
RESOURCE AWARE

QUERY PROCESSING ON THE GRID

A THESIS SUBMITTED TO THEUNIVERSITY OF MANCHESTER

FOR THE DEGREE OFDOCTOR OFPHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2005

By

Anastasios Gounaris

School of Computer Science

Contents

Abstract 12

Declaration 13

Copyright 14

Acknowledgements 15

1 Introduction 16

1.1 Grid: A new setting for distributed computations 17

1.2 On Querying Grid-Enabled Databases 18

1.2.1 Main issues . 20

1.2.2 Outline of the approach . 21

1.3 Research Context . 21

1.4 Thesis Aims and Contributions . 23

1.5 Thesis structure . 25

2 Query Processing and the Grid 27

2.1 Distributed Query Processing . 27

2.1.1 Phases of Query Processing 28

2.1.2 Query Optimisation . 31

2.1.3 Query Execution . 33

2.1.4 Parallel databases . 33

2.2 Computations on the Grid . 34

2.3 Combining Database and Grid technologies: opportunities and chal-

lenges . 35

2.3.1 Novel Opportunities . 36

2.3.2 Novel Challenges . 38

2

2.4 Polar*: An early Grid query processor 41

2.4.1 The ODMG data model . 41

2.4.2 Architecture . 42

2.4.3 Query Planning . 44

2.4.4 Query Evaluation . 49

2.4.5 Polar*’s approach regarding the novel challenges 50

2.5 OGSA-DQP: Services meet Grid query processing 50

2.5.1 Grid Services and Grid Data Services 51

2.5.2 OGSA-DQP Services . 51

2.5.3 Query Planning and Evaluation in OGSA-DQP 52

2.5.4 OGSA-DQP’s approach regarding the novel challenges 54

2.6 Other Grid-enabled database query systems 54

2.7 Summary . 56

3 Scheduling Queries in Grids 58

3.1 Related Work . 59

3.1.1 Resource Allocation in Database Queries 60

3.1.2 Generic Resource Scheduling on the Grid 61

3.2 An algorithm for scheduling queries in heterogeneous environments . 62

3.2.1 Problem Definition . 62

3.2.2 Solution Approach . 63

3.2.3 The Input of the Algorithm 64

3.2.4 Detailed Description of the Algorithm’s Steps 65

3.2.5 Algorithm’s Complexity . 71

3.3 Evaluation . 72

3.3.1 Evaluation Approach and Settings 72

3.3.2 Performance Improvements 73

3.3.3 Performance Degradation in Presence of Slow Connections . . 78

3.3.4 Parallelisation Efficiency . 80

3.4 Summary . 81

4 A Framework for Adaptive Query Processing 83

4.1 Related Work . 84

4.2 The Monitoring-Assessment-Response Framework 85

4.2.1 Description and Benefits of the Framework 85

4.2.2 The components of the framework 87

3

4.3 Analysis of Adaptive Query Processing 89

4.3.1 Monitoring . 89

4.3.2 Assessment . 91

4.3.3 Response . 93

4.3.4 Architecture and Environment 94

4.4 Centralised Adaptive Query Processing Techniques 96

4.4.1 Operator-based Adaptivity 96

4.4.2 Accessing Local Data Stores 100

4.4.3 Accessing Remote Sources 102

4.4.4 Stream Query Processing . 105

4.4.5 Parallel Query Processing 107

4.5 Distributed query processing . 108

4.5.1 Focusing on data properties 108

4.5.2 Focusing on changing resources 110

4.6 Summary . 111

5 Monitoring a Query Plan 113

5.1 Related Work . 114

5.2 Self-monitoring operators . 116

5.2.1 Operator-independent monitoring 117

5.2.2 Operator-specific monitoring 119

5.3 Enabling query plan adaptations . 121

5.3.1 Detecting Deviations . 123

5.3.2 Predicting Deviations . 125

5.3.3 Propagating monitoring information 128

5.3.4 Supporting Existing Adaptive Approaches 130

5.4 Evaluation . 132

5.4.1 Overhead of Monitoring . 133

5.4.2 Overhead of Predictions . 134

5.4.3 Accuracy of predictions . 136

5.4.4 General remarks on the evaluation 137

5.5 Summary . 139

6 Adapting to Changing Resources 142

6.1 Related Work . 143

6.2 Grid Services for Adaptive Query Processing 144

4

6.2.1 Adaptive GQESs . 146

6.2.2 Extensions to the Evaluation Engine 149

6.2.3 Extensions to the GDQS . 151

6.3 Adapting to Workload Imbalance . 152

6.3.1 Motivation and Problem Statement 152

6.3.2 Approach . 154

6.3.3 Monitoring . 155

6.3.4 Assessment . 157

6.3.5 Response . 158

6.3.6 Evaluation . 160

6.4 Adapting to Resource Availability 172

6.4.1 Motivation and Problem Statement 172

6.4.2 Approach . 173

6.4.3 Monitoring . 173

6.4.4 Assessment . 174

6.4.5 Response . 175

6.4.6 Evaluation . 176

6.5 Summary . 177

7 Conclusions 179

7.1 Overview . 179

7.2 Significance of Major Results . 180

7.2.1 Resource Scheduling for Grid Query Processing 181

7.2.2 The Monitoring-Assessment-Response Framework for Adap-

tive Query Processing . 182

7.2.3 Self-monitoring operators 183

7.2.4 Adaptive Grid Services for Query Processing 183

7.2.5 Adapting to Changing Resources 183

7.2.6 The Polar* and OGSA-DQP systems 184

7.2.7 Lessons Learned . 184

7.3 Open Issues and Directions for Future Work 185

7.3.1 Outstanding Issues . 185

7.3.2 Future Work . 187

Bibliography 189

5

A A Simplified Cost Model 213

A.1 Cost of Scan . 213

A.2 Cost of Hash Join . 214

A.3 Cost of Exchange . 216

A.4 Estimating the cost of plan partitions 217

B Summary of AQP proposals 218

6

List of Tables

2.1 The signatures of the physical operators examined in this thesis. Each

operator except scan has either one or two child operators as input. . 29

3.1 The time cost of the scheduling algorithm for 20 extra nodes. 78

4.1 Summarising table of operator-based AQP proposals according to the

classifications of Section 4.3. 96

4.2 Summarising table of AQP proposals that access local stores, primar-

ily, according to the classifications of Section 4.3. 100

4.3 Summarising table of AQP proposals that access remote stores, ac-

cording to the classifications of Section 4.3. 102

4.4 Summarising table of AQP proposals over streams, according to the

classifications of Section 4.3. 105

4.5 Summarising table of parallel AQP proposals according to the classi-

fications of Section 4.3. 107

4.6 Summarising table of distributed AQP proposals according to the clas-

sifications of Section 4.3. 109

5.1 General measurements on a physical query operator. 117

5.2 Measurements for operators that evaluate predicates. 119

5.3 Measurements for operators that touch the store. 120

5.4 Hash-Join-specific measurements. 120

5.5 Unnest-specific measurements. 120

5.6 Exchange-specific measurements. 121

5.7 Symbols denoting additional operator properties. 123

5.8 Prediction formulas exemplifying how the monitoring information can

support predictions in AQP. 124

5.9 Monitored information that can provide input to existing AQP systems. 132

7

5.10 The operators used in the experiments for monitoring overheads. . . . 133

5.11 The overhead of taking measurements compared to the cost of the op-

erators for each tuple processed (for the hash-joins, the cost is for each

tuple of the input that probes the hash table). 134

5.12 The percentage increase in the operator cost when predictions are made.

136

6.1 Performance of queries in normalised units. 163

6.2 Ratio of tuples sent to the two evaluators. 167

6.3 Ratio of tuples sent to the two evaluators. 168

6.4 Ratio of tuples sent to the two evaluators. 172

6.5 Performance of Q1 with and without dynamic resource allocation (in

secs). 177

A.1 The parameters for estimating the time cost of a sequential scan. . . . 214

A.2 The parameters for estimating the time cost of a hash join. 215

A.3 The parameters for estimating the time cost of exchange. 216

B.1 Summarising table of AQP proposals according to the classifications

of Section 4.3. 220

8

List of Figures

2.1 Candidate query plans for a three-table join query. 29

2.2 The sequence of steps corresponding to the example 2.3.1 37

2.3 The query corresponding to the example 2.3.1 37

2.4 The ODL schema corresponding to Example 2.3.1 43

2.5 The Polar* architecture. 44

2.6 The components of Polar*. 44

2.7 Example query: (a) single-node logical plan, (b) single-node physical

plan, (c) multi-node physical plan. 46

2.8 The exchange operators . 47

2.9 An example plan fragment that retrieves theClassificationrelation

from evaluator6, projects thecproteinidattribute, and sends the re-

sulted tuples to evaluators1 and7. The fragment corresponds to the

lower right partition in Figure 2.7(c). 53

