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Abstract. In wide-area database systems, which may be running on un-
predictable and volatile environments (such as computational grids), it is
difficult to produce efficient database query plans based on information
available solely at compile time. A solution to this problem is to ex-
ploit information that becomes available at query runtime and adapt the
query plan to changing conditions during execution. This paper presents
a survey on adaptive query processing techniques, examining the oppor-
tunities they offer to modify a plan dynamically and classifying them
into categories according to the problem they focus on, their objectives,
the nature of feedback they collect from the environment, the frequency
at which they can adapt, their implementation environment and which
component is responsible for taking the adaptation decisions.

1 Introduction

In a distributed environment, statistical information about the available data
sources may be minimal, and the availability or load of physical resources is prone
to changes. Consequently, traditional query optimisation can lead to poor perfor-
mance, especially in long running query evaluations, as the query optimiser may
not, at compile time, have the necessary statistics, good selectivity estimates,
knowledge of the runtime bindings in the query, or knowledge of the available
system resources required to produce an optimal query plan (QP). In addition,
traditional optimisers cannot predict the future availability of resources. Adap-
tive (or dynamic) query processing (AQP) addresses this, by adapting the QP
to changing environmental conditions at runtime.

Current research on adaptive query processing follows two main directions.
The first approach responds to changes in the evaluation environment by mod-
ifying the execution plan at runtime (e.g. by changing the operators used or
the order in which they are evaluated). The other approach involves the devel-
opment of operators that deal more flexibly with unpredictable conditions and
adapt their behaviour by collecting and taking into consideration information
that becomes available at query runtime about how query evaluation is proceed-
ing and about changes in the wider execution environment.

A query processing system is defined to be adaptive in [11] if it receives in-
formation from its environment and determines its behaviour according to that



information in an iterative manner, i.e. there is a feedback loop between the en-
vironment and the behaviour of the query processing system. In this survey, we
assume a narrower definition, in the sense that we restrict our attention to cases
where the feedback loop produces effects during the execution of the query. If
the effects of the feedback loop are deferred, then only subsequent queries, rather
than the one that is running, can benefit from the adaptive technique employed.
This is less appealing for novel data management tasks where systems are pro-
cessing potentially very long running queries over multiple, semi-autonomous
sources on wide-area networks with unpredictable data transfer rates. Broadly
speaking, the need for adaptive query processing is emerging as query engines
are scaled and federated, so that they must cope with highly unpredictable and
volatile environments. If databases are to be integrated into the Grid [8], this
need will become even greater.

The remainder of the paper is structured as follows. Section 2 describes
the classification criteria and the potential attributes of AQP. Sections 3 and
4 present existing adaptive operators and algorithms respectively, followed by a
discussion of general observations in Section 5. Section 6 concludes the paper.

Related Work: [11] presents the most relevant work to this survey. As mentioned
above, it examines systems that may produce different query plans at any time
in the future, in response to changes in the environment, while the present survey
focuses on query processing techniques that can adapt to changing conditions
during execution time. Also, [11] uses a very limited set of classification criteria.
[14] extends this set by proposing some dimensions over which AQP systems
may differ. Other previous surveys on query optimisation, like [10, 12], include
techniques that have a dynamic flavour, in the sense that the QP they produce
at compile time is not completely fixed, but such techniques are not covered by
the definition of adaptivity given earlier.

2 The Scope of the Survey

The query evaluator of a database management system (DBMS) comprises two
main sub-components: the query optimiser (QO) and the execution engine. The
query optimiser generates the input for the execution engine. After a query is
submitted, the optimiser chooses one from many, logically equivalent, transfor-
mations of the query in the form of algebraic expressions. These logical query
plans are often represented as logical operator trees. The most interesting char-
acteristics of logical plans, with regard to query optimisation, are the location
of project and select operators, the operator order and the tree shape.

A physical operator plan is derived from the logical one through the selection
of algorithms to implement each of the operators of the logical plan. In order
to produce the physical plan, decisions on whether to use indices or not, and
whether to employ pipelining instead of blocking operators, are also taken. In
general, each logical plan corresponds to many physical plans. Either cost models
or heuristics are used to predict the cheapest plan for execution.



