 2|E|

possible deterministic graphs [43, 44]. Let G ⊑ G indicate that G is a possible
world of G. Then, the probability that G = (V,EG) is observed as a possible
world of G is given by the following formula:

Pr(G|G) =
∏

e∈EG

p(e)
∏

e∈E\EG

(1− p(e)) (1)

For instance, consider the probabilistic graph G shown in Figure 1(a). Two
possible instances of G are given in Figure 1(b) and 1(c). Edges with high prob-
ability values are expected to show up more frequently in instances of G. Conse-
quently, triangles formed by high probability edges are more likely to be present
in a random instance of G. For example, it is not a surprise that the triangle
formed by nodes v4, v5 and v6 that has an existential probability of 0.9 · 0.9 · 0.9
= 0.729 appears in both G1 and G2. In contrast, the triangle (v1, v4, v5) has
an existential probability of 0.5 · 0.2 · 0.9 = 0.09 and its presence in a random
instance of G is not very likely.

The annotation of edges with existential probabilities has significant impact
on the algorithmic efficiency for particular problems. The uncertain existence
of edges poses severe difficulties in solving problems whose counterparts in con-
ventional (i.e., certain or deterministic) graphs can be easily addressed using
polynomial-time algorithms. For example, assume that we are interested in de-
termining the probability that nodes v and u are reachable from each other
within a distance threshold. In a conventional (i.e., certain) undirected graph,
the nodes will be either reachable if they belong to the same connected com-
ponent or otherwise unreachable. Moreover, computing shortest path distances

1 Although existential probabilities can be assigned to the vertices of the graph as
well, in this paper we focus on edge probabilities only.

bc

bc

bc

v3

bc

bc
bc

bc

bc
v1

v2

v4

v5

v6

v7

v8

v9

bc

0.2

0.5

0.2

0.9 0.8

0.9

0.90.9

0.4

0.5
0.6

0.9
0.8

0.8

0.9

(a) G

bc

bc

bc

v3

bc

bc
bc

bc

bc
v1

v2

v4

v5

v6

v7

v8

v9

bc

(b) G1

bc

bc

bc

v3

bc

bc
bc

bc

bc
v1

v2

v4

v5

v6

v7

v8

v9

bc

(c) G2

Fig. 1. A probabilistic graph G and two possible instances G1 and G2. The numbers
near the edges denote existential probabilities.

is considered a common graph operation that can be solved in polynomial time
using Dijkstra’s shortest path algorithm. On the other hand, computing the prob-
ability that the nodes are reachable in a probabilistic graph requires significant
effort, since the problem is known to be #P-complete. Similar difficulties appear
in other problems such as finding nearest neighbors or computing shortest paths
in a probabilistic setting.

Based on the possible worlds semantics, several graph analytic tasks have
been considered recently under the uncertain graph model. Note that, a simplis-
tic technique to work with uncertain graphs is to assume that edge probabilities
are simple weights. However, this approach does not produce meaningful results
in many cases, since edge probabilities have different semantics than simple edge
weights. Moreover, additional difficulties may be posed when edges contain ex-
istential probabilities and weights. Therefore, the recent years specialized algo-
rithmic techniques have been proposed. The problem of k-nearest-neighbors have
been addressed in [48], where shortest paths are computed based on a probabilis-
tic approach. Another important graph mining task is clustering where graph
nodes must be assigned to clusters based on connectivity. This problem is stud-
ied in [26, 29]. Concerning the problem of mining dense components in uncertain
graphs, [65] finds the densest induced subgraph in terms of the maximum ex-

pected density, that is the expected density value of an exact graph chosen at
random. Another important concept is reachability analysis in uncertain graphs,
where we are interested in determining if nodes are reachable given specific con-
straints [28]. Bonchi et al. [7] proposed an extension of the core decomposition for
uncertain graphs. Very recently, a triangle-based extension of the core decompo-
sition, namely the truss decomposition, was introduced for the uncertain graph
model [25, 68]. Other related contributions include algorithms for subgraph simi-
larity search [63], centrality computation [47], the discovery of frequent subgraph
patterns in uncertain graph databases [42].

In this paper, we focus on a subset of the aforementioned algorithmic tech-
niques. In particular, we address the following graph mining problems: 1) clus-
tering the nodes of an uncertain graph, 2) computing k-nearest-neighbors, 3)
finding maximal cliques and 4) computing the core decomposition. In addition,
we provide a short discussion related to how uncertain graph mining could ben-
efit from distributed computation in clusters and what are the basic challenges
that must be addressed in such a setting.

2 Clustering Uncertain Graphs

2.1 Introduction

Clustering has a plethora of applications in many diverse fields and it is consid-
ered as one of the most important data mining tasks in general. It is defined as
the problem of grouping data objects into clusters, such that objects with similar
characteristics are assigned to the same cluster and objects that have dissimilar
characteristics are assigned to different clusters. In many cases, the clustering
problem in graphs is highly related to community detection [16] which has been
studied thoroughly in network analysis. The problem becomes extremely chal-
lenging when probabilities are assigned to the edges of the graph.

The problem of clustering probabilistic graphs has been recently studied by
[30]. Simple techniques and methods that are used for partitioning graphs into
clusters cannot be applied to probabilistic graphs, due to their nature. The chal-
lenges that arise are related to the applicability of the standard algorithms and
the time complexity associated with some already developed algorithms. Many
studies for uncertain data management and graph mining have been conducted
in the computer science community [9],[40]. These studies approach the prob-
abilistic graph clustering problem as a deterministic one, by either considering
the edge probabilities as weights or by leaving out probabilities smaller than
a specific threshold. For the first approach the main problem is that it cannot
solve the clustering problem for weighted probabilistic graphs, because once the
probability is considered as weight, the actual weights cannot be encoded mean-
ingfully onto the edges. For example, finding a mixed weight by multiplying the
actual weight with the probability of the edge, gives a result with no possible
real interpretation. For the second approach, the problem is that the threshold
value cannot be computed in a principled, reliable way.

The probabilistic clustering problem has many important applications, with
the most well-known being the discovery of complexes in protein-protein inter-
action networks and discovering communities in affiliation and social networks.
The aforementioned problems contain uncertainty, so they are best represented
using probabilistic graphs. In these cases, the nodes represent a protein or a
user, and the edges represent the probability of an interaction between proteins
or users.

The possible world semantics is being used to treat this type of graphs,
meaning that every probabilistic graph G is treated as a generative model for
deterministic graphs. This means that every possible instance of G represents a
deterministic graph, or other words a possible world of G. Figure 2 illustrates an
example of a simple probabilistic graph G which consists of five nodes and eight
edges.

0.3

0.3

0.4

0.1

0.1
0.8

0.9 0.5

v1 v2

v3

v4 v5

Fig. 2. A simple probabilistic graph G with 5 nodes and 8 edges

We call D(G,C) the objective function that measures the cost of clustering
the partitioning C of a deterministic graph G = (V,E). Due to the possible world
semantics, the expected value of this function D for clustering a probabilistic
graph is the expected value of D(G, C) for all possible worlds of G. By this
definition, it is easily concluded that the computational cost of this function can
be high, due to the number of possible worlds that are generated exponentially.
There are 2|E| possible graphs because each edge either will be part of the
graph or not. Another problem with this approach is that there may be possible
worlds with disconnected cliques, and therefore, it is very difficult to find a well-
established clustering objective function, like the maximum cluster diameter or
others [32], because the value will be infinite.

2.2 Algorithms

New definitions of the clustering problem in probabilistic graphs were proposed
in [30]. The use of the edit distance as the optimization function is utilized for this
definition. Considering a cluster graph C, i.e., a graph where there can be parts
that are not connected with each other, as a clustering of a deterministic graphG,

the edit distance between C and G is the number of edges that need to be added
and removed from G, to get C. To adapt this approach for finding the cluster
graph C for probabilistic graphs, a generalization of the ClusterEdit problem
by Shamir [55] was defined as the pClusterEdit problem. This problem can
be defined as finding the clustering of G, namely the cluster graph C, with the
minimum expected edit distance from G.

The advantages of this framework include its polynomial computational cost,
the measurable output of the objective function and the independence of the
clustering from factors other than the initial graph. This means that we do not
need to evaluate each possible world of G, so the output of the function will
never be infinite because it is dependent on the node pairs within the graph.
Furthermore, the variance of the output to any clustering is independent of
the specific clustering but correlates only with the initial graph. Finally, the
function does not require the specification of any free parameters, which means
the number of clusters is part of the output.