2.10 The typical steps for setting up a query session (1-3) and evaluating

queries (4-6). 55

3.1 The two queries used in the evaluation. 72

3.2 Comparison of different scheduling policies for the 1-join query for setA 75

3.3 Comparison of different scheduling policies for the 1-join query for setB 76

3.4 Comparison of different scheduling policies for the 5-join query for setA 76

3.5 Comparison of different scheduling policies for the 5-join query for setB 77

3.6 Comparison of different scheduling policies in the presence of a slow

connection for the single-join query (note that the 1st and 3rd line types

essentially overlap). 78

3.7 Comparison of different scheduling policies in the presence of a slow

connection for the 5-join query (note that the 1st and 3rd line types

essentially overlap). 79

9

3.8 Comparison of the efficiency of different scheduling policies for the

single-join query. 80

3.9 Comparison of the efficiency of different scheduling policies for the

5-join query. 81

4.1 The monitoring, assessment and response phases of AQP, and the as-

sociated components. 87

5.1 Example query plans executed over (a) a single machine, and (b) two

machines . 128

5.2 The accuracy of the predictions for the output cardinality of the three

scans at different stages of the operator execution. 137

5.3 The accuracy of the predictions for the response time of the three scans. 138

6.1 The architecture of the instantiation of the adaptivity framework. . . . 145

6.2 Notification schema definition. 147

6.3 Sketch of the interface of adaptivity components. 148

6.4 The enhanced exchanges . 150

6.5 An example of a plan fragment in adaptive OGSA-DQP. 151

6.6 Instantiating the adaptive architecture for dynamic workload balancing. 154

6.7 XSD for the adaptivity configuration metadata for dynamic workload

balancing. 155

6.8 Schema definition of notifications sent by theMonitoringEventDetec-

tor component. 156

6.9 Schema definition of notifications sent by theDiagnosercomponent. . 157

6.10 Schema definition of notifications sent by theRespondercomponent. . 159

6.11 The flow of notifications across adaptivity components for dynamic

workload balancing. 161

6.12 Performance of Q1 for prospective adaptations. 165

6.13 Performance of Q1 for different adaptivity policies. 166

6.14 Performance of Q2 for retrospective adaptations. 167

6.15 Performance of Q1 for prospective adaptations and double data size. . 168

6.16 Performance of Q1 for retrospective adaptations. 169

6.17 Effects of different monitoring frequencies in Q1. 170

6.18 Performance of Q1 under changing perturbations. 171

6.19 Schema definition of notifications sent by theMonitoringEventDetec-

tor component. 174

10

6.20 Schema definition of notifications sent by theRespondercomponent

to notify of a new producer. 175

6.21 Schema definition of notifications sent by theRespondercomponent

to notify of a new consumer. 176

11

Abstract

The Grid provides facilities that support the coordinated use of diverse, autonomous

resources, and consequently, provides new opportunities for wide-area computations.

Such computations can be effectively expressed and evaluated as database queries,

when they involve integration of data from remote databases and calls to analysis

tools. In this way, they can benefit from implicit, transparent to the user parallelisa-

tion across multiple computational resources that the Grid makes available, and from

well-established optimisation techniques.

However, Grid resources, as well as being heterogeneous, may also exhibit unpre-

dictable, volatile behaviour. Thus, query processing on the Grid needs (i) to be capable

of taking account of the resource heterogeneity; and (ii) to be adaptive, in order to cope

with evolving resource characteristics, such as machine load and availability. The work

presented in this thesis proposes techniques that address these two challenges, and sig-

nificantly improve the performance of query processing on the Grid, going beyond the

current state-of-the-art in wide-area distributed query processing. This is achieved by

efficiently selecting resources before query execution according to their characteris-

tics known at this point, and by adapting the query execution according to the runtime

behaviour and availability of resources.

Adaptive query processing (AQP) has been investigated in a more generic way in

this thesis, and this has led to the development of an architectural framework that is

capable of accommodating many AQP systems, both for Grids and for more traditional

environments. Moreover, a generic mechanism for extracting monitoring information

from the query execution to support multiple AQP techniques is part of the thesis con-

tributions. Thus, the work presented should be of value to developers and researchers

of both Grid query processors and more generic AQP systems, who will be able to

incorporate part, or all, of the proposals in their work.

12

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree or

qualification of this or any other university or other institu-

tion of learning.

13

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either

in full, or of extracts, may be madeonly in accordance with instructions given by the

Author and lodged in the John Rylands University Library of Manchester. Details may

be obtained from the Librarian. This page must form part of any such copies made.

Further copies (by any process) of copies made in accordance with such instructions

may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this

thesis is vested in the University of Manchester, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the University, which will prescribe the terms and conditions of any

such agreement.

Further information on the conditions under which disclosures and exploitation

may take place is available from the Head of School of Computer Science.

14

Acknowledgements

Looking back a few years, it is amazing to realise how and to which extent others have

helped, supported and influenced my work. I have been blessed to work with friendly

and competitive groups, and collaborate and associate with academics and researchers

of high quality.

I am grateful to my supervisors, Rizos Sakellariou and Norman W. Paton, and to my

advisor, Alvaro A. A. Fernandes, for their continuous guidance, encouragement and

thoughtful advice. Special thanks are also due to Nedim Alpdemir and to our partners

in the University of Newcastle, Paul Watson, Jim Smith and Arijit Mukherjee. Without

their assistance, the work embodied in this thesis would not have been possible. Sandra

Sampaio also offered invaluable help at the first stages of this work.

Thanks also to all the members of the Information Management Group, in partic-

ular Bonn, Cornelia, Daniele, Desmond, Henan, Marcelo, Mike, Nedim, Paul, Phil,

Serafeim, Veruska and Yeliz with whom I have shared office and many moments, both

difficult and happy, during the years of my PhD.

Finally, this work was supported by the Distributed Information Management Pro-

gramme of the Engineering and Physical Science Research Council, through Grant

GR/R51797/01.

15

Chapter 1

Introduction

Database systems typically provide an interface for submission of queries written in

a declarative language (e.g., SQL, OQL, XQuery etc.) to allow users to define what

result is to be computed, without having to specify how this is to be evaluated. The

responsibility of finding an execution plan, and executing it, rests with the database

system. This task is calledquery processingand has been the topic of rather intensive

research since the 1970s (e.g., [SWKH76, SAC+79]). However, most of this research

has concentrated on the cases in which the computational resources available are pre-

determined, both when these are co-located (centralised query processing) and when

they are geographically dispersed (distributed query processing - or DQP).