In parallel and distributed DBMSs, partitioning and scheduling issues arise
during optimisation. A query plan can be divided into different sets of operators,
called partitions, in order to harness, to the greatest possible extent, the benefits
of parallelism. The query optimiser is responsible for deciding the number, the
location, the kind, and how partitions will be scheduled.

Existing AQP techniques differ over many dimensions, as they have impacts
of different kinds on the QP, they do not always share common goals and focus,
and they are applicable to different environments. Moreover, they may collect
different feedback and adapt with different frequency. These dimensions are dis-
cussed in the following sections and provide the basis for the survey, which is
summarised in Table 1.

2.1 Modifications in the Query Plan

Modifications to the query plan may occur at two levels: logical and physical.
Modifications at the logical level (LL field in Table 1) may fall into one of the
following categories:

Reformulation of the remainder of the query plan, denoted in Table 1
by rem, when the AQP techniques can produce a totally different logical
subplan for the remainder of the query, introducing new logical operators,
changing the operator order or altering the tree shape.

Operator Reordering, denoted in Table 1 by op or, when techniques can only
change the order of pre-defined logical operators. The two categories, rem and
op or, are not mutually disjoint, as the extent of the effects of the techniques
in the first category is a superset of those in the second.

No effects, denoted in Table 1 by no, when the AQP methods, although they
can modify a query during runtime, they do not modify their logical plan.

In this survey, three aspects of modifications to the query plan at the physical
level, which may be brought about by AQP techniques, are considered: effects
on the physical query plan, re-partitioning and re-scheduling. The impact of the
dynamic techniques on the physical query plan (PP field in Table 1) is of three
kinds:

Usage of adaptive operators, in order to drive the adaptivity. In many cases,
extended variants of sort (sort), hash (hash), pipelining joins (PJ ) and par-
allel operators (parl) are used in order to enhance the query evaluator with
the capability to adapt dynamically to certain changes in the environment.
For example, special physical operators could be used to adapt to changes in
memory availability, when these changes happen during operator execution.

Operator Replacement, takes place when a particular physical operator can
be replaced with a logically equivalent one at runtime in order to produce
an optimised QP. For example, a hash join may be replaced by an index
join, if an index on the joining attribute becomes available during runtime.
As there are no restrictions on the choices that can be made, the relevant
category is marked as any in the relevant field of Table 1.



No effects, if an AQP technique does not affect the physical plan at all. This
is denoted by no.

Although most of the techniques could be applied to parallel and distributed
environments, a few of them deal with query re-partitioning (Par) and re-
scheduling of these partitions (Sch). An example of effects on the partitioning
is when AQP allows partitions to be joined together or split into many sub-
partitions at runtime. If AQP is designed in such a way that it can explicitly
modify the partitioning of a QP running in a parallel or distributed environment,
then the relevant value in Table 1 is yes. Moreover, some techniques invoke the
query optimiser during query execution and, in that way, they may modify the
partitioning, provided that they are applied to a parallel or distributed setting
(denoted as maybe in Table 1).

The scheduling of the query plan is modified when an operation in execution
is moved to another node, the number of execution nodes changes during exe-
cution, or the relative input rates for these nodes is adjusted in order to achieve
optimal performance. In wide-area systems, it is also desirable to have the capa-
bility to replace a source if it fails, and to postpone the decisions on which node
to execute some operations until runtime. Finally the amount of data allocated
to each participating node, can be controlled in order to achieve load balance.
In all the above cases the scheduling is affected. The semantics of the relevant
field in Table 1 is the same as for partitioning .

2.2 Characteristics of Adaptive Query Processing Techniques

AQP methods vary significantly in what they attempt to adapt to. There are
six main different areas of focus, as shown in the Focus field:

Fluctuations in memory (mem fl). Systems in this category try to adapt to
memory shortages and to the availability of excess memory. Memory short-
ages can happen due to competition from higher-priority transactions, for
example. In that case, running query plans may be forced to release some
or all of the resources they hold. On the other hand, executing transactions
may be given additional resources as they become available, when, e.g., other
queries complete and free their buffers.