Before getting to the algorithms, it is useful to explain the probabilistic
graph model under consideration. The probabilistic graph G is defined as a tuple
G = (V, P,W), where V is the set of nodes and |V | = n, P is the set consisting
of every pair of nodes with a probability between 0 and 1; Puv is the existential
probability of the edge (u, v), and |P | = m. Finally,W is the sets of weights for all
pairs of nodes. The algorithms presented below have been tested in undirected,
unweighted probabilistic graphs and assume independence among edges, so G =
(V, P). The complement of G is G′ where G′ = (V, 1− P).

Given two deterministic graphs G = (V,EG) and Q = (V,EQ), the edit
distance between G and Q is defined as the number of edges that need to be
added to or deleted from G in order to be transformed into Q:

D(G,Q) = |EG \ EQ|+ |EQ \ EG|. (2)

By using the binary adjacency matrices G and Q of G and Q respectively we
have:

(G,Q) =

n∑
u=1,v<u

G(u, v)Q(u, v)|. (3)

This definition is extended for a probabilistic graph G and a deterministic graph
Q as the expected edit distance between every cluster G ∈ G and Q:

D(G,Q) = EG⊆G [D(G,Q)] =
∑
G⊆G

Pr[G]D(G,Q). (4)

Although this requires the calculation of all 2|E| possible worlds, it is proven
that the expected edit distance can be measured in polynomial time by using
the following equation:

EG⊆G [
∑
u<v

Xuv] =
∑
u<v

(EG⊆GXuv) =
∑

{u,v}∈EQ

(1− Puv) +
∑

{u,v}/∈EQ

Puv (5)

where Xuv denotes the random variable |G(u, v)−Q(u, v)|.

A cluster graph C = (V,EC) is a deterministic graph with the following prop-
erties: 1) C defines a partition of the nodes in V into k parts, V = (V1, . . . , Vk)
such that Vi ∪ Vj = ∅. 2) For every i ∈ (1, . . . , k) and for every pair of nodes
v ∈ Vi and v ∈ Vi we have that (v, v) ∈ EC . 3) For every i, j ∈ (1, . . . , k) with
i ̸= j and every pair of nodes v, v such that v ∈ Vi and v ∈ Vj , (v, v) /∈ EC .
The pClusterEdit clustering problem is defined as follows: Given a probabilis-
tic graph G = (V, P) find the cluster graph C = (V,EC) such that D(G, C) is
minimized.

In the correlation clustering problem [5], there is a positive (+) or negative
(−) relation between any two pair of objects. The notation E+ is used for the
set of pairs that are positively related and E− for the corresponding negative.
The goal is to find a partition that covers all V and minimizes the number of
disagreement pairs, i.e., + pairs that are in different clusters and − pairs that
are in the same clusters. When weights exist, the cost of clustering is the sum of
W+

uv over all {u, v} that are in different clusters plus the sum of W−
uv for all the

pairs that are in the same clusters. If all W are between 0 and 1 we have that
W+

uv +W−
uv = 1 thus, they satisfy the probability constraint and the objective

function is formulated as:

CC(P) =
∑

(u,v),P (u)=P (v)

Wuv +
∑

(u,v),P (u)̸=P (v)

(1−Wuv) (6)

which is very similar to the objective function of the pClusterEdit problem.
The only difference is that we need to replace (1 − Puv) with W+ and P with
(1 − W−). The similarity of these problems showed that the approximation
algorithm for the aforementioned problem can be utilized for the pClusterEdit
problem as well.

Algorithm pKwikCluster The first algorithm that we present is the pKwik-
Cluster algorithm that is originated from the KwikCluster algorithm [2] for
the weighted correlation clustering problem. The algorithm starts by picking a
random node u from the set of V . Then, it places u in the same cluster with all
the nodes that are connected to it with probability higher than 0, 5. If u has not
an edge with such a probability, it defines a singleton cluster, i.e., a cluster with
only one node and no edges. Then the algorithm removes the nodes that belong
to the newly formed cluster and repeats the process for the remaining nodes of
the graph. The process is depicted in Algorithm 1.

As KwikCluster is a randomized 5-approximation algorithm for the cor-
relation clustering problem we have that pKwikCluster algorithm is a ran-
domized algorithm for the pClusterEdit problem. The algorithm has a time
complexity of O(n) since it only depends on the number of nodes and thus, it
is linear and easily scalable. Figure 3 shows the result of one iteration of the
algorithm for the example graph shown in Figure 2.

Algorithm Furthest The Furthest algorithm is a top-down algorithm that
uses a center-based logic for the graph clustering. First, the algorithm assigns

Algorithm 1 pKwikCluster algorithm for probabilistic graph clustering.
repeat

Choose u ∈ V randomly
C(u)← u
for all v ∈ V such that p(u, v) ≥ 0.5 do

C(u)← C(u) ∪ v
end for
V ← V − C(u)

until V = ∅

0,3

0,3

0,4

0,1

0,1
0,8

0,9 0,5

v1 v2

v3

v4 v5

Fig. 3. The probabilistic graph after the first iteration of pKwikCluster. Node v2
was picked randomly to be the center of the new cluster, and nodes v5 and v8, which
they have an edge with probability equal or over 0.5 with v2, were assigned to it.

every node into a single cluster. Then, it determines the pair of nodes that
have the smallest probability of having an edge between them and marks these
nodes as the centers of two new clusters. The remaining nodes are assigned to
the cluster that are connected with the highest probability. This is an iterative
process and at the end of each iteration i, a new cluster graph Ci is created with
costD(G, Ci). IfD(G, Ci) < D(G, Ci−1) then the algorithm proceeds to the next
iteration. Otherwise, it terminates and Ci − 1 is considered as the algorithm’s
output. The outline of this approach is depicted in Algorithm 2.

In each iteration, the algorithm computes the distance of each node to the
existing cluster centers. If the output C consists of k clusters, then the complexity
of the algorithm is O(mk2). However, the complexity can drop to O(mk) if some
distance caching is achieved in order not to recompute distances from previous
pivots Figure 4 shows the result of the execution of one iteration of the algorithm
on the graph shown in Figure 2.

Algorithm Agglomerative The Agglomerative algorithm is a bottom-up
procedure for the pClusterEdit problem. First we must define a new term,
called the average edge probability. The average edge probability between two

Algorithm 2 Furthest algorithm for probabilistic graph clustering.
repeat
C ← ∅, C ⊂ V is the set of nodes acting as cluster centers
for all u ∈ V do

C(u)← u
end for
First iteration:
C ← C ∪ {c1, c2}, such that c1, c2 ∈ V − C and p(c1, c2) is minimum

i-th iteration:
C ← C ∪ ci, such that ci ∈ V − C and the probability between ci and members

of C is minimum
for all u ∈ V − C do

Assign u to the cluster with which it is more probable to share an edge
V ← V − {u}

end for
until V ← ∅

0,3

0,4
0,8

0,9

v1 v2

v3

v4 v5

Fig. 4. The probabilistic graph after the first iteration of Furthest. Nodes v4 and v5 are
picked as the new centers because they have the smallest probability between them.
The remaining nodes are assigned to the center which they are closer to. The edges
between the two clusters are removed.

clusters V1 and V2, is calculated by the formula:

1

|V i||V j|
∑

u∈Vi,v∈Vj

Puv. (7)

The outline of this technique is depicted in Algorithm 3.
First, the algorithm turns every node into a singleton cluster. The algorithm

is iterative. In each iteration i, it is checked If the largest average edge probability
is more than 0, 5. If it is, it places the two nodes with the largest average edge
probability between them in Ci−1 into the same cluster, making the cluster graph
Ci. If not, it stops and outputs the previous clustering Ci−1. The complexity of
the algorithm using a naive method is O(km2), where k is the number of clusters
in the final clustering. By using a data structure like a heap for retrieving the
closest pair of clusters and placing every edge in it, the complexity reduces to

Algorithm 3 Agglomerative algorithm for probabilistic graph clustering.
repeat

for all u ∈ V do
u forms a singleton cluster

end for
for all pairs of clusters do

Find pair with maximum average edge probability pae
if pae ≥ 0.5 then

Merge pair of clusters into one and continue
else

Stop and display current clustering
end if

end for
until pae < 0.5

O(km logm). Figure 5 shows the result of one iteration of the algorithm on the
simple graph illustrated in Figure 2.