Unfortunately, query processing on theGrid does not fall into this category, as the

Grid is a volatile, unpredictable environment in itself [FK03], and thus the resources it

provides are subject to frequent, unforeseeable changes. The Grid opens new directions

for query processing in wide-area environments, as it provides solutions for problems

such as security, authorisation, authentication, resource discovery, and so on. However,

the volatility, multiple ownership and heterogeneity of the environment necessitate the

development of novel query processing methods.

To this end, the aim of the thesis is to propose and evaluate techniques that signif-

icantly improve the performance and robustness of query processing on the Grid. The

core concept is to take into consideration the potentially evolving characteristics and

behaviour of the (arbitrary) computational resources that are available.

The remainder of this introduction is structured as follows. Section 1.1 discusses in

brief the Grid, which is the setting of the research of the thesis. Section 1.2 introduces

the main issues related to grid query processing, discussing its importance and high-

lighting the aspects that have motivated the research described in this thesis. Section

16

CHAPTER 1. INTRODUCTION 17

1.3 summarises the technological advances that provide the context in which the inves-

tigation of query processing on the Grid is carried out. Next, Section 1.4 provides the

hypothesis that this thesis investigates, and an overview of the contributions it makes.

The outline of the dissertation is in Section 1.5.

1.1 Grid: A new setting for distributed computations

The Grid aims to create a new era in the way computations that involve the combi-

nation and co-operation of diverse, autonomous resources are carried out [FK03], just

as the emergence of the Internet radically altered the manner in which computers at

distinct locations are connected to each other. It enables the dynamic collaboration

and the coordinated sharing of resources between different administrative domains,

referred to asvirtual organisations[FK03]. Through the development of standards

[GGF], protocols [FKT01], and toolkits (e.g., [GLO]), the Grid can support resource

discovery, allocation, secure authorisation and authentication, monitoring, etc. Thus,

many of the challenges that are inherent in wide-area computations are now addressed

by application-independent Grid middleware. Grid applications can use the Grid to

select and schedule the computational and data resources that are necessary for them

to execute. Such resources may include CPU cycles, memory storage devices, com-

modity machines, networks, database systems, data, programs, and so on. As such,

the Grid constitutes a new environment for inter-organisation distributed applications,

naturally oriented towards non-trivial, computation- and data-intensive applications.

Computations on the Grid can be deemed as an advanced form of computations

over distributed, heterogeneous and autonomous resources. The main difference is

that the Grid provides improved support for resource discovery, access, authorisation,

authentication and monitoring through standard, open, general-purpose protocols and

interfaces, which are not supported by current Internet and Web infrastructures. Thus,

it can serve as an efficient middleware that provides the above functionalities, and

on top of which applications can be developed. Also, Grid computing, in contrast

with traditional distributed computing, focuses on large-scale resource sharing (i.e. not

primarily file exchange as on the web, but rather direct access to computers, software,

data and other resources) for innovative applications.

The main topic of this thesis is the exploitation and integration of two types of

Grid resources, which are both required for query processing: (i) database management

systems (DBMSs) that store data in a structured format and can be accessed through the

CHAPTER 1. INTRODUCTION 18

Grid (calledGrid databasesor Grid-enabled databasesin the remainder of the thesis);

and (ii) machines that can be accessed through the Grid and can host computations,

which manipulate the data retrieved from the Grid-enabled DBMSs.

1.2 On Querying Grid-Enabled Databases

Even within the boundaries of an enterprise, the current trend in data management is to-

wards decentralised systems and architectures, based on peers that (i) are administered

autonomously, and (ii) can both consume and provide data and computation [Ive02].

This paradigm is more flexible, scalable and dynamic than traditional centralised ap-

proaches. Inevitably, these advantages come at the expense of the lack of a single point

of access to all these data. The Grid offers standard mechanisms for accessing such

nodes, and query processing technologies can be used to combine their data.

One of the most relevant cases to query processing on the Grid is when multi-

ple organisations agree to share their data to perform a common task. For example,

a Grid database application may involve autonomous bioinformatics labs across the

world sharing their experimental results stored in organisational databases, and their

computational resources in order to identify molecules which might inhibit the growth

of various types of cancer cells. As discussed in more detail in Section 2.3, query

processing on the Grid is a promising solution for combining and analysing data from

different stores, and can be used in any such scenario. This is achieved by using (i) ma-

ture and well-established techniques (e.g., parallel query processing), along with novel

ones (e.g., adaptive query processing), from the area of database research, to process

data, and (ii) the Grid infrastructure to discover and access remote resources in a way

that meets the application requirements.

In general, query processing on the Grid is similar to query processing for data

integration (i.e., answering data integration queries [Ive02]) in the sense that in both

domains (i) the queries are submitted over a global schema, and (ii) the data is fetched

from the sources through wrappers. Note that the methodology for the construction of

the global schema is out of the scope of the current thesis, as efficient solutions for this

problem have been developed (e.g., [MP03]). The main difference between the two

domains is that the resource scheduling decisions in data integration query processing

are typically limited to the data sources for data retrieval, and a single, centralised

machine for the rest of processing, whereas, in grid query processing, an arbitrarily

large number of machines may be employed.

CHAPTER 1. INTRODUCTION 19

Submitting a query to retrieve data from a database connected to the Grid may

not differ, from the user perspective, from querying a local database; for example, in

SQL-like query languages the query may have the simple form ofSelect-From-Where.

Combination of data in distributed databases naturally occurs in the case in which

there are many database tables referred to in theFrom clause that belong to different

databases, whereas, the user need not be aware of the exact location of each source. In

addition, analysis tools, can be called on the data in the form of user-defined functions

(UDFs), and, in this way, can be encapsulated in the query.

The standard approach to query processing involves the transformation of declar-

ative queries into query plans, and execution of such plans in the context of a query

engine. The operators that are expressed within such plans conform to algebras, and,

typically, the phase of plan construction involves subsequent mappings of plans from

one algebra (e.g., logical algebra) to another (e.g., physical or parallel algebra). A log-

ical algebra comprises operators, such asjoin, select,andproject. A physical algebra

comprises operators, such ashash-join, sort-merge, sequential scan, indexed scan, and

the parallel algebra extends the physical algebra by communication-related operators,

such asexchanges[Gra93]. Before execution, the plan needs to be scheduled across

physical resources. The decisions on plan construction and resource scheduling rely

heavily on metadata about machine characteristics and data properties.

Since the 1970s and the development of influential systems such as the System-

R [SAC+79] and its distributed counterpart System-R* [ML86], static compilation of

query plans, and subsequent execution has been the main choice for database system

developers. However, when the metadata required are not available or accurate at

compile time, or change during execution, the query processor needs to revise the

current execution plan. In this case, query processing is calledadaptive (or dynamic)

query processing (AQP)1. In AQP, the system monitors its execution and its execution

environment, analyses this feedback, and possibly reacts to any changes identified, to

ensure that either the current execution plan is the most beneficial, or no change in the

current plan can be found that will result in better performance.

AQP is particularly relevant to settings in which query planning must take place

1Note that a narrower definition for AQP is adopted in this thesis compared to works such as
[HFC+00], in the sense that here, the attention is restricted to cases where AQP produces effects during
the execution of the same rather than of a subsequent query.