User preferences (user pr). Adapting to user preferences includes cases where
users are interested in obtaining some partial results of the query quickly.
In order to meet such needs, the system produces results incrementally, as
they become available, and the user can tradeoff the time between successive
updates of the running queries and the amount by which the partial and the
actual results differ at each update. The user can also classify the elements
of the output in terms of importance, and in that case the query evaluator
adapts its behaviour in order to produce more important results earlier.

Data arrival rates (dar). Techniques that adapt to data arrival rates apply to
parallel and distributed systems, where the response times of remote data
sources are less predictable.



Actual statistics (ac stats) about the data sources which are not available
initially. In some cases, it is not possible at compile time to gather accurate
statistics about the data sources. A solution to this problem is to collect
such statistical information at runtime, thereby ensuring that they are valid
for the current circumstances, and to adapt query execution based on it.
Techniques that adopt this policy may change the query plan when the
actual statistics have become available.

Fluctuations in performance (per fl). Problems in performance fluctuation
arise more often in parallel systems. In these systems, performance can de-
grade when even a single node experiences poor data layout on disks, high
memory and CPU load, or competing data streams.

Any changes in the environment (any) combine elements of all the other
categories. Some techniques are comprehensive, as they can adapt to many
kinds of changes in their environment, i.e. to computer resources, like mem-
ory and processor availability, and to data characteristics, like operator costs,
selectivities and data arrival rates.

The aim of adaptive techniques may also differ. More specifically, AQP may
aim at:

Minimising the total response time (trt) for a single evaluation. It is im-
portant to note that many AQP techniques use specific operators in order
to achieve adaptivity. Adaptive operators perform better than static ones
when there are changes in the environment. However, if all the parameters
of the query are known at compile time and do not change during execution,
a static QP may result in better response times.

Minimising the initial response time (irt). Some systems are mostly inter-
ested in minimising the time until useful information is returned to the user,
according to his or her preferences. These systems are optimised to produce
more, or more important, results during the early stages of the execution.

Maximising the throughput (thr) of the system. Some AQP techniques aim
at minimising the total response time for the evaluation of a set of indepen-
dent operations. Apparently, there is an interplay between the techniques of
the last two categories. E.g., if there is only one operation to be evaluated,
they share exactly the same objective. This is only one of the many possible
ways that techniques described in the survey can interfere with each other.

Another characteristic of AQP techniques is the nature of the feedback (FN )
they collect from the environment in order to examine whether there is scope
for adaptation of the QP. Different kinds of feedback include:

– memory availability (mem av),
– potential input from the user (user in), such as priority ratings for different

parts of the result or for the rate of updates of partial results,
– input availability (in av), which is relevant to operators that may have one

or more of their inputs blocked and need to check whether delayed inputs
have become available,



– workload (l),
– data rates (dr), i.e. the rates at which tuples are produced, and
– statistical information (stats), other than those covered by the above cate-

gories, e.g. the size of each relation, the approximate number and frequency
of different values for an attribute, the availability of indices, the layout of
the data on disk, lists of replicated databases, etc.

For the frequency of feedback collection (FFC ), there are two possible values:

– inter-operator (inter), and
– intra-operator (intra) frequency.

Techniques in the first category collect and may act on feedback between the exe-
cution of different physical operators in the QP. Collection can be triggered after
certain physical operators have been evaluated or after special events, like the
arrival of partial results from local data sources in multidatabase environments.
In techniques adapting with intra-operator frequency, feedback is collected dur-
ing the evaluation of physical operators. Check-points are added to the operator
execution for this purpose. In general, feedback is collected after a block of tuples
has been processed. In the limit, this block consists of a single tuple, resulting
in a potentially different plan for each tuple.

Techniques differ in whether they have been designed for

– uniprocessor (U ),
– parallel (P), or
– distributed (D) environments,

as shown in the Env field of Table 1. This does not mean that a technique ini-
tially developed on a single processor platform cannot be applied to a parallel or
distributed setting, rather it is used to indicate that the developers may not have
taken into consideration some of the specific problems that arise in such settings.
For example, for a QP to be optimal in a distributed environment, statistical in-
formation about network cost, replicated data sources and the available nodes is
required, along with commonly available statistics which underpin good models
at least for uniprocessor systems. Such statistics typically include selectivities,
histograms and indices among others. The main difference between distributed
and parallel DBMSs is that the former are constructed by a collection of in-
dependent, semi-autonomous processing sites that are connected via a network
that could be spread over a large geographic area, whereas the latter are tightly
coupled systems controlling multiple processors that are in the same location,
usually in the same machine room [12].