0,1

0,8

0,9

v1 v2

v3

v4 v5

0,35

0,4

0,05

Fig. 5. The probabilistic graph after the first iteration of the Agglomerative algorithm.
Nodes v1 and v3 are first selected to form a cluster as they have the largest edge
probability between them. After that, the new probability is calculated for the newly
formed cluster and nodes v2 v4 and v5 using the average edge probability definition.

Based on the results provided Agglomerative and Furthest do not scale
well for large graphs. Also, the pKwikCluster, which is linear with respect
to the number of edges, exhibits the problem of including only edges associated
with a probability of existing that is more than 0.5, which is sometimes not
desirable or practical. Also, the output clustering of pKwikCluster does not
contain any path longer than two edges, which is usually not desirable. As a
result of this limitations, it would be useful to conduct more studies to ensure
better clustering quality using scalable algorithmic techniques.

Algorithm Balls The Balls algorithm was inspired by another algorithm intro-
duced in [2], developed for the correlation clustering problem. The input of the

algorithm is the matrix of distances between pairs of edges Xuv. The algorithm
uses a parameter a that is set to a constant for a constant approximation ratio,
but it can be changed accordingly depending on the problem at hand.

The Balls algorithm tries to find a set of nodes that are close to each
other and far from other nodes. If a set with this characteristic is discovered,
it removes it from the graph as a cluster and continues with the rest of the
graph. To discover such a set of nodes is not easy, because every subset of nodes
of the probabilistic graph G must be considered. To solve this problem, [20]
used the triangle inequality method for distance Xuv. The algorithm tries to
find clusters that are close (within a ball), to a node u, using the guarantee of
triangle inequality, which concludes that if two nodes are close to u, then they
are close to each other too. This algorithm tends to output ball-shaped clusters.

The steps of the algorithm are the following: first the nodes are placed in
increasing order of the total sum of possibilities incident to each node. At every
iteration, the algorithm selects the first unclustered node u of the ordered set.
Then, it finds the set of nodes B that have probability a of 0.5 or more to have
an edge with u. Then, the average distance d(n,B) of the nodes in B from node
u is calculated. If d(n,B) < a, then we get a cluster with all the nodes from B
and node u. Else, u is a singleton cluster. The space complexity of the algorithm
is O(mn2) for generating the table and its time complexity is O(m2).

To evaluate these algorithms, experiments were conducted that included the
core PPI network. This dataset that we will refer to as COREPPI was pro-
vided by [33]. It contains 2708 nodes that represent proteins and 7123 edges
that represent protein interactions. The edge probabilities show how likely it is
that the interaction actually happens between two proteins. About 20% of the
edges have probability over 0.98, while no edge has probability less than 0.27
in the graph. The remaining edge probabilities are uniformly distributed in the
remaining range [0.27, 0.98]. Finally, the dataset is characterized by power-law
degree distribution, short paths and high clustering coefficient.

The experiment that was conducted by [30], aimed to compare the perfor-
mance of pKwikCluster,Agglomerative, Furthest and Balls algorithms
regarding their running time and quality of output. The latter is measured in
accordance with the objective function, which for this experiment was the edit
distance of the output cluster graphs from the input probabilistic graphs, as we
have explained before.

We present in Table 1 the results of the algorithms regarding their running
time and the expected edit distance. The best value of the objective function for
pKwikCluster is reported, after running it 100 times, since it is a random-
ized algorithm. Regarding the objective function, aka the expected edit distance
we get the best result from Agglomerative with 3420, followed by pKwik-
Cluster with 4194. Regarding running time, pKwikCluster is the fastest as
expected with 0.005 seconds running time, since it is linear to the number of the
input edges. It must be noted that although the dataset is small, the Furthest
algorithm takes more than a minute to finish, showing its scalability problem.
Actually, all algorithms except pKwikCluster cannot scale to more than a

few thousand nodes. The Reference clustering has time complexity at least
quadratic to the number of nodes because it uses matrix multiplications and the
reported results are given from [33].

The known ground truth that was used to validate the results of the algo-
rithms is the MIPS database [37]. MIPS complexes define relationships among
proteins of the same complex and this knowledge is utilized only for the Gcore
graph data and the result is 5380 pairs of proteins. The key difference is that
this includes proteins that belong to more than one cluster, but the algorithms
output cluster partitions, meaning that every protein can be only in one cluster.

Table 1 shows the number of non-singleton clusters that occurred as a result
of each algorithm, and also the True Positive edges, i.e., edges that appear at
the clustering and also in MIPS ground truth, the False Positive edges, i.e.,
edges that appear at the clustering but they do not exist in MIPS ground truth,
and finally the False Negatives, i.e., edges that do not appear at the clustering,
but they exist in MIPS ground truth. It can be observed that Agglomerative
and Furthest results for non-singleton clusters are the closest to Reference.
Also it can be noticed that every algorithm produces quite different results with
different trade-offs. For example, pKwikCluster output includes only 838 TP
edges, while Reference contains 1791. However, pKwikCluster has better
results than Reference regarding the FPs.

Table 1. Summary of results.

algorithm complexity distance runtime # clusters TP FP FN

Reference N/A 12230 N/A 547 1791 11635 3589

Balls O(m2) 4960 8 757 1120 1734 4260

pKwikCluster O(n) 4194 0.005 757 1120 1734 4260

Agglomerative O(kmlogm) 3420 10 542 946 1357 4434

Furthest O(mk2) 4612 150 619 894 2322 4486

2.3 Reliable Clustering

The possible worlds model also comprised the basis of the algorithm proposed
in [35] for reliable clustering of probabilistic graphs. Reliability in terms of clus-
tering involves the connectivity of the clusters over different possible worlds of
the probabilistic graph, and two metrics were proposed for the measurement of
the reliability of a clustering. A probabilistic alteration of the classic k-means
was proposed based on the two new metrics, which is described below.

In deterministic (i.e., certain) graphs, the connectivity of a clustering is typ-
ically measured by the sum of the weights of the edges between each pair of
clusters. Using this metric for probabilistic graph clustering where the proba-
bilities of the edges are perceived as weights can be problematic, as it does not
take into account the possible world semantics. Another problem raised is that

the connectivity of a cluster could be influenced by nodes belonging to different
clusters, instead of being solely dependent on the nodes it contains. Thus, the
criteria for probabilistic graph clustering should capture both local and global
relationships between the nodes of the graph.

The standard uncertain graph reliability proposed in [11] poses such a crite-
rion for reliable probabilistic graph clustering, but it can be very computationally
expensive, which lead to the proposal of the generalized reliability criterion. In
both cases, the reliability R(C) of a set of vertices C, which comprises a cluster
subgraph of G, is defined as follows:

R(C) =
∑
Gi⊑G

Pr(Gi)I(C,Gi) (8)

where I(C,Gi) is equal to 1 if the cluster C is contained in a connected compo-
nent in Gi, and 0 otherwise, and Gi is a possible world derived from G.

In this sense, the reliability metric extends the concept of connectivity from
deterministic graphs to probabilistic graphs and measures the probability of a
probabilistic clustering to maintain its vertices connected in some possible world.

The two basic intuitions behind the generalized reliability criterion are de-
scribed as purity and size balance. Given a possible world G of G, purity imposes
the constraint that in each connected component of G the number of different
clusters should be minimal and one of the clusters should dominate the compo-
nent. In other words, each connected component in this possible world should
be pure, in the sense that the nodes contained in it should exhibit similar char-
acteristics. The purity metric can then be formulated using the cluster label
entropy:

Fp =
∑
Gi⊑G

Pr(Gi)

Li∑
j=1

|CCi,j |H(
∪
k

CCi,j
k) (9)

where CCi,j denote the Li connected components in Gi, CCi,j
k denote the nodes

belonging to the k-th cluster and H(
∪

k CCi,j
k) is the entropy of cluster labels

for the j-th connected component of Gi, defined as:

H(
∪
k

CCi,j
k) = −

K∑
k=1

|CCi,j
k |

|CCi,j |
log

|CCi,j
k |

|CCi,j |
. (10)

The above criterion biases the clustering algorithm towards the selection of
a single clustering containing all or most of the nodes. This is the reason behind
the imposition of the second metric, which is described as size balance. The size
balance metric is formulated as follows:

Fe =
∑
Gi⊑G

Pr(Gi)|V |H(
∪
k

Ck) = |V |H(
∪
k

Ck) (11)

where H(
∪

k Ck) is the entropy of cluster size, defined as:

H(
∪
k

Ck) = −
K∑

k=1

|Ck|
|V |

log
|Ck|
|V |

(12)

Given the above definitions, the generalized reliability criterion guides the
clustering algorithm towards the minimization of F = Fp − Fe. This objective
is equivalent to the minimization of the following equation:

F = −
∑
Gi⊑G

Pr(Gi)

Li∑
j=1

K∑
k=1

|Ci,j
k | log(

|Ci,j
k |

|Ck|
) (13)

Algorithm 4 Coded k-means algorithm for probabilistic graph clustering.