CHAPTER 1. INTRODUCTION 20

in the presence of limited or potentially inaccurate statistics for use by the query op-

timiser, and where queries are evaluated in environments with rapidly changing com-

putational properties, such as loads or available memory [HFC+00]. As such, the rele-

vance of AQP is growing with the prevalence of computing environments that are char-

acterised by a lack of centralised control, such as the Web and the Grid [FK99]. Such

environments are not only inherently more complex to model, but it is often the case

that runtime conditions are sufficiently volatile to compromise the validity of optimi-

sations made statically. In addition, robust cost models are harder to come by, thereby

reducing the likelihood that the optimiser will select a sufficiently efficient execution

plan [Kos00, ROH99]. The problem is further aggravated by the fact that useful statis-

tics, like resource properties, selectivities and histograms (e.g., [BC02, Cha98, Ioa96]),

may be inaccurate, incomplete or unavailable.

1.2.1 Main issues

Efficient query execution over the Grid poses challenges beyond those already ad-

dressed. The main issues in high-performance query processing on the Grid are sum-

marised as follows:

• The selection and scheduling of the resourcesthat will participate in query

evaluation from an unlimited and heterogeneous pool. When the data sources

are pre-specified, and the rest of query processing occurs in a single node, this

is not an issue. However, query processing on the Grid, as discussed previously,

does not fall into this category.

• The volatility of the environment. The Grid, as an execution environment, is

subject to frequent changes. Machines are autonomous and owned by multiple

administrative domains; thus they may join and be withdrawn from the Grid in an

unpredictable way. Also, machine properties such as machine load, and amount

of memory available are expected to change frequently. Consequently, queries

need to be expressed and evaluated in a way that allows the runtime execution

engine to map them onto the resources, and to adapt the query plan on the basis

of information that is available at runtime.

• The unavailability of statistics. Traditionally, the query optimiser uses a po-

tentially extensive set of statistics about the data processed and machines used.

Because of the heterogeneity, volatility and autonomous status of data resources,

CHAPTER 1. INTRODUCTION 21

these statistics may not be available, or may be inaccurate and incomplete at

compile time, or may change at runtime.

Also, research on query processing on the Grid is hindered by the unavailability of

existing generic grid query processors. To date, there is little evidence in the literature

of the existence of Grid-enabled query processors, apart from those the development of

which is, to a certain extent, work described in this thesis, namely Polar* [SGW+03]

and OGSA-DQP [AMP+03].

1.2.2 Outline of the approach

In this thesis, two directions for improving query processing on the Grid are explored:

adaptivity and parallelism. It becomes apparent that solutions in which the initial de-

cisions on the query plan and how this is scheduled over the available nodes cannot be

changed after the evaluation of the query has started, may be inefficient, and cannot

guarantee high-performance for a wide range of data- or computation-intensive appli-

cations over the Grid. To meet these challenges, concepts from the emerging tech-

nologies of AQP need to be employed [HFC+00], to adapt to the evolving resource

characteristics.

Also, orthogonally to the issue of adaptivity, the performance of query processing

can be enhanced in two ways [Has96]: by speeding up the individual modules of the

system, and by using many modules for processing the query in parallel. The first

approach, apart from being costly, cannot scale, as it is limited by the capabilities of the

modules such as memory size, disk I/O speed and CPU cycles. However, the second

approach, has been successfully deployed in databases [Sto86], due to the fact that

query algebras naturally allow for parallelism [DG92]. To this end, novel scheduling

techniques that select and schedule resources, based on their characteristics, in a way

that query processing can benefit from parallelism need to be developed.

1.3 Research Context

There are several factors that motivate the investigation of query processing on the

Grid, the combination of which provides an opportune and timely context for research

on this area:

• Distributed Query Processing (DQP), which is a broader domain than query

processing on the Grid, has become a mature technology [Kos00]. Thus, query

CHAPTER 1. INTRODUCTION 22

processing on the Grid can build upon established DQP techniques, along with

other techniques for traditional query processing [Gra93], and concentrate more

on the issues of adaptivity and parallelism that are not adequately addressed in

traditional DQP.

• The emergence of Adaptive Query Processing (AQP) as an effective approach to

correcting bad initial decisions on the plan construction [HFC+00, BB05].

• The research of this thesis follows research conducted on the performance of

parallel object databases [SSWP04]. Consequently, there is a significant amount

of experience in parallel query processing and the benefits of parallelism.

• The emergence of the Globus Toolkit [GLO] as thede factostandard middleware

for the development of Grid applications.

• The development of generic wrappers for a broad range of commercial DBMSs,

extending them with a Grid interface in the context of the OGSA-DAI project

[OD]. This, combined with the existence of authentication and authorisation

mechanisms within Globus, makes access to remote Grid databases practical.

• Finally, the research conducted in this thesis has both benefitted from and has

contributed to the development of the Polar* and OGSA-DQP query processors

for the Grid. These systems, as well as being a contribution in their own right,

constitute the platform upon which the research outcomes have been tested.

Query processing on the Grid can have many flavours and it can be examined under

different and complementary perspectives. For instance, it can be deemed as equally

significant to develop techniques that try to optimise the performance of a single query

when a set of resources has already been allocated to it, and to try to optimise the over-

all usage of resources that are shared between multiple queries. Also, the complexity

and type of queries can range from simple ones that comprise a small number of oper-

ators of a limited operator set, to quite complex ones that comprise a large number of

operators of arbitrary diversity. Consequently, it is important to state the exact context

of the reaserch described hereby, and any underlying assumptions made:

• This thesis deals with the exploitation and integration of data and computational

resources without being concerned how exactly these have joined avirtual or-

ganisation, how they can leave it, and how any authorisation and authentication

checks have been conducted.

CHAPTER 1. INTRODUCTION 23

• The focus is on improving the performance of a single query, and the optimisa-

tion criterion is to reduce the query response time. Moreover, the queries that

have been examined during evaluation are of theSelect-From-Wheretype, and

may involve calls to external user-defined functions. When the proposals of this

thesis can be applied to a broader range of queries and operators, this is explicitly

stated.

• The problem of how a query can continue its execution after a resource has left

the virtual organisationhas been examined in the context of the same project

that this thesis is part of [SW04], but the research outcome of this work does not

belong to the contributions of the present thesis, and thus will not be presented

in detail.

• The emergence of the Grid has motivated the work described in this thesis, and

any software development has been made according to Grid standards and on

top of Grid middleware, such as the Globus Toolkit; nevertheless, the evaluation

has been based either on simulation of a generic wide-area heterogeneous envi-

ronment, or on a set of machines that belong to the same administrative domain.

Although both these approaches may differ significantly from a realistic Grid

environment, they have been regarded as adequate to support the claims of the

present thesis.

1.4 Thesis Aims and Contributions

The aim of this work is to investigate, propose and evaluate techniques that are missing

from classical query processing and improve significantly the performance of query

processing on the Grid. The thesis is that, due to the inherent volatility and uncertainty

of the Grid, AQP can provide greatly improved performance, and due to the fact that the

Grid is oriented towards intensive applications, the performance of query processing

can benefit significantly from parallelism.

In particular, the research described here makes the following contributions:

• A comprehensive scheduling algorithm, that allocates query operators to nodes,

without restricting parallelism, and taking into account the properties of the (het-

erogeneous) machines that are available. Parallel query processing has been

extensively investigated over homogeneous pools of resources [DG92], but it

CHAPTER 1. INTRODUCTION 24

has not been exploited to its full potential in query processing over heteroge-

neous machines [Kos00]. The result is that traditional DQP may be effective in

integrating data sources, but lacks the infrastructure to cope with computation

intensive queries in an efficient way. The proposal in this work addresses this

limitation in a practical way, in the sense that it incurs low overhead and can

scale well with respect to the number of machines available and the size of the

query plan being scheduled.