The responsibility for adaptivity decisions (AD) may also be assigned differ-
ently. Such decisions can be taken:

by the physical operators (O), when physical operators are implemented in
such a way that they can adapt their behaviour during runtime without
being invoked by any other DBMS component or optimiser;



locally (L), if the query optimiser, or any other DBMS component, takes ac-
tion during runtime to ensure that the remainder of the query plan will be
evaluated in an optimal manner;

globally (G), which applies to parallel and distributed systems when a global
view of the state of many participating nodes may be required, in order to
adapt.

The last criterion used in this survey is whether a technique is realised as a
physical operator (O), a concrete algorithm (A), or a system (S ). In the first
case, the whole technique can be represented in the physical query plan as a
single physical operator. A technique is classified as an algorithm, if it implies
extension and specific manipulation of the operators of a QP, in order to achieve
adaptivity. A system comprises many autonomous techniques in an integrated
computational entity.

3 Adaptive Query Operators

This section describes query operators which have the capability to adjust their
behaviour according to changing conditions and the information available at
runtime. Adaptive operators continuously collect and evaluate the feedback from
the environment. They act autonomously in order to adapt to changes but have
limited effects on the executing QP, as they cannot perform radical changes to
it. Additionally, as they are basically developed for uni-processor environments,
they do not consider partitioning and scheduling issues.

3.1 Memory Adaptive Sorting and Hash Join

[19] introduces techniques that enable external sorting to adapt to fluctuations in
memory availability. External sorting requires many buffers to run efficiently, and
memory management significantly affects the overall performance. The memory-
change adaptation strategy introduced is dynamic splitting , which adjusts the
buffer usage of external sorts to reduce the performance penalty resulting from
memory shortages and to take advantage of excess memory. It achieves that by
splitting the merge step of external sorts into a number of sub-steps in case
of memory shortage, and by combining sub-steps into larger steps when suffi-
cient buffers are available. Alternative strategies, like paging and suspension,
are non-adaptive and yield poor results [19]. Adopting memory-adaptive phys-
ical operators for sort operations avoids potential under-utilisation of memory
resources (e.g. when memory reserved prior to execution based on estimates is in
fact more than the memory required) or thrashing (e.g. when memory reserved
prior to execution is in fact less than the memory required), and thus reduces the
time needed for query evaluation. This technique is complementary to existing
optimised strategies for the split phase of external sorts. In the same way, new
memory-adaptive variants of merge-sort operators can also be developed.

For join execution, when the amount of memory changes during its lifetime,
a family of memory adaptive hash joins, called partially preemptible hash joins



Technique LL PP Par Sch Focus AimFN FFC EnvAD real.

Memory Adap-
tive Sorting [19]

no sort no no mem fl trt mem av intra U O O

Memory Adap-
tive Merge-Sort
[27]

no sort no no mem fl thr mem av intra U O A

PPHJ [20] no hash no no mem fl trt mem av intra U O O

Ripple [9] no PJ no no user pr irt user in intra U O O

XJoin [24] no PJ no no dar/
user pr

trt -
irt

in av intra U O O

Dynamic Re-
ordering [23]

no sort no no user pr irt user in intra U O O

Mid-Query
Re-optimisation
[15]

rem any may-
be

may-
be

ac statstrt stats inter U L A

Eddies [4, 5] op or no no no any trt stats intra U L A

Rivers [3] no parl no yes per fl trt l/dr intra P O A

MIND [18] op or any no yes ac statstrt stats inter D G A

Query Scram-
bling [1, 2, 26]

rem any no no dar trt in av inter D G A

Pipeline Sched-
uler [25]

op or PJ no no user pr irt dr/
user in

intra D O A

Bouganim et al
[6, 7]

rem PJ may-
be

may-
be

dar/
mem fl

trt dr/
mem av

intra D O/G A

Conquest [16,
17]