Require: CCi,j : connected components, K: number of clusters
Ck ← ∅,∀k
for all v ∈ V do

Ck ← Ck ∪ v, k is chosen randomly from {1, . . . ,K}
end for
while F hasn’t converged do

for all i do
for all k do

c(CCi,j
k)← HuffmanCoding(CCi,j

k)
end for

end for
Ck = ∅
for all v ∈ V do

for all i do
for all k do CodeLengthk(v)+ = |c(CC

i,f(v,i)
k)

end for
end for

end for
Ck∗ ← Ck∗ ∪ {v}, where k∗ minimizes the coding cost CodeLengthk(v)

end while
return Ck, k = 1, . . . ,K

A Monte-Carlo sampling technique is then used to create N possible worlds
of G, denoted by Gi, i = 1, . . . , N , in order to estimate the reliability criterion. In
this fashion, the generalized reliability criterion can be reformulated as follows:

Fs =
1

N

N∑
i=1

K∑
k=1

|Ck|H(
∪
j

CCi,j
k) (14)

where Fs is an unbiased estimator of F .

Moreover, an auxiliary cluster table Ti is defined for each possible world Gi,
in which each row represents a cluster and each column a connected component.
Then, Ti(k, j) contains the CCi,j

k set of vertices, as defined above. The definition
of Ti allows for the utilization of various coding algorithms for the purpose of
encoding each table corresponding to each possible world.

With the rows of the auxiliary table representing each of the k clusters and
using a fixed coding, each vertex v can be assigned to the row-cluster which
reduces its coding cost. The algorithm begins by assigning each sample randomly
to one of the clusters. Then, the coding for each cluster distribution is computed,
using the Huffman coding or any other type of coding algorithm. After this
computation, each vertex v is assigned to the k∗-th cluster, which minimizes
its coding cost over all possible worlds. It has been proven that through this
iterative process F converges to a (local) minimum. The outline of the process
is depicted in Algorithm 4.

Experiments conducted using the DBLP dataset [49] and the PPI dataset [67]
showed that the proposed k-means alteration improved performance in terms of
the average coding length per vertex, the average vertex pairwise reliability and
the average cluster reliability.

3 Clique Discovery in Uncertain Graphs

3.1 Introduction

One fundamental problem in graph mining is discovering vertices that are densely
connected. A clique is a set C of vertices, where every vertice is connected by
an edge, i.e. for every two vertices u and v ∈ C , there is an edge that connects
the two vertices. A maximal clique is a clique that is not contained in any other
clique. Cliques or maximal cliques can often be considered as cores of structures
in graphs.

Discovering cliques in graphs is a fundamental task with many applications
such as community detection in social or biological networks [41], genetics study
under different circumstances [50] and genome mapping data integration [23].

The problem of finding top-k maximal cliques in a probabilistic graph has
been studied in [66]. An application of this problem is found in protein-protein
interaction networks, where studies has shown that cliques usually represent
cores of protein complexes [4]. Because of the existence of probabilities on the
edges of graphs, a set of vertices may not form a maximal clique in all possible
worlds. The term maximal clique probability is used to describe the possibility
that a set of vertices is a maximal clique in all possible worlds of the uncertain
graph. A collection of k sets with the largest maximal-clique probabilities is
defined as the top-k maximal cliques. Due to the fact that cliques which contain
a small number of vertices do not give us useful information, we choose to discover
cliques that contain at least s vertices.

The probability of a set of vertices C to be a maximal clique for all the
possible worlds of an uncertain graph G, i.e. the maximal-clique probability of

C is given by
∑

G′∈Ω Pr(G ⇒ |G′) where Ω is the set of graphs for all possible
worlds and G′ is a world in which C is a maximal clique.

The problem of finding the top-k maximal cliques is NP-hard because it
contains the maximal cliques enumeration problem [38], where k = ∞ , s=1 and
G is an exact graph. The problem is defined for an uncertain graph G and two
positive integers k and s. The final output of the problem is a collection F of k
sets of vertices of G with the following qualities: 1) the size of each set in F is
equal to or more than s and 2) for any set of cliques C ∈ F , and any other set
C ′ /∈ F , the maximal-clique probability of C is not less than that of C ′.

3.2 Algorithmic Techniques

It has been proven in [66] that the maximal-clique probability of a set of ver-
tices can be found in polynomial time. Considering this, we present the Bran-
chAndBound algorithm that was proposed to find top-k maximal cliques in an
uncertain graph.

Given a probabilistic graph G and G the deterministic graph that occurs if
we remove the edge probabilities from G, we consider ≺ to be the ascending
order of indices of the vertices in G. All of the cliques in G can be organized
into a search tree, where the root represents a clique with no vertices, each node
contains a unique clique in G and the parent of each non-root node represents
another clique C ′ which has the following properties: 1) C ′ ⊂ C, 2) |C| = |C ′|+1
and 3) the only vertex v ∈ C − C ′ satisfies u ≺ v for each vertex v ∈ C . So
the problem of finding top-k maximal cliques in G can be approached as a tree
searching problem, by trying to discover k nodes in the search tree that their
maximal-clique probability is no less than that of any other node.

The BranchAndBound algorithm utilizes a min-heap Htopk of size k which
stores the top-k nodes that have been found so far. The criterion that the nodes
in Htopk are chosen is their maximal-clique probability, Pr(mcliq(C)). The al-
gorithm is initialized by storing a variable γ, which holds the maximal-clique
probability of the root and its value is set to zero before the beginning of the
algorithm. Also, a max-heap Hext is used for the nodes that have not been ex-
amined yet. The nodes are stored in Hext based on their clique probabilities
Pr(cliq(C)). At first, the singleton set u is stored into Hext, for every v in G.
Finally, the key of the singleton set v in the heap is Pr(cliq(v)) = PV (v).

BranchAndBound in its basic form performs a simple best-first branch-
and-bound search on the search tree. In each iteration, the algorithm takes the
top node of Hext, i.e., the node with the largest clique probability. For this node
C, the algorithm applies 4 steps: pruning, a computing, an expanding and
updating.

– During the pruning step, the algorithm checks if the Htopk is full and
if Pr(cliq(C)) ≤ γ. If these do not hold true, then there might be top-k
maximal cliques in the subtree that has as root C and the following steps
of the algorithm must be performed. Otherwise, the aforementioned subtree
can be pruned because the maximal-clique probability of each of its nodes is

for sure less than Pr(cliq(C)), so Pr(mcliq(C)) ≤ γ. This means that C ′ is
not a top-k maximal clique and the algorithm can skip the following steps.

– In the computing step, the algorithm computes the maximal-clique prob-
ability of C. At first, it finds the set of vertices adjacent to all vertices in
C, called N(C). For each vertex v ∈ N(C), the algorithm gets a new clique
C ′ = C ∪ v and computes its Pr(cliq(C ′)). After that, it finds the maximal
clique probability of C.

– In the expanding step, the algorithm checks if C ′ is a child of C in the
search tree. If this holds true and if Htopk is full with Pr(cliq(C ′)) ≤ γ, then
the subtree at C ′ can be pruned, otherwise the algorithm inserts C ′ into
Hext as a possible candidate for future searching.

– In the updating step, if |C| > s, thenHtopk is updated in two possible ways:
1) If the heap is not full, C is inserted and 2) if it is full and Pr(mcliq(C)) > γ,
then the root of the heap is removed and C is inserted because the root of
Htopk cannot be a top-k maximal clique.

The algorithm terminates when either Hext is empty or Htopk is full and
Pr(cliq(C)) ≤ γ. The first condition is true when the whole non-pruned tree
has been searched and the second condition is true when all subtrees below the
nodes of Hext can be pruned safely. The output of the algorithm consists of all
the cliques in Htopk, which are the maximal cliques of G. The outline of this
technique is illustrated in Algorithm 5.

There is also an optimized version of the algorithm which uses techniques to
improve efficiency. These techniques are: 1) size-based pruning, 2) look-ahead
pruning and 3) anti-monotonicity-based Pruning. The optimized algorithm con-
sists of two phases and can be further studied at [66].