• A framework for describing and constructing AQP systems in a systematic way,

allowing for component reuse. AQP thus far suffers from two major shortcom-

ings:

– current techniques are designed in an isolated way, which does not permit

them to be combined [IHW04, BB05]; and,

– most AQP proposals have focused either on completely centralised query

processing (e.g., [AH00, KD98]), or on centralised processing of data re-

trieved from remote sources (e.g., [AFTU96, Ive02]) and data streams (e.g.,

[MSHR02, CF03]). By following such an approach, the resources used for

query execution are predefined, and thus the focus is mostly on adapting to

changing properties of the data processed (such as cardinalities of interme-

diate results and operator selectivities). This is of paramount importance

for query processing on the Grid, as crucial information about the data

may be missing at compile time. However, of equal significance are adap-

tations to changing properties of the arbitrary set of resources that query

processing on the Grid uses both for data retrieval and for other types of

data manipulation, such as joins. Currently, AQP with respect to changing

resources is not addressed as satisfactorily as with respect to changing data

properties, such as operator selectivities and sizes of intermediate results.

The framework proposed tackles the first of the two limitations above. It is based

on the decomposition into and the separate investigation of three distinct phases

that are inherently present in any AQP system:

– monitoring of query execution and environment to collect the necessary

feedback;

– assessmentof the feedback collected to establish issues with the current

query execution or opportunities for improvement; and

CHAPTER 1. INTRODUCTION 25

– respondingto the identified monitoring events based upon the results of the

assessment process.

• A generic mechanism for monitoring the execution of query plans on the fly.

As adaptivity is likely to prove crucial, precise, up-to-date, efficiently obtainable

data about runtime behaviour is essential, along with robust mechanisms that

analyse such data. In general, the quality of adaptations and query optimisation

decisions is largely dependent on the quality and accuracy of the information that

is available. The Grid, and the Globus toolkit, provide support for monitoring

resources, such as machine availability and network bandwidth. Complemen-

tary to this, information on the execution of the current query is also required for

making adaptations dynamically. The present work investigates a generic moni-

toring approach based upon self-monitoring operators to meet this requirement,

with the following key characteristics: (i) it can support a large spectrum of ex-

isting AQP techniques, (ii) it provides the foundation for building new ones, and

(iii) it adheres to the notions of the adaptivity framework introduced earlier.

• A complete instantiation of the adaptivity framework that seeks to tackle the

second limitation of existing AQP techniques identified previously, i.e., adapting

to changing resources. In particular, two important cases are investigated:

– adaptive workload balancing of parallel query processing; and

– adaptive resource scheduling.

It is felt, and it has been found in this thesis, that all the above proposals are highly

beneficial for query processing on the Grid.

1.5 Thesis structure

The remainder of this dissertation is structured as follows.

Chapter 2 presents background material on DQP and computational models for Grid

programming and task execution. Then, it investigates the benefits of combining

these two domains, and how this combination on the one hand facilitates DQP,

and on the other, provides an alternative, promising model for describing and

executing potentially complex tasks. The chapter also discusses in more depth

the main research issues of the thesis. Finally, it introduces the two (static) Grid

CHAPTER 1. INTRODUCTION 26

query processors that are very closely related to the work of this thesis: Polar*

and OGSA-DQP. The part of these systems that is the contribution of this thesis

corresponds to the query compiler of the system, which is described in more

detail than other components.

Chapter 3 addresses the problem of resource heterogeneity-aware scheduling of the

query plan, in a manner that can exploit the benefits stemming from parallelism.

The novel scheduling algorithm extends the Polar* system, and is implemented

and evaluated in its context.

Chapter 4 discusses theMonitoring-Assessment-Responsegeneric adaptivity frame-

work, presenting its characteristics and benefits. Also, based on the notions of

the framework components, it presents related work on AQP.

Chapter 5 describes and evaluates the self-monitoring operators approach to moni-

toring of execution plans. It corresponds to the monitoring component of the

framework.

Chapter 6 provides an overview of the extensions built upon OGSA-DQP, to instan-

tiate the adaptivity framework, using the technique described in Chapter 5 for

monitoring. It also presents and evaluates two cases of AQP that are particularly

relevant to query processing on the Grid: dynamic partitioning of workload,

across machines that evaluate the same part of the query plan in parallel, accord-

ing to the machines’ actual (i.e., monitored) and continuously changing perfor-

mance, and dynamic allocation of resources for computation-intensive parts of

the query plan when such resources become available.

Chapter 7 reviews the thesis, and concludes with some suggestions for future inves-

tigation.

Related work is presented separately in every chapter where this is appropriate,

because of the diverse nature of the issues examined. In particular, it is discussed in

Chapter 2 for work on Grid databases, Chapter 3 for work on scheduling of distributed

queries, Chapter 4 for AQP, and Chapter 5 for query monitoring.

Chapter 2

Query Processing and the Grid

Query processing and grid technologies have been evolving mostly separately [Wat03],

being regarded as non-overlapping technological areas. This chapter serves a three-

fold purpose: firstly, to present background material on these two areas, introducing the

terminology, concepts and state-of-art; secondly, to discuss the issues involved in their

combination, stating the benefits envisaged and the difficulties anticipated and thus

having a closer look at the research issues of the current thesis; thirdly, to present two

Grid-enabled query processors, namely Polar* and OGSA-DQP. The research aims

described in this thesis have been pursued in close association with the development

of these two systems.

The chapter is organised as follows: Section 2.1 gives an overview of Distributed

Query Processing (DQP). Section 2.2 discusses how computations are described in

Grids. Next, the novel opportunities stemming from the combination of Grid and data-

base technologies, along with the main challenges, are discussed in Section 2.3. The

final part of the chapter deals with grid-enabled query processors. The presentation of

Polar* and OGSA-DQP is given in Sections 2.4 and 2.5, respectively. Other systems

are described in Section 2.6. Finally, Section 2.7 summarises the chapter.

2.1 Distributed Query Processing

Query processing on the Grid involves submission of queries across multiple, logically

interrelated, geographically dispersed databases that are connected via a network, and

thus inherently falls under the scope of Distributed Query Processing (DQP). Distrib-

uted database systems are often characterised by their architectures and the capabil-

ities of the participating nodes [Kos00]. Dominant architectural paradigms include

27

CHAPTER 2. QUERY PROCESSING AND THE GRID 28

client-server, peer-to-peer[Ora01], andwrapper-mediator[GMPQ+97]. The ma-

chines comprising the distributed database systems may differ in their capabilities and

characteristics, and may be autonomous. In the former case, the distributed database

systems are referred to asheterogeneous(as opposed tohomogeneous). If the dis-

tributed database systems at various sites are administered autonomously and possibly

exhibit some form of heterogeneity, they are referred to asfederatedor multidatabase

systems[OV99, Hsi92, Kos00]. This section examines the query processing aspects of

such systems, and more specifically the typical phases during query processing (Sec-

tion 2.1.1), the main optimisation approaches specialised for DQP (Section 2.1.2), ex-

ecution techniques tailored to DQP (Section 2.1.3), and finally the relationship with

parallel query processing and parallel databases (Section 2.1.4).

2.1.1 Phases of Query Processing

The success of databases lies largely in their ability to allow users to specify their tasks

declaratively, relieving them from the burden of specifying how these tasks should be

processed; the responsibility of devising an efficient evaluation manner rests with the

query processor. Consequently, modern query processors have evolved into complex

artifacts, encapsulating all the logic, prediction mechanisms, and techniques required

to ensure near-optimal execution of the submitted queries. Typically, query processing,

both for distributed and centralised settings, involves the following phases [GMUW01,

Kos00]:

• Query Translation

• Query Optimisation

• Query Execution

Queries are expressed using declarative query languages, with the most common

ones being SQL, OQL, XPath or XQuery. The first step is to parse these queries,

and translate them into an internal representation, which is usually a form of well-

established query algebras or calculus (Query Translationphase). At this stage, type-

checking also takes place to ensure that the query is syntactically correct.