rem any yes yes any trt stats inter P G A

Tukwila [13, 14] rem PJ may-
be

yes any trt -
irt

stats inter D O/G S

Telegraph [11] op or parl no yes any trt stats/
l/dr

intra D O/L S

dQUOB [21, 22] op or no no no ac statstrt stats inter D L A

Table 1. Properties of existing adaptive query processing techniques



(PPHJs), is proposed in [20]. Initially, source relations are split and held in mem-
ory. When memory is insufficient, one partition held in memory flushes its hash
table to disk and deallocates all but one of its buffer pages. The most efficient
variant of PPHJs for utilising additional memory is when partitions of the inner
relation are fetched in memory while the outer relation is being scanned and par-
titioned. This method reduces I/O and, consequently, the total response time of
the query. Although it cannot adapt very well to rapid memory fluctuations, it
outperforms non-memory-adaptive hybrid hash joins, which employ strategies,
such as paging and suspension.

3.2 Operators for Producing Partial Results Quickly

In many applications, such as online aggregation, it is useful for the user to have
the most important results produced earlier. To this end, pipelining algorithms
are used for the implementation of join and sort operations. The other kind of
operators are block ones, which produce output after they have received and
processed the whole of their inputs.

Ripple joins [9] are a family of physical pipelining join operators that max-
imise the flow of statistical information during processing. They generalise block
nested loops (in the sense that the roles of inner and outer relation are contin-
ually interchanged during processing) and hash joins. Ripple joins adapt their
behaviour during processing according to statistical properties of the data, and
user preferences about the accuracy of the partial result and the time between
updates of the running aggregate. Given these user preferences, they adaptively
set the rate by which they retrieve tuples from each input of the ripple join. The
ratio of the two rates is reevaluated after a block of tuples has been processed.

XJoin [24] is a variant of Ripple joins. It is an operator with low memory
requirements (due to partitioning of the inputs), so many such operators can
be active in parallel. Apart from producing initial results quickly, XJoin is also
optimised to hide intermittent delays in data arrival from slow and bursty remote
sources by reactively scheduling background processing. XJoin executes in three
stages: Initially, it builds two hash tables, one for each source. In the first stage,
a tuple, which may reside on disk or memory, is inserted into the hash table
for that input upon arrival, and then is immediately used to probe the hash
table of the other input. A result tuple will be produced as soon as a match
is found. The second stage is activated when the first stage blocks and it is
used for producing tuples during delays. Tuples from the disk are then used to
produce some part of the result, if the expected amount of tuples generated is
above a certain activation threshold. The last stage is a clean-up stage as the
first two stages may only partially produce the final result. In order to prevent
the creation of duplicates, special lists storing specific time-stamps are used.

To obtain and process the most important data earlier, a sort-like re-ordering
operator is proposed in [23]. It is a pipelining dynamic user-controllable reorder
operator that takes an unordered set of data and produces a nearly sorted result
according to user preferences (which can change during runtime) in an attempt
to ensure that interesting items are processed first; it is a best-effort operator.



The mechanism tries to allocate as many interesting items as possible in main
memory buffers. When consumers request an item, it decides which item to
process (i.e. it uses a pull model). The operator uses the two-phase Prefetch &
Spool technique: in the first phase tuples are scanned, and uninteresting data
are spoooled to an auxiliary space until input is fully consumed. In the second
phase the data from the auxiliary space are read.

4 Algorithms and Systems for Adaptive Query Processing

4.1 Extensions to Adaptive Operators

A work on memory-adaptive sorting, which is complementary to [19] as discussed
in Section 3.1, is presented in [27]. This method focuses on improving through-
put by allowing many sorts to run concurrently, while the former focuses on
improving the query response time. Because it depends on the sort size distribu-
tion, in general, limiting the number of sorts running concurrently can improve
both the throughput and the response time. The method proposed enables sorts
to adapt to the actual input size and changes in available memory space. For
the purpose of memory adjustment, all the possible stages of a sort operation
regarding memory usage are identified and prioritised. The operations may be
placed in a wait queue because of insufficient memory in the system. Priority
ratings are assigned to the wait queues as well. When memory becomes available,
the sorts in the queue with the highest priority are processed first. A detailed
memory adjustment policy is responsible for deciding whether a sort should wait
or proceed with its current workspace. If it is decided to wait, further decisions
on which queue to enter, and whether to stay in the current queue or to move
to another, are made. Like [19], [27] has impact only on the physical query plan
and adapts with intra-operator frequency.