Another approach for solving the maximal clique problem in uncertain graphs
has been studied by [62]. The problem is tackled with the use of three metaheuris-
tics, which are based on the popular tabu search (TS) [21], tabu’s variation for
discovering stable sets called STABULUS [17] and GRASP [14] algotithms. TS
prevents getting stuck in local optima by using non-improving moves and the so-
called tabu list and tabu tenures that forbid getting repetitive solutions. STAB-
ULUS differs from TS in the sense that it performs the local search on partially
impracticable solutions. When the solution is found, the algorithm starts over
to discover a better solution. The GRASP algorithm is a multi-start algorithm,
in which the solution is found in a randomized greedy way in each iteration
and then local search techniques are used to improve the current solution. The
greedy part of the algorithm refers to the construction of the restricted candidate
list which contains some of the best candidates. The algorithms developed using
these techniques consider the CVAR (Conditional Value-at-Risk) [51] verifica-
tion procedure, the robustness during local search moves and the bounds on the
solution size.

3.3 Enumerating Maximal Cliques

Another problem, similar to finding the top-k maximal cliques in an uncertain
graph, is calledmaximal clique enumeration. This problem has many applications

Algorithm 5 BranchAndBound algorithm for top-k maximal clique search
in probabilistic graphs.

repeat
if Htopk is not full and Pr(cliq(C)) ≤ τ then

for all v ∈ V do
Hext ← {v}, keyHext(v)← Pr(cliq(v))

end for
C ← root of Hext

if Htopk is not full and Pr(cliq(C)) ≤ τ then
N(C) = {v : ∀u ∈ C, (u, v) ∈ E}
for all v ∈ N(C) do

C′ ← C ∪ v
Pr(cliq(C′))← Pr(cliq(C)) ∗ PV (v)

∏
u∈C

PE((u, v)|(u, v)
end for
Compute Pr(mcliq(C))
for all v ∈ N(C) do

if u ≺ v, ∀u ∈ C then
C′ is a child of C in the search tree
if Htopk is full and Pr(cliq(C′)) ≤ τ then

Prune subtree rooted at C′

else
Hext ← Hext ∪ C′

end if
end if

end for
if |C| ≥ s then

if Htopk is not full then
Insert C into Htopk

else if Htopk is full and Pr(mcliq(C)) > τ then
Remove root of Htopk

Insert C into Htopk

end if
end if

end if
else

Prune subtree rooted at C
end if

until Hext is empty or Htopk is full and Pr(cliq(C)) ≤ τ

in areas where data are more accurately represented by uncertain graphs like
social networks [36, 46], email networks [45], protein-protein interaction networks
[18] and bioinformatics [64].

The problem of enumerating maximal cliques in uncertain graphs has been
studied in [38] [39]. It is used to find robust communities in graphs that contain
probabilities. To solve this enumeration problem, an upper and lower bound for
the largest number of maximal-cliques within a graph must be discovered.

First, the term a-maximal-clique is defined. An a-maximal clique is a maximal
clique with probability at least a (where 0 ≤ a ≤ 1)). If W is a set of vertices
that form a clique with probability at least a, there is no other W ′ such that
W ∈ W ′, where W ′ a clique with probability at least a.

It is shown [38] that the maximum number of a-maximal-cliques in an un-
certain graph with n vertices is

(
n

⌊n/2⌋
)
. This means that there is an uncertain

graph with
(

n
⌊n/2⌋

)
uncertain maximal cliques and no uncertain graph can have

more than
(

n
⌊n/2⌋

)
a-maximal cliques.

The algorithm that is used for enumerating all a-maximal cliques is called
MULE (Maximal Uncertain Clique Enumeration). The MULE algorithm is per-
forming a depth-first-search (DFS) of the graph, utilizing optimization tech-
niques for limiting search space and incremental computation of clique proba-
bilities techniques for maximality check. The worst-case running cost of MULE
on a graph with n vertices is O(n2n). However, this cost only appears when the
graph is very dense, with much better results in typical graphs. It is proven that
the algorithm does not perform an exhaustive search of the graph space and it
can be optimized to find only large maximal cliques.

A simplistic approach for a-maximal cliques enumeration in a probabilistic
graph G is to perform DFS with backtracking. At first, there is an empty set of
vertices C that is an a-clique and the algorithm starts to add vertices to C, with
the restriction that C must always be an a-clique, until no other vertices can be
added. When that happens, we have an a-maximal-clique. Then, the algorithm
backtracks to add any other possible vertices in C, until all possible search paths
are explored.

The MULE algorithm improves this approach of DFS in several ways. First,
the additional vertices that can be put in a current a-clique C have the property
that are already connected with every vertex of C. So, it is efficient to try to
discover this kind of vertices while the algorithm progresses, making the process
quicker by not checking if a new vertex can be added to C. As a result, an
incremental track of vertices is performed for the extension of C.

Another improvement of the MULE algorithm refers to the clique probability.
If a vertex extends C into a clique, it does not mean that it extends C into an
a-clique, too. The clique probability of C is decreased by a factor equal to the
product of the edge probabilities between v and every vertex in C, when v is
added in C. The algorithm calculates the factor by which the clique probability
will fall, in O(1) time, by incrementally maintaining the factor for each vertex v
under consideration.

The last improvement that the MULE algorithm adds to the DFS approach
is the reduction of maximality check. This is achieved by maintaining the set of
vertices that can extend C, but will be explored in a different search path. This
reduces the time cost from θ(n2) to θ(n).

4 Nearest-Neighbor Search

4.1 Introduction

Another problem that has many applications regarding uncertain graphs is the
nearest-neighbor search problem. Some of these applications include identifying
protein neighbors in protein-protein interaction networks that is useful for pos-
sible co-complex membership predictions [33] and possible new interactions [54].
Another example refers to social networks, due to the uncertainty of their nature
[54]. In social networks, it is useful to extract information from queries like how
many people does a specific person influences the most with their on-line actions.
In mobile ad-hoc networks, k-nearest neighbor queries can be used for connectiv-
ity applications [6] or for the probabilistic-routing problem [19]. The fundamental
problem of computing distance functions and processing k-NN queries has long
been studied for standard graphs, and it is also very important for the proba-
bilistic graphs.

One way to compute the distance between two nodes v and u in a probabilis-
tic graph is to consider the length of the most probable path (MPP). This
distance is defined as the length of the path with the highest probability. Given
two nodes v and u in a probabilistic graph G, we can consider two alternatives
as indicators for the closeness of the nodes. The first is the length of the most
probable path and the second is the probability that at least one path exist.

The MPP distance can be easily computed in a probabilistic graph by as-
suming that the graph is certain and by running the Dijkstra shortest-path
algorithm. However, this approach presents several problems. The probability of
such a path may be extremely small, and even if it is large, the probability that
it is indeed the shortest path can be itself very small. Figure 6 illustrates an ex-
ample where the lower path which has an arbitrary length n is the most probable
path, whereas the direct path between v and u is a little less probable. These
problems are solved in [49] by using statistics of the shortest path distribution.

4.2 Distance Measures

Considering a possible world G from G, let dG(v, u) be the shortest path distance
between v and u. The distribution pv,u of the shortest path distance is defined
as:

pv,u(d) =
∑

G|dG(v,u)=d

Pr[G] (15)

This is the sum of all the possible worlds in which the shortest path distance
between v and u is equal to d. Because of the nature of the probabilistic graphs,

. . .

0.9

1

1 1

1

v u

v1 v2 vn−2 vn−1

Fig. 6. Example of an arbitrarily long most probable path.

sometimes there are worlds where v and u are belong to disconnected parts of
the graph, thus making this distance equal to ∞. So pv,u(∞) is defined as the
total probability of all the worlds that v and u are disconnected.

Below we present different types of distances that will be used for different
ways of k-NN pruning, studied in [66]. For these distances, the probabilistic
graph G = (V,E, P,W) and two any two nodes v and u will be used to define
them.
Median Distance : The Median Distance dM (v, u) is the shortest path distance
among all possible worlds. The median distance can be infinite for some pairs v
and u and k-th order statistic are held as well. Formally:

dM (v, u) = argmax
D

{
D∑

d=0

pv,u(d) ≤
1

2

}
(16)

The exact calculation of this distance is difficult to be executed, since it involves
executing a point-to-point shortest-path algorithm in every possible world and
taking the median. To solve this problem, we approximate the value of the
median distance by sampling, using the Chernoff bound [49].
Majority Distance : The Majority Distance dJ(v, u) is defined as the most prob-
able shortest path distance. For weighted graphs, this distance has meaning if
the weights come from a discrete domain. Formally:

dJ(v, u) = argmax
d

pv,u(d) (17)

Expected Reliable Distance : For this distance, only the possible worlds con-
taining a path between v and u are considered. The Expected Reliable Distance
dER(v, u) is defined as the shortest path distance in all worlds in which there
exists a path between v and u. This can be described formally as:

dER(v, u) =
∑

d|d<∞

pv,u(d)

1− pv,u(∞)
(18)

Computing this distance is considered a #P -hard problem, as a generalization
of the reliability problem [60].