For each query, many different ways for evaluation may exist (unless it is very

simple). The role ofQuery Optimisationis to examine the possible alternatives, or a

reasonable subset of them, and establish which one is predicted to be the most efficient.

The output query plan can be represented, in most of the cases, as adirected acyclic

CHAPTER 2. QUERY PROCESSING AND THE GRID 29

� �
� �

�
�

� �
� �

�� � �
� �
� �� �

� �
� �
� �
� �

� �
� �
	 	
	 	

� �
� �

�
�

����

�
�
�
�

�
�
�
�

projectproject

hash_join

project

table_scan C

project

hash_join
A.id = C.id

table_scan A table_scan B

B.idA.id

A.id = B.id

A.id

C.id
project

A.id

� �
� �

�
�

� �
� �

�� � �
� �
� �� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

!
!

""##

$
$
%
%

&
&
'
'

projectproject

hash_join

project

table_scan B

project

hash_join
A.id = B.id

table_scan A table_scan C

C.idA.id

A.id = C.id

A.id

B.id
project

A.id

(a) (b)

Figure 2.1: Candidate query plans for a three-table join query.

Name Signature
sequential
scan

seqscan(table name, predicate)

hash join hashjoin(left input, right input, predicate)
project project(input, list of fields)
unnest unnest(input, collection attribute, new field)
operation call operationcall(input, externalprogram, parameters, predicate)

Table 2.1: The signatures of the physical operators examined in this thesis. Each
operator except scan has either one or two child operators as input.

graph (DAG), and more specifically as a binary tree, in which the nodes are query

operators, such asjoins, scans, projectsand so on. The optimiser is responsible for

deciding on the tree shape, the order of operators, and their implementation algorithm

(e.g., ajoin can be realized ashash join, nested loop, sort-mergeand so on). In a dis-

tributed setting, the optimiser is also responsible for the scheduling (or site selection)

of the different operators in the query.

Suppose that there are three tablesA, B andC, which all have a field namedid,

and we want to retrieve theid field of tableA after joining the tables on the following

conditions:A.id = B.idandA.id = C.id. In OQL, this can be expressed in the following

way: select a.id from a in A, b in B, c in C where a.id=b.id and a.id = c.id. In simple

words, in theselectclause, the attributes that will be returned to the user are defined.

Thefromclause contains the tables that provide the data. Thewhereclause enumerates

all the conditions on the values of attributes that have to be satisfied. The formal

specification is part of the ODMG standard [CB00].

CHAPTER 2. QUERY PROCESSING AND THE GRID 30

This query is transformed into aselect-project-joinquery plan. Figure 2.1 shows

two of the candidate query plans that can be considered in the scheduling phase. In

general, the scheduling of multiple plans may be examined. The plans in the figure dif-

fer in the order of the joins. In this case, the optimiser is responsible for deciding which

pair of tables should be joined first. Table 2.1 presents the implementation algorithms

of operators that are taken into consideration in this thesis. The scan is responsible

for extracting the data from a table, and filtering them if there is any predicate. The

hash-joinoperator joins two data input. Firstly, it builds a hash table on the left input,

and secondly, it probes this hash table by using the right input.Projectis used to prune

the list of tuple fields. Theunnestoperator is useful when there are collection attributes

within a tuple: in this case, it flattens a tuple into a set of single-valued tuples. Finally,

theoperationcall encapsulates calls to (external) UDFs.

The final phase of query processing involves the actualQuery Execution. The plan

is sent to the execution engines at the sites decided by the optimiser. The engines

provide implementations of query operators, and evaluate the plan received according

to the iterator model of execution in almost any advanced system [Gra93, Kos00].

The benefits of this model include pipelining of data, avoidance of flooding the system

with intermediate results in case of a bottleneck, and explicit definition of the execution

order of query operators.

DQP builds upon two important assumptions regarding optimisation and execution,

respectively:

• there exists a mechanism that specifies the set of resources (along with their

characteristics) to be taken into consideration for query scheduling, and

• there exists a mechanism that addresses the security, authentication and authori-

sation issues that arise when remote resources are accessed.

The lack of such generic mechanisms limits the applicability of DQP over heteroge-

neous and autonomous resources.

In conventional static query processors, the three phases of query processing occur

sequentially in the order they were presented. Adaptive systems differ in that they

interleave query optimisation with query execution.

CHAPTER 2. QUERY PROCESSING AND THE GRID 31

2.1.2 Query Optimisation

Although optimisation for single-node queries is well understood, at least for struc-

tured data [Ioa96, Cha98], optimisation of distributed queries still poses many chal-

lenges, as different distributed environments may shape it towards different directions

[OB04]. For example, in some environments accuracy is not as important as returning

the first results as early as possible, or the economic cost may be an issue.

Two main aspects of any optimisation approach, apart from whether it can affect

the query execution after it has started as in adaptive systems, are:

• the search strategy that defines the way to generate, and consequently the number

of, alternative plans, and

• the basis on which it is established which plan is the most efficient.

The bulk of work proposingplan enumerationalgorithms to implement search

strategies for DQP can be divided in two main categories:dynamic programmingand

two-step (or two-phase) optimisation[Kos00]. Dynamic programming builds trees in

a bottom-up manner: more complex (sub)plans are derived from simpler ones, starting

from the leaf nodes of the final query plan [KS00]. The algorithm, in its classical form,

examines all the potentially optimal combinations of subplans, discarding the inferior

solutions as early as possible. In this way, it ensures that the best plan (with respect

to a cost metric) is actually found. However, this advantage comes at the expense of a

prohibitively high computational complexity [Kos00], even when simplifying assump-

tions, such as that each part of the query plan is evaluated only at a single site, are

made. Variants of the dynamic programming approach trade the guaranteed optimality

of decisions with lower complexity, to make the techniques suitable for practical use.

The main alternative to dynamic programming is two-step optimisation. This ap-

proach, in the first step, optimises all the aspects of the query plan apart from the site

selection; the resulting plan from this phase is a non-distributed one. The scheduling

of this query plan occurs in the second step. Thus the complexity of optimisation drops

significantly.

Orthogonally to the search strategy followed, the query optimiser needs to be

equipped with mechanisms to compare different (sub)plans. The objectives may differ

according to different settings. Classic objectives include query response time, and

resource consumption that relates to query throughput. For their evaluation,cost mod-

els are incorporated in the optimiser. To a large extent, the quality of the optimisers

that use such models depends on the accuracy of the models. In the absence of cost

CHAPTER 2. QUERY PROCESSING AND THE GRID 32

models,heuristicsmay be employed, and in this case the optimisation is termed as

heuristic-based, as opposed tocost-based. An example of a heuristic is to prefer plans

that minimise the size of intermediate data produced during evaluation, or to minimise

the volume of data needed to be transmitted over the network.

For the operation of the cost models and the appliance of heuristics, a poten-

tially large variety of metadata is required [GMUW01, Ioa96, Cha98]. Such metadata

contain information about (i) the data processed, such as sizes, cardinalities and his-

tograms, (ii) the operation selectivities, and (iii) resource information, such as amounts

of memory available, characteristics of machines, and time costs to read pages from

disk.

Cost models for distributed settings extend the models developed for centralised

systems in that, as well as the CPU and disk input/output related costs [GMUW01],

they take into consideration communication costs (e.g., [GHK92]). The biggest chal-

lenge though is that, especially for distributed systems comprising autonomous re-

sources, the statistical information needed by query optimisers is often not readily

available and may be inaccurate, and information about the characteristics of the avail-

able machines may be incomplete [LOG92, EDNO97]. Several techniques have been

proposed to tackle this problem. In wrapper-mediator approaches, wrappers are ex-

tended to expose statistics (e.g., [ROH99]). Other techniques rely on dummy queries

running before execution to collect statistics (e.g., [ZSM00]), on cost model calibration

(e.g., [RZL04, RZL02, GST96]), or on probabilistic models (e.g., [ZMS03]).