The method in [25] for quicker delivery of initial results in pipelined query
plans extends Ripple joins [9] and XJoin [24] with the capability to re-order
join operators of the QP. Instead of scheduling operators, the Dynamic Pipeline
Scheduler splits them into independent units of execution, called streams, and
then schedules these streams. This reduces the initial response time of the query
but may result in increases in the total execution time.

The Dynamic Pipeline Scheduler consists of two algorithms. In the rate-based
pipeline scheduling algorithm, all result tuples have the same importance. The
algorithm maximises the result output rate by prioritising and scheduling the
flow of data across pipelined operators. Characteristics of the operators, such
as cost and productivity, can be dynamically changed (due to blocked inputs,
finished operators, etc). Productivity differs from selectivity in that selectivity
describes how many tuples will eventually be produced, whereas productivity
describes how many tuples will be produced at that point in the execution [25]. In
the importance-based tuple regulation algorithm, the result tuples have different
degrees of importance (according to the user) and the algorithm allocates more
resources to the more important tuples. For the importance-rated algorithm,
dynamic collection of query statistics is necessary. So, this algorithm needs to



be combined with another technique that enables the collection of necessary
statistics at runtime. The scheduling policy is modified on the fly in light of
changes in system behaviour. Ideally, the output rates should be recomputed
every time a tuple is processed by a stream, but, in fact, the scheduler is invoked
less often in order to avoid large overheads.

4.2 Algorithms That Adapt to Data Arrival Rates

In the light of data arrival delays, a common approach is to minimise idle time
by performing other useful operations, thus attenuating the effect of such delays.
Query Scrambling [1, 2, 26] and a generic AQP architecture discussed in [6, 7] are
two representative examples in this area.

Query scrambling focuses on problems incurred by delays in receiving the first
tuples from a remote data source. The system performs other useful work in the
hope that the problem will eventually be resolved and the requested data will
arrive at or near the expected rate from then on. In the first phase, it changes the
execution order to avoid idling (which is always beneficial) following a specific
procedure, and, in the second, it introduces new operations in the QP, which is
risky. In query scrambling, there is a trade-off between the potential benefit of
modifying the QP on the fly and the risk of increasing the total response time
instead of reducing it.

[6, 7] deal also with the problem of unpredictable data arrival rates, and,
additionally, with the problem of memory limitation in the context of data in-
tegration systems. A general hierarchical dynamic query processing architecture
is proposed. Planning and execution phases are interleaved in order to respond
in a timely manner to delays. The query plan is adjusted to the data arrival
rate and memory consumption. In a sub-optimal query plan, the operator order-
ing can be modified or the whole plan can be re-optimised, by introducing new
operators and/or altering the tree shape. In general, operators that may incur
large CPU idle times are pushed down the tree. Scheduling such operators as
soon as possible increases the possibility that some other work is available to
schedule concurrently if they experience delays. Bushy trees are also preferred
because they offer the best opportunities to minimise the size of intermediate
results. Thus, in case of partial materialisation, the overhead remains low. The
query response time is reduced by running concurrently several query fragments
(with selection and ordering being based on heuristics) and partial materialisa-
tion is used, as mentioned above. Because materialisation may increase the total
response time, a benefit materialisation indicator (bmi) and a benefit material-
isation threshold (bmt) are used. A bmi gives an approximate indication of the
profitability of materialisation and the bmt is its minimum acceptable value.

4.3 Algorithms that Defer some Optimisation Decisions until
Runtime

To ensure optimality in query evaluation, algorithms may wait until they have
collected statistics derived from the generation of intermediate results thus far.



Kabra and deWitt [15] introduced an algorithm that detects sub-optimality
in QPs at runtime, through on-the-fly collection of query statistics, and improves
performance by either reallocating resources such as memory or by modifying
the QP. This method aims to combat the problem of constructing QPs based
on inaccurate initial statistical estimates about the data sources. To this end, a
new operator, called the statistics collector operator , is used. The re-optimisation
algorithm is heuristics-based and relies heavily on intermediate data materiali-
sation. The statistics collector insertion algorithm inserts statistics collector op-
erators, ensuring that these do not slow down the query by more than a specific
fraction, and also assigns a potential inaccuracy level of low, medium, or high to
the various estimates. So, overhead is taken into consideration and only statistics
that can affect the remainder of the QP are collected.