Another promising distance function has been defined, which is based on the
concept of random walks. The difference between this approach and the shortest

path approach is that it considers all possible paths, whilst the shortest path
distance relies on one path only. Also, the random walk approach, as its name
suggests, uses random instead of optimal choices. In standard graphs, random
walks have been studied in [52]. The random walk distance function is inspired
by the Individual Page Rank (IPR) concept [15]. For deterministic graphs, in
a IPR walk that starts from a node v, it always teleports back to v, instead of
teleporting to any node in the graph. For probabilistic graphs, IPR is defined
considering a weighted probabilistic graph G = (V,E,W,P), where W represents
the proximity between nodes in the graph.

The parameterization of the random walk is based on a source node s and a
teleportation probability a. The walk starts at source node s and possible world
G0, which is sampled online according to P . At step i, we are at the node ui and
in the world Gi. At this step there are 2 choices: either follow an active edge with
probability 1 − a, or teleport to s with probability a. If there are no outgoing
edges we stay at the same node. This process is called probabilistic random
walk and the random walk distance is defined as the inverse of the stationary
probability of u of the probabilistic random walk with starting node s.

4.3 Algorithms

Different k-NN algorithms have been developed based on the distance functions
described above. First, let us present the definition of the k-NN problem. Given
G = (V,E, P,W) a source node s, a probabilistic distance dP , and a positive
integer k corresponding to the number of neighbors, find the set of nodes Tk(s) =
(t1, ..., tk) for which the distance dP (s, ti) is less or equal to the distance dP (s, t)
for any other node t ∈ V \Tk(s). The problem lies in the computation of the set
Tk(s) without having to compute the distance dP (s, t) for all nodes t ∈ V , as
this can be computationally expensive especially for large graphs.

Using the median distance as defined above, involves truncating the distri-
bution pv,u so as to contain distance values smaller than a given value D. The
remaining values (for d > D in the original distribution) are redistributed and
concentrated exactly at d = D. Let the D-truncated distribution be pD,v,u(d),
dD,M (v, u) be the median distance obtained from it and dM (v, u) be the ac-
tual median distance obtained from the original non-truncated distribution. It
has been proven that if dD,M (v, u1) < dD,M (v, u2) for any two nodes u1, u2,
then dM (v, u1) < dM (v, u2). In other words, the median distance obtained
from the truncated distribution preserves distance relationships between the
nodes of the graph. Thus, finding the set of nodes Tk(v) = u1, . . . , uk for which
dD,M (v, ui) ≤ dD,M (v, u) for i = 1, . . . , k and v ∈ V −Tk(v) comprises a solution
to the k-NN query for v.

The probability distribution is then approximated using sampling techniques.
The algorithm based on the median distance begins by applying Dijkstra’s al-
gorithm with v as the starting node. Once a node gets traversed it is never been
visited again, and to visit a new node, a sample of its outgoing nodes is gener-
ated. The algorithm terminates when it reaches a node whose distance is greater
than D. Then, the sampled distribution of all the visited nodes is updated or

instantiated. Performing the above steps r times yields r samples of the distri-
bution. If the distribution of a node u reaches half of its mass, the node is added
to the k-NN query result. Algorithm 6 presents the outline of the median-based
variation described above.

Algorithm 6 Median distance k-NN algorithm for nearest-neighbor queries in
probabilistic graphs.

Require: s ∈ V : starting node, r: number of samples, k: number of neighbors, γ:
distance increment
Tk ← ∅
D ← 0
Run Dijkstra algorithm r times, from s
while |Tk| < j do

D ← D + γ
for i← 1 : r do

Visit nodes in the i-th Dijkstra’s execution until distance D is reached
for all t ∈ V visited by Dijkstra do

update p̃D,s,t

end for
end for
for all t /∈ Tk : p̃D,s,t exists do

if p̃D,s,t < D then
Tk ← Tk ∪ {t}

end if
end for

end while
return Tk

Using the majority distance defined previously, a variation of the k-NN al-
gorithm similar to the one described above is obtained. One difference lies in
the way the k neighbors are collected. In the median distance version, once the
truncated distribution of a node u reaches 50% of its mass, it is added to the
solution. In the majority distance alternative, the condition ensuring that d1 will
be the majority distance is:

p̃D,v,u(d1) ≥
r − ru

r
(19)

where d1 is the current majority value in the sampled distribution p̃D,v,u(d) and
ru is the number of times the node u has been visited during the r Dijkstra
traversals.

Experiments conducted on the PPI and DBLP datasets showed that the
above proposed algorithms showed improved performance in terms of true pos-
itives versus false positive rates, in comparison to random walk and reliability-
based algorithms.

5 Core Decomposition

The core decomposition is a useful tool for performing a wide range of graph
mining tasks. One of its advantages against other methods is that it can be com-
puted efficiently (linearly) in the size of the input graph. The core decomposition
is related to the problem of discovering dense subgraphs, like cliques, lambda-sets,
etc, most of which are NP-hard or they have high computational complexity and
therefore, the ability to solve this problem in linear time is very appealing.

The k-core of a graph is defined as a maximal subgraph in which every vertex
is connected to at least k other vertices within that subgraph [8]. The set of all
these k-cores in a graph G forms the core decomposition of G [53]. While this
problem is solved in linear time in deterministic graphs, it does not mean that
it is solved this efficiently in probabilistic ones, due to their nature.

Core decomposition has been used to speed-up the computation of other
problems with purpose of finding dense subgraphs in deterministic graphs. Some
examples of this contribution are in the maximal-clique discovery problem [13],
the densest subgraph problem [31] and the densest at-least-k-subgraph problem
[3]. A core-decomposition solution developed for uncertain graphs would provide
a natural extension of the aforementioned applications. Some applications of core
decomposition in probabilistic graphs include influence maximization [61] and
task-driven-team-formation [24].

In influence maximization, we have edges with probabilities that represent
influence between nodes, and the goal is to find the nodes, e.g., users in a social
network, that have the highest influence over a large number of users. To solve
this problem, a greedy algorithm [22] has been proposed that requires a number
of Monte Carlo simulations, which is computationally expensive. By using the
core decomposition technique, this process can be executed more efficiently.

In task-driven team formation, the input is a collaboration graph G =
(V,E, r), where vertices represent individuals and edges represent topic(s) of
past collaboration with the use of the probabilistic model r. Given a query
Q = (T, V), where T is a set of terms used to describe a new task and V is a set
of individuals represented by vertices, the goal is to find the best set of vertices
A ⊂ Q, to perform the task T . Due to the nature of the problem, we have a
single probability for each edge pair (v, u) ∈ E, that (v, u) collaborate on task
T . That gives a great opportunity for applying the core decomposition in order
to determine the best set A.

Using the possible worlds model, the core decomposition concept can be
applied to probabilistic graphs as well. Each vertex v has a probability of being
a part of a k-core H which is defined as the probability that v has a degree
greater or equal to k in H. Then, a threshold η is applied to determine which
vertices actually belong to the k-core based on this probability.

Therefore, given a probabilistic graph and a value for η, the (k, η)-core of G
is defined as the maximal subgraph H such that the probability that each vertex
belonging to it has a degree greater than or equal to k is greater than or equal
to η. Thus, the (k, η)-core decomposition of a probabilistic graph is defined as
the problem of finding the set of all (k, η)-cores of the graph. The η-degree of

Algorithm 7 (k, η)-cores algorithm for core decomposition of probabilistic
graphs.

Require: η
for all v ∈ V do

compute the η-degree of v (Equation 20)
end for
c← ∅,d← ∅,D← [∅, . . . , ∅]
for all v ∈ V do

d[v]← η − deg(v)
D[η − deg(v)]← D[η − deg(v)] ∪ {v}

end for
for all k = 0, 1, . . . , n do

while D[k] ̸= ∅ do
D[k]← D[k]− {v}, random v ∈ D[k]
c[v]← k
for all u : (u, v) ∈ E,d[u] > k do

recompute η-deg(u)
D[d[u]]← D[d[u]]− {u}
D[η-deg(u)]← D[η-deg(u)] ∪ {u}
d[u]← η-deg(u)

end for
V ← V − {v}

end while
end for
return c, n-dimensional vector containing the η-core number of each vertex in G

each vertex in G is defined as:

η − deg(v) = max{k ∈ [0, . . . , dv]|Pr[deg(v) ≥ k] ≥ η} (20)

The outline of the (k, η)-core technique is outlined in Algorithm 7.