Many modern distributed query applications involve the combination of different

data sources, which may belong to different administrative domains and possess data

of various quality levels. Furthermore, the resources may not be provided for free.

Consequently, users may be interested, as well as in the execution time, in aspects such

as monetary cost, data freshness, volume of data accessed, and so on. In such scenarios,

quality of service criteria become more important than query costs, and the optimiser

is constructed to reflect this situation (e.g., [BKK+01, SAL+96]). In addition, data

stores may have different capabilities for providing data relevant to the query. Thus,

the decisions of an optimiser operating in such environments are influenced, if not

dictated, by such capabilities (e.g., [GMPQ+97]).

Finally, in adaptive query processing, the optimiser policies, or a subset of them,

are reevaluated in light of new, updated information that becomes available during

query execution.

CHAPTER 2. QUERY PROCESSING AND THE GRID 33

2.1.3 Query Execution

Query execution in DQP considers more issues than in traditional centralised systems

[Gra93]. In particular, the issue of selecting the location of data stores arises when mul-

tiple options exist [Kos00].Dynamic data placementtechniques, given the appropriate

authorisation, redistribute data copies in such a way that queries can be executed more

efficiently, as the data location has significant impact on load balance and communica-

tion cost. This can be achieved by two main categories of techniques, namelyreplica-

tion of data sources andcachingof (partial) results of queries for potential reuse. Other

execution techniques focus on increasing the pipelining of evaluation (e.g., [IFF+99])

to return to the client initial results as early as possible. This is important when a

query is investigatory (e.g., a web query for flights) and the user wants to terminate

it as soon as a sample of results has been received. Decreasing communication costs

has also attracted a lot of interest. Approaches to this end includemultithreadingto

overlap communication with the rest of processing,row blockingto reduce the number

of times communication occurs, andsemijoins[BGW+81] to reduce the volume of

data transmitted [Kos00]. Adaptive systems are also equipped with the capability to

suspend and restart execution.

2.1.4 Parallel databases

Parallel databases may be deemed as a particular type of distributed databases, espe-

cially when they adopt theshared-nothingarchitectural model [Sto86]. A main differ-

ence is the nature of participating resources: distributed databases comprise indepen-

dent, and often heterogeneous, geographically dispersed machines, whereas parallel

databases are individual systems with multiple processors residing in the same loca-

tion [Ioa96]. Operating in a more controlled environment, parallel databases are free

of the complexities imposed by unknown information, heterogeneity and autonomy,

and can concentrate more on performance issues, such as achieving linearspeed-up

andscale-up[DG92].

Evaluation can be speeded up by processing the query plan in parallel, transparently

to the user. The three classical forms of parallelism in DQP areindependent, pipelined

and partitioned (or intra-operator). Independent parallelism can occur if there are

pairs of query subplans, in which one does not use data produced by the other. For

instance, in the left plan in Figure 2.1, tablesA and C can be scanned in parallel.

Pipelined parallelism covers the case where the output of an operator is consumed

CHAPTER 2. QUERY PROCESSING AND THE GRID 34

by another operator as it is produced, with the two operators being, thus, executed

concurrently. This might be the case of tableB being scanned, and the output to be

directly processed by theprojectoperator in order to be used to probe the hash table

that contains the tuples from tableA in Figure 2.1(a). In partitioned parallelism, an

operator of the query plan has many clones, each of them processing a subset of the

whole data. This is the most profitable form of parallelism, especially for data and

computation intensive queries. For example, multiple instances of the scan operator

for tableA can be spawned, each retrieving a different set of rows.

In theory, all these forms are applicable to DQP, and can be used to speed up

distributed applications as well. In this case, query processing is termed as being both

distributed and parallel.

2.2 Computations on the Grid

Programming Grid applications directly upon the low-level protocols and infrastruc-

ture provided is a laborious, error-prone and inflexible task [FK03]. Most commonly,

Grid computations are described at a higher level, and may be executed in the context

of more generic computing environments that act as middleware [Ken03]. In query

processing on the Grid, computations are expressed, as already discussed, as declara-

tive queries. This section deals with other typical forms of tasks on the Grid, so that

the merits of the query processing approach can be better demonstrated (in the next

section).

There exist three main approaches to describing computations on the Grid [Ken03]:

• A significant portion of Grid computations can be described as a set of loosely

coupled, master-slave, subtasks that may be executed concurrently, with trivial

inter-dependencies and synchronisation requirements. Usually, these subtasks

evaluate the same algorithm over a different dataset. Such applications are par-

ticularly demanding when the complete dataset is large. A well-known represen-

tative of this class is the SETI@home project [ACK+02], which uses Internet-

connected computers in the Search for Extraterrestrial Intelligence (SETI) on a

volunteer basis. Each contributing machine participates by analysing a small

portion of a large amount of radio telescope data at each run. Analogous exam-

ples can be drawn from various scientific fields including fluid dynamics, par-

ticle physics, astronomy and biology. Several generic execution environments

CHAPTER 2. QUERY PROCESSING AND THE GRID 35

have been developed for this sort of computation. They focus either on achiev-

ing high throughput by exploiting idle CPU time of commodity resources (e.g.,

[ACK+02]), or on meeting more complex user constraints on performance, eco-

nomic cost, and so on (e.g., Nimrod-G [BAGS02]).

• Nowadays, an increasing number of tasks, both from the business and the aca-

demic sector, are described as and automated by workflows. Compared to the

previous approach, workflows are suitable for applications whose subtasks have

stronger inter-dependencies. An example of such an application is themyGrid

project [GPSG03], which has developed a loosely-coupled suite of components

to support data-intensivein-silicoexperiments in biology. As for the previous ap-

proach, there are systems that provide a workflow execution environment on the

Grid. For example, Condor [FTL+01, TTL03] provides a tool to describe work-

flows that have the form of a directed acyclic graph (DAG). Other systems target

applications of specific requirements, e.g., the DataCutter project [BFK+00] is

well suited for data-intensive workflows.

• In a simpler case, Grid computations can be expressed as, and encapsulated in

calls to Grid portals, so that the user effort to describe tasks is minimised. Portals

can be particularly designed for a scientific domain (e.g., computational chem-

istry, astrophysics and so on), or to provide generic services such as basic access

to Grid resources [Ken03]. However, there is a trade-off between the simplicity

of the description of the computation and its potential complexity.

2.3 Combining Database and Grid technologies: op-

portunities and challenges

This section discusses (i) why query processing is an appealing paradigm for describ-

ing and executing potentially complicated tasks on the Grid, compared to other ap-

proaches that were discussed in Section 2.2; and (ii) which aspects of DQP that were

introduced in Section 2.1 pose the greatest challenges when applied to query process-

ing on the Grid.

CHAPTER 2. QUERY PROCESSING AND THE GRID 36

2.3.1 Novel Opportunities

The combination of DQP and Grid technologies is beneficial from both perspectives.

DQP provides a computing paradigm in addition to those described in Section 2.2,

thus enabling more applications to benefit from the Grid. On the other hand, the Grid

can significantly facilitate DQP, thus forming a relationship of mutual interest and

presenting new opportunities for advanced applications. This can be better illustrated

with the help of the following example that combines data integration and analysis to

perform a non-trivial task.