The MIND system [18] uses a similar approach to address the problem of
where to perform combination operations on partial results of a global query
returned by local DBMSs in a multidatabase system. Due to the fact that useful
statistics about these results are difficult for a static optimiser to estimate, de-
cisions on where to execute operations on data that reside at remote sources are
deferred until the arrival of the actual partial results. The decisions are based
on both the selectivities and the cost involved.

dQUOB conceptualises streaming data with a relational data model, thus
allowing the stream to be manipulated through SQL queries [21, 22]. For query
execution, runtime components embedded into data streams are employed. Such
components are called quoblets. Detection of changes in data stream behaviour
is accomplished by a statistical sampling algorithm that runs periodically and
gathers statistical information about the selectivities of the operators into an
equi-depth histogram. Based on this information, the system can reorder the
select operators on the fly.

4.4 The Telegraph Project

The Telegraph project [11] combines River [3] with Eddies [4, 5] to yield an
adaptive dataflow system. Thus, unpredictable dataflows can be routed through
computing resources in a network, resulting in a steady manageable stream of
useful information. A dataflow engine is an execution environment that moves
large amounts of data through a number of operators running on an arbitrary
number of machines. Such an engine is a database query processing system.
Eddies can reshape dataflow graphs for each tuple they receive to maximise
performance, while rivers are responsible for load balance across multiple nodes.

More specifically, Eddies is a query processing mechanism that continuously
(i.e., for each tuple) reorders operators on the fly in order to adapt dynami-
cally to changes in computing resources (e.g., memory) and data characteristics
(operator costs, operator selectivities, and rates at which tuples arrive from the
inputs), provided that these operators are pipelined [4, 5]. Although current work
focuses on uniprocessor environments, Eddies can be exploited in large federated
databases. In order to insert Eddies in a query plan, joins should allow frequent
and efficient reoptimisation. Such joins have frequent moments of symmetry,



adaptive or non-existent synchronisation barriers, and minimal ordering con-
straints. A moment of symmetry is a state in which the orders of the inputs to
a binary operator can be changed without modifying any state in this operator.
A synchronisation barrier occurs when an input of a binary operator waits until
the other input produces a specific tuple. Joins that are appropriate for Eddies
include Ripple joins, pipelined hash join, Xjoin, and index joins, with the Ripple
join family being the most efficient.

A River [3] is a dataflow programming environment and I/O substrate for
clusters of computers to provide maximum performance even in the face of per-
formance heterogeneity. In intra-operator parallelism, data is partitioned to be
processed among system nodes. The two main innovations in a River are dis-
tributed queues (DQ) and graduated declustering (GD), which enable the system
to provide data partitioning that adapts to changes in production and consump-
tion nodes. DQs are responsible for naturally balancing load across consumers
running at different rates. GD is used for full-bandwidth balanced production,
with the effect that all available bandwidth is utilised at all times, and all produc-
ers of a given data set complete near-simultaneously. While GD is transparent
to programmers resulting in new ready-to-use physical operators, DQs need to
be added to the operator interface manually.

4.5 Adaptive Query Processing in High-Performance Systems

AQP engines are an integral part of high-performance data mining and data
integration systems, like Conquest [16, 17] and Tukwila [13, 14], respectively.

The Conquest query processing system enables dynamic query optimisation
in a parallel environment for long-running queries following a triggering approach
in response to runtime changes [16, 17]. Changes relate to system parameters
(e.g., new processors become available, while others may be withdrawn), and
data characteristics relevant to query statistics (e.g., a buffer queue becomes
empty, or selectivity is higher than initially estimated). Such changes make the
re-computation of cost estimates necessary. The capabilities of Conquest for
modifying a QP are very strong, especially in terms of partition scheduling,
but are limited to unary operators, such as scans. Systems that can modify the
remainder of a QP use materialisation techniques in order to capture and restore
the intermediate state of the operators and executions. One partial exception to
this is the Conquest System, which may only require the buffered records to be
materialised before reconfiguring the operators.