6 Distributed Mining of Uncertain Graphs

Having described some of the most important research contributions in uncer-
tain graph mining, we center our focus on interesting issues related to uncertain
graph mining in a distributed setting. Based on our previous discussion, it is
evident that mining uncertain graphs is not trivial. In fact, it is considerably
harder than mining conventional (i.e., certain) graphs. Therefore, efficient tech-
niques are required to enable fast processing and provide meaningful results. A
promising research direction with practical importance is the use of distributed
engines that can utilize multiple resources (e.g., processors, memory, disks) aim-
ing at mining massive datasets requiring significant space requirements. Nowa-
days, clusters running Spark or Hadoop are used consistently to provide the
necessary functionality and performance.

Although many graph mining tasks have been parallelized for the case of con-
ventional graphs, to the best of the authors’ knowledge distributed algorithms

for uncertain graphs have appeared only recently and for a limited set of prob-
lems. More specifically, in [10] the authors study reachability query processing
in large uncertain graphs using distributed algorithms. However, there is a large
set of mining tasks that can benefit from distributed computing. In the sequel we
discuss briefly interesting problems related to uncertain graph mining in associ-
ation with the corresponding difficulties that are raised due to the distributed
setting.

Assume that the input data represents a single massive graph G(V,E, p)
with edge uncertainty. To facilitate distributed processing the first step is to
split the input graph into several partitions. Partitions are distributed across
cluster nodes to enable parallel execution of specific tasks. Graph partition-
ing [34] is an interesting problem on its own, and many algorithms have been
proposed. For example, METIS [27] and FENNEL [58] are two very promising
graph partitioning algorithms. Existing algorithms either work on unweighted
or unweighted graphs. However, these techniques are not equipped with tools
to handle uncertain graphs. Moreover, graph partitioning algorithms supported
by distributed engines such as Spark, apply a hash-based approach where edges
are distributed across machines in random order. However, many graph min-
ing algorithms can benefit significantly by sophisticated partitioning algorithms.
Therefore, there is a need for effective uncertain graph partitioning, taking into
account the existential probabilities assigned to the edges of the graph. The way
graph partitions are defined has a significant impact on mining tasks like node
reachability and community detection.

Graph summarization [57] is a very interesting directions aiming at reducing
the space requirements of massive graphs and at the same time keeping graph
properties in order to provide answers to mining tasks using the summary. Graph
summaries are either lossless (no information loss) or lossy (some information
is lost having an impact on accuracy). To the best of the authors’ knowledge
the problem of uncertain graph summarization has not been addressed yet. Ev-
idently, there is a need to compute graph summaries as fast as possible which
means that distributed techniques may offer significant advantage over central-
ized approaches.

An important graph mining task is the discovery of the set of triangles. A
triangle among nodes u, v and w is formed if all edges (u, v), (v, w) and (u,w)
are present in the graph. It has been shown that triangles are important primi-
tive structures that are essential in community formation [59] and many efficient
algorithms have been proposed. To speed up processing, parallel algorithms for
triangle discovery have been proposed [56]. However, in an uncertain graph it
is natural to ask for the triangles with the maximum existential probability. In
case of edge independence, the existential probability of a triangle is equal to
the product of the probabilities of the corresponding edges. This corresponds to
a top-k query, where k is the desired number of triangles. It is expected that dis-
tributed algorithms for top-k triangle discovery will offer significant performance
improvement over centralized approaches.

Finally, a different set of problems may be defined in the case of a massive
collection of small probabilistic graphs [42]. Instead of working with a single
massive graph, a very large collection of small graphs is given as input. In such
a case, there is a need to apply graph mining techniques across graphs. For
example, clustering in this scenario involves the grouping of graphs in clusters,
which means that meaningful similarity measures for graphs must be used. More-
over, the frequent pattern mining becomes an extremely difficult problem since
not only we have to deal with subgraph isomorphism, but we are facing addi-
tional challenges due to the probabilistic nature of the graphs. It is expected
that distributed techniques will have a significant impact on the performance
of the algorithms that solve similar problems, since graphs may be distributed
in several partitions and operations may be parallelized to enable more efficient
execution of mining tasks.

7 Conclusions

In many real-life applications, graphs are annotated with existential probabilities
on the edges, leading to the concept of uncertain or probabilistic graph. This
means that each edge appears in the graph with a specific probability. Although
this extension seems quite simple, it poses significant computational challenges
in graph mining tasks that are easy to apply on conventional (deterministic)
graphs.

The possible world semantics has proven to be a useful tool to mine prob-
abilistic graphs, allowing efficient solutions to be developed in problems like
graph clustering, clique discovery, k-nearest neighbor discovery and core decom-
position. Although the possible world model implicates the existence and com-
putation of 2|E| deterministic graphs (in the worst case) for a single probabilistic
graph G = (V,E, P), the algorithms proposed in the literature have been shown
to produce effective results in their respective areas, while preserving the notion
of uncertainty.

In this survey, we covered some of these methods focusing on the basic
concepts and their associated algorithmic techniques. Taking into account that
graph mining tasks applied to probabilistic graphs are characterized by increased
complexity, it is natural to use distributed architectures towards more efficient
processing. However, applying distributed processing to probabilistic graphs
seems to be a challenging task by itself, and we argue that such techniques
should be applied in order to facilitate faster execution times and to enable
scalable data mining that could be applied to massive amounts of probabilistic
graph data.

References

1. C. C. Aggarwal and H. Wang. Managing and Mining Graph Data. Springer, 2010.
2. N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:

ranking and clustering. Journal of the ACM (JACM), 55(5):23, 2008.

3. R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. In
International Workshop on Algorithms and Models for the Web-Graph, pages 25–
37. Springer, 2009.

4. G. D. Bader and C. W. Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC bioinformatics, 4(1):2, 2003.

5. N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning,
56(1-3):89–113, 2004.

6. S. Biswas and R. Morris. Exor: opportunistic multi-hop routing for wireless net-
works. ACM SIGCOMM Computer Communication Review, 35(4):133–144, 2005.

7. F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. Core decomposition of
uncertain graphs. In KDD, pages 1316–1325, 2014.

8. F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. Core decomposition of
uncertain graphs. In Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 1316–1325. ACM, 2014.

9. U. Brandes, M. Gaertler, and D. Wagner. Engineering graph clustering: Models and
experimental evaluation. ACM Journal of Experimental Algorithmics, 12(1.1):1–
26, 2007.

10. Y. Cheng, Y. Yuan, L. Chen, G. Wang, C. Giraud-Carrier, and Y. Sun. Distr: A
distributed method for the reachability query over large uncertain graphs. IEEE
Trans. Parallel Distrib. Syst., 27(11):3172–3185, Nov. 2016.

11. C. J. Colbourn and C. Colbourn. The combinatorics of network reliability, volume
200. Oxford University Press New York, 1987.

12. D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons, 2006.
13. D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse graphs

in near-optimal time. In International Symposium on Algorithms and Computation,
pages 403–414. Springer, 2010.

14. T. A. Feo and M. G. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations research letters, 8(2):67–71, 1989.

15. D. Fogaras and B. Rácz. Towards scaling fully personalized pagerank. In Inter-
national Workshop on Algorithms and Models for the Web-Graph, pages 105–117.
Springer, 2004.

16. S. Fortunato. Community detection in graphs. Physics Reports, 483(3):75–174,
2010.

17. C. Friden, A. Hertz, and D. de Werra. Stabulus: a technique for finding stable sets
in large graphs with tabu search. Computing, 42(1):35–44, 1989.

18. A.-C. Gavin, M. Bösche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz,
J. M. Rick, A.-M. Michon, C.-M. Cruciat, et al. Functional organization of the yeast
proteome by systematic analysis of protein complexes. Nature, 415(6868):141–147,
2002.

19. J. Ghosh, H. Q. Ngo, S. Yoon, and C. Qiao. On a routing problem within probabilis-
tic graphs and its application to intermittently connected networks. In INFOCOM
2007. 26th IEEE International Conference on Computer Communications. IEEE,
pages 1721–1729. IEEE, 2007.