The Tukwila [13, 14] project is a data integration system in which queries are
posed across multiple, autonomous and heterogeneous sources. Tukwila attempts
to address the challenges of generating and executing plans efficiently with little
knowledge and variable network conditions. The adaptivity of the system lies
in the fact that it interleaves planning and execution and uses adaptive opera-
tors. Coordination is achieved by event-condition-action rules. Possible actions
include operator reordering, operator replacement and re-optimisation of the re-
mainder of a QP. The Tukwila system integrates adaptive techniques proposed in



[15, 26]. Re-optimisation is based on pipelined units of execution. At the bound-
aries of such units, the pipeline is broken and partial results are materialised.
The main difference from [15] is that materialisation points can be dynamically
chosen by the optimiser (e.g., when the system runs out of memory). Tukwila’s
adaptive operators adjust their behaviour to data transfer rates and memory
requirements. A collector operator is also used, which is activated when a data
source fails so as to switch to an alternative data source.

5 Discussion

In general and according to results from evaluation of prototypes, AQP tech-
niques often attain their goal of decreasing the response time of a query in the
presence of changes in the parameters they consider, or of delivering useful re-
sults as early as possible. However, in AQP, there is always a trade-off between
the potential benefits from adapting to current conditions on the fly with very
high frequency, and the risk of incurring large overheads.

The techniques that have more extensive capabilities in terms of the mod-
ifications they can induce in the running plan, are more expensive and risky
than the others. Before applying such techniques, certain steps need to be taken
(e.g., validation against a cost model) to ensure that adaptation is likely to be
beneficial. These techniques are mostly applicable to parallel and distributed
settings, taking the adaptivity decisions at a global level and relying heavily
on the materialisation of intermediate results. This happens because in paral-
lel and distributed settings, network costs and resource availability need to be
taken into consideration, and not adapting to changes in data transfer rates or
resources may have detrimental effects. On the other hand, less complex adap-
tive strategies (e.g. those that do not affect the logical plan of the query) are
generally intended for single processor environments, where it is more common
that satisfactorily accurate statistics can be obtained at compile-time.

Surprisingly, little attention has been paid to changes in the pool of available
processors and data sources, which have a great impact on long-running queries
in wide-area systems. As a result, most of the AQP techniques proposed so far for
parallel and distributed DBMSs do not alter their partitioning and scheduling
policies dynamically at runtime.

In summary, for memory fluctuations, the main strategy is to dynamically
adjust the usage of memory buffers. In the light of data arrival delays, a com-
mon approach is to minimise idle time by performing other useful operations,
and thus to hide such delays. The problem of inaccurate cost and statistical
estimates is addressed by collecting and using the actual statistics on the fly
and then comparing them with the estimates in order to decide whether there is
an opportunity for query re-optimisation. Techniques that attempt to adapt to
various changes in a wide area environment follow a triggered approach. Event-
condition-action rules are used, where events can be raised both by operator
execution (e.g. a block has completed its processing or there is insufficient mem-
ory) and by environmental changes (e.g. a new processor has become available).



In online aggregation queries where the time to provide the user with useful
information quickly is more important than the time to query completion, adap-
tive pipelining operators need to be adopted. Non-traditional operators are also
required in all the cases where the query needs to adapt with intra-operator
frequency.

6 Conclusions

In this survey, existing adaptive query processing techniques have been classified
and compared. The opportunities offered by such techniques to modify a query
plan on the fly, have been identified. In addition, adaptive systems have been
classified according to the problem they focus on, their objectives, the nature
of feedback they collect from the environment and the frequency at which they
can adapt. Other areas of interest include the implementation environment and
which component is responsible for taking the adaptation decisions. The survey
reveals the inadequacy of existing techniques to adapt to environments where
the pool of resources is subject to changes. In particular, the paper provides
evidence to the need for research into AQP in computing infrastructures where
resource availability, allocation and costing are not, by definition, decidable at
compile time. Consequently, a promising area for future work is the development
of concrete cost models to evaluate whether the expected benefits from the im-
proved query plan and decision quality compensate for the cost of collecting and
evaluating feedback from the environment during execution time.
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