20. A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. ACM Transac-
tions on Knowledge Discovery from Data (TKDD), 1(1):4, 2007.

21. F. Glover. Tabu searchpart ii. ORSA Journal on computing, 2(1):4–32, 1990.
22. A. Goyal, W. Lu, and L. V. Lakshmanan. Celf++: optimizing the greedy algo-

rithm for influence maximization in social networks. In Proceedings of the 20th
international conference companion on World wide web, pages 47–48. ACM, 2011.

23. E. Harley, A. Bonner, and N. Goodman. Uniform integration of genome mapping
data using intersection graphs. Bioinformatics, 17(6):487–494, 2001.

24. X. Huang, H. Cheng, and J. X. Yu. Attributed community analysis: Global and
ego-centric views. Data Engineering, page 29, 2016.

25. X. Huang, W. Lu, and L. V. Lakshmanan. Truss decomposition of probabilistic
graphs: Semantics and algorithms. In SIGMOD, pages 77–90, 2016.

26. R. Jin, L. Liu, C. Aggarwal, and Y. Shen. Reliable clustering on uncertain graphs.
In ICDM, pages 459–468, 2012.

27. G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregu-
lar graphs. In Proceedings of the 1996 ACM/IEEE Conference on Supercomputing,
Supercomputing ’96, Washington, DC, USA, 1996. IEEE Computer Society.

28. A. Khan, F. Bonchi, A. Gionis, and F. Gullo. Fast reliability search in uncertain
graphs. In EDBT, pages 535–546, 2014.

29. G. Kollios, M. Potamias, and E. Terzi. Clustering large probabilistic graphs. IEEE
Trans. on Knowl. and Data Eng., 25(2):325–336, Feb. 2013.

30. G. Kollios, M. Potamias, and E. Terzi. Clustering large probabilistic graphs. IEEE
Transactions on Knowledge and Data Engineering, 25(2):325–336, 2013.

31. G. Kortsarz and D. Peleg. Generating sparse 2-spanners. Journal of Algorithms,
17(2):222–236, 1994.

32. F. Kovács, C. Legány, and A. Babos. Cluster validity measurement techniques.
In 6th International symposium of hungarian researchers on computational intelli-
gence. Citeseer, 2005.

33. N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu,
N. Datta, A. P. Tikuisis, et al. Global landscape of protein complexes in the yeast
saccharomyces cerevisiae. Nature, 440(7084):637–643, 2006.

34. D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey, and G. Karypis.
Improving graph partitioning for modern graphs and architectures. In Proceedings
of the 5th Workshop on Irregular Applications: Architectures and Algorithms, IA3
’15, pages 14:1–14:4, New York, NY, USA, 2015. ACM.

35. L. Liu, R. Jin, C. Aggarwal, and Y. Shen. Reliable clustering on uncertain graphs.
In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 459–
468. IEEE, 2012.

36. J. Mcauley and J. Leskovec. Discovering social circles in ego networks. ACM
Transactions on Knowledge Discovery from Data (TKDD), 8(1):4, 2014.

37. H.-W. Mewes, C. Amid, R. Arnold, D. Frishman, U. Güldener, G. Mannhaupt,
M. Münsterkötter, P. Pagel, N. Strack, V. Stümpflen, et al. Mips: analysis and an-
notation of proteins from whole genomes. Nucleic acids research, 32(suppl 1):D41–
D44, 2004.

38. A. Mukherjee, P. Xu, and S. Tirthapura. Enumeration of maximal cliques from an
uncertain graph. IEEE Transactions on Knowledge and Data Engineering, 2016.

39. A. P. Mukherjee, P. Xu, and S. Tirthapura. Mining maximal cliques from an uncer-
tain graph. In Data Engineering (ICDE), 2015 IEEE 31st International Conference
on, pages 243–254. IEEE, 2015.

40. M. E. Newman. Modularity and community structure in networks. Proceedings of
the national academy of sciences, 103(23):8577–8582, 2006.

41. G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping commu-
nity structure of complex networks in nature and society. Nature, 435(7043):814–
818, 2005.

42. O. Papapetrou, E. Ioannou, and D. Skoutas. Efficient discovery of frequent sub-
graph patterns in uncertain graph databases. In Procedings of EDBT, pages 355–
366, 2011.

43. P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. The pursuit of a good possible
world: Extracting representative instances of uncertain graphs. In SIGMOD, pages
967–978, 2014.

44. P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. Uncertain graph processing
through representative instances. ACM Trans. Database Syst., 40(3):20:1–20:39,
2015.

45. N. Pathak, S. Mane, and J. Srivastava. Who thinks who knows who? socio-cognitive
analysis of email networks. In Data Mining, 2006. ICDM’06. Sixth International
Conference on, pages 466–477. IEEE, 2006.

46. J. Pattillo, N. Youssef, and S. Butenko. Clique relaxation models in social net-
work analysis. In Handbook of Optimization in Complex Networks, pages 143–162.
Springer, 2012.

47. J. Pfeiffer and J. Neville. Methods to determine node centrality and clustering in
graphs with uncertain structure. In ICWSM, 2011.

48. M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. K-nearest neighbors in uncer-
tain graphs. Proc. VLDB Endow., pages 997–1008, 2010.

49. M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. K-nearest neighbors in uncer-
tain graphs. Proceedings of the VLDB Endowment, 3(1-2):997–1008, 2010.

50. O. Rokhlenko, Y. Wexler, and Z. Yakhini. Similarities and differences of gene
expression in yeast stress conditions. Bioinformatics, 23(2):e184–e190, 2007.

51. M. Rysz, M. Mirghorbani, P. Krokhmal, and E. L. Pasiliao. On risk-averse
maximum weighted subgraph problems. Journal of Combinatorial Optimization,
28(1):167–185, 2014.

52. P. Sarkar, A. W. Moore, and A. Prakash. Fast incremental proximity search in large
graphs. In Proceedings of the 25th international conference on Machine learning,
pages 896–903. ACM, 2008.

53. S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269–
287, 1983.

54. P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and H. Toivonen. Link discovery
in graphs derived from biological databases. In International Workshop on Data
Integration in the Life Sciences, pages 35–49. Springer, 2006.

55. R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1):173–182, 2004.

56. K. Tangwongsan, A. Pavan, and S. Tirthapura. Parallel triangle counting in mas-
sive streaming graphs. In Proceedings of the 22nd ACM International Conference
on Information & Knowledge Management, CIKM ’13, pages 781–786, New York,
NY, USA, 2013. ACM.

57. Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summa-
rization. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 567–580, New York, NY, USA, 2008.
ACM.

58. C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. Fennel: Streaming
graph partitioning for massive scale graphs. In Proceedings of the 7th ACM Inter-
national Conference on Web Search and Data Mining, WSDM ’14, pages 333–342,
New York, NY, USA, 2014. ACM.

59. C. E. Tsourakakis. A novel approach to finding near-cliques: The triangle-densest
subgraph problem. CoRR, abs/1405.1477, 2014.

60. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

61. Y. Wu, Y. Yang, F. Jiang, S. Jin, and J. Xu. Coritivity-based influence maxi-
mization in social networks. Physica A: Statistical Mechanics and its Applications,
416:467–480, 2014.

62. O. Yezerska, S. Butenko, and V. L. Boginski. Detecting robust cliques in graphs
subject to uncertain edge failures. Annals of Operations Research, pages 1–24,
2016.

63. Y. Yuan, G. Wang, L. Chen, and H. Wang. Efficient subgraph similarity search on
large probabilistic graph databases. Proc. VLDB Endow., pages 800–811, 2012.

64. B. Zhang, B.-H. Park, T. Karpinets, and N. F. Samatova. From pull-down data
to protein interaction networks and complexes with biological relevance. Bioinfor-
matics, 24(7):979–986, 2008.

65. Z. Zou. Polynomial-time algorithm for finding densest subgraphs in uncertain
graphs. In Procedings of MLG Workshop, 2013.

66. Z. Zou, J. Li, H. Gao, and S. Zhang. Finding top-k maximal cliques in an uncertain
graph. In Data Engineering (ICDE), 2010 IEEE 26th International Conference on,
pages 649–652. IEEE, 2010.

67. Z. Zou, J. Li, H. Gao, and S. Zhang. Mining frequent subgraph patterns from
uncertain graph data. IEEE Transactions on Knowledge and Data Engineering,
22(9):1203–1218, 2010.

68. Z. Zou and R. Zhu. Truss decomposition of uncertain graphs. Knowledge and
Information Systems, pages 1–34, 2016.