EXAMPLE 2.3.1 Suppose that two independent bioinformatics labs work jointly on

a project, which involves finding proteins that (i) belong to a specific category catA and

(ii) are similar to those proteins that have successfully interacted with more than 1%

of a set of testing proteins. One lab has expertise in ontologies classifying the proteins,

and exposes to the other lab a relation Classification(contologyid, cproteinid) repre-

senting the classification of the proteins. The other lab conducts the interaction exper-

iments and publishes a relation Interactions(iproteinid, iprotein, iproportion) holding

information about the proportion of successful interactions of each protein. Protein

similarity is established on the grounds of the sequence alignment scores provided by

widely adopted tools like BLAST [AGM+90].

Figure 2.2 shows a sequence of steps that could be implemented as a workflow

and performs the task of Example 2.3.1. Initially, the relevant data are retrieved from

their stores. Following this, the data referring to the same protein are matched, before

BLAST is called on them. Each of these subtasks is implemented separately and is

specific to this experiment. The performance of the system depends on the implemen-

tation of the subtasks. For example, parallelisation issues and selection of appropriated

resources is coded within the subtasks. Also, as the complexity of a request increases,

it becomes increasingly difficult for a developer to make decisions as to the most effi-

cient way to program the sequence of steps.

In grid querying, this computation can be written in a query language as shown in

Figure 2.3. The query retrieves the relevant data from the two databases, joins them

according to the join condition, and calls the BLAST external function, producing the

same results as previously. A big advantage is that the developers are only required

to express their requests. In addition, performance issues are handled by the query

optimiser in a way transparent to the user. For example, as sequence alignment is

a notably expensive operation, the optimiser may decide that partitioned parallelism

CHAPTER 2. QUERY PROCESSING AND THE GRID 37

Task 1: Retrieve data from Classification with
contologyid = catA.
Store results temporarily.

Task 2: Retrieve data from Interactions with
iproportion > 0.01.
Store results temporarily.

Task 3: Match data from the two result sets if the have
the same protein identifier.

Task 4: Call BLAST on results of Task 3.

Figure 2.2: The sequence of steps corresponding to the example 2.3.1

select BLAST(iprotein)
from Interactions I, Classification C
where I.iproteinid = C.cproteinid
and I.iproportion > 0.01
and C.contologyid = catA

Figure 2.3: The query corresponding to the example 2.3.1

should be applied to the BLAST calls. To this end, additional BLAST repositories

belonging to third parties are selected and employed, without requiring any particular

configuration by the persons conducting the experiment.

The above example demonstrates that DQP is an appealing solution for a broad

range of Grid applications due to its:

• Declarative, as opposed to imperative, manner of expressing potentially com-

plex computations that integrate independent data resources and analysis tools,

which are currently either not feasible, or must be carried out using non-database

technologies, such as workflows. As such, DQP can

– increase the variety of people who can form requests over the Grid since

these requests do not require an in-depth knowledge of the Grid technolo-

gies; and

– reduce development times for the Grid programming tasks that can be ex-

pressed as database queries.

• Implicit provision of optimisation and parallelism that makes efficient task exe-

cution more likely.

CHAPTER 2. QUERY PROCESSING AND THE GRID 38

The Grid is also an appealing platform on which DQP can be deployed. Query

processing on the Grid is characterised by the following key differences from tradi-

tional DQP over heterogeneous and potentially autonomous databases:

• The Grid provides systematic access to remote data and computational resources,

addressing the security, authentication and authorisation problems involved, and,

as such, the Grid enables remote sources to be used not only for data retrieval

tasks, but also for computational ones [FK03].

• The Grid provides mechanisms for dynamic resource discovery, allocation and

monitoring [CFFK01].

• The Grid provides mechanisms for monitoring network connections [WSH99],

which is an essential feature for a query engine to efficiently execute queries in

wide-area environments.

• Grid middleware conforms to (currently evolving) standards [DAI] and there ex-

ist publicly available reference implementations for uniform Grid-enabled access

to commercial Object-Relational and XML databases [OD].

Consequently, Grid environments meet the basic requirements for efficient deploy-

ment of DQP, as identified in Section 2.1.1.

2.3.2 Novel Challenges

2.3.2.1 Extensive Adaptivity

A significant similarity between Grid and traditional DQP is the need for adaptivity

during query execution [HFC+00]: the success and endurance of database technology

is partially due to the optimisers’ ability to choose efficient ways to evaluate the plan

that corresponds to the declarative query provided by the user. The optimiser’s deci-

sions are based on data properties, such as cardinalities and predicate selectivities, and

on environmental conditions, such as network speed and machine load, as explained

in Section 2.1.2. In both Grid-enabled and non-Grid-enabled DQP over heterogeneous

and autonomous sources, information about data properties is likely to be unavailable,

inaccurate or incomplete, since the environment is highly volatile and unpredictable.

In fact, in the Grid, the virtual organisation and the set of participating resources is

expected to be constructed either per query or per session [AMP+03].

CHAPTER 2. QUERY PROCESSING AND THE GRID 39

These characteristics of the Grid environment have an impact on an extensive set of

the decisions of the optimiser, in contrast with the cases addressed by existing adaptive

techniques [HFC+00, GPFS02]. The quality of the decisions of the optimiser compo-

nents is basically controlled by the quality of their input information rather than by the

policies they implement. This is due to the fact that such policies are typically well

established and validated. Examples of issues arising in Grid environments include:

• Decisions on operator order and shape of the query plan:Such decisions are

affected mostly by the sizes of the input and intermediate data. For the former,

accurate statistics about the data stores needs to be available, and for the latter,

information about the predicate and the filter selectivities are required. Due to the

expected lack of such accurate information, it is unlikely that the initial decisions

by this component would be near optimal.

• Decisions on physical implementations of operators:Mapping a logical alge-

braic query plan to a physical one involves the mapping of each logical operator

to one of its potentially many physical implementations. For example, a logical

join can appear in a query execution plan as a (blocked) nested loop, a hash join,

a sort-merge join, a pipelined hash join, and so on. Knowing the specific, indi-

vidual physical characteristics of computational resources, such as the amount

of the available memory, and properties such as ordered attributes, is crucial for

ensuring good performance.

• Decisions on plan scheduling:The optimiser’s scheduler assigns a subplan to

at least one physical machine. If the execution mechanism does not provide

implicit mechanisms for defining the order of operator execution within a sub-

plan (e.g., it does not follow the iterator execution model [Gra93]), the scheduler

needs to make these additional decisions as well. Its policies are based mostly

on the properties of the physical resources.

Existing solutions for adaptive query processing (AQP) can address only partially

the above issues. They can compensate for inaccurate or unavailable data properties

(e.g., [AH00, KD98]), bursty data retrieval rates from remote sources (e.g., [Ive02]),

and provision of prioritised results as early as possible (e.g., [RRH99]), but they also

suffer from the following major limitations, which prohibit their usage in query process-

ing on the Grid:

CHAPTER 2. QUERY PROCESSING AND THE GRID 40

• They are too specific in terms of the problem they address and are designed in

isolation [IHW04]. As such, they cannot easily be combined to meet the broader

adaptivity demands of query processing on the Grid.

• They mostly focus on centralised query processing.

• They do not yet provide robust mechanisms for responding to changes in the

pool of available resources, even when the data are initially stored remotely.

Advances in AQP are presented in more detail in Chapter 4. However, the above

limitations make more obvious the need for

• definition of abstractions and architecture paradigms that unify the currently iso-

lated adaptive techniques in a generic framework, and

• novel extensions to AQP techniques to cover the requirements of Grid query

processing.

2.3.2.2 Harnessing the available power

As mentioned in Chapter 1, the most efficient and scalable way to enhance the per-

formance of query processing is to increase the number of its modules operating in

parallel. The forms of parallelism in query processing were presented in Section 2.1.4.

The execution engines typically provide for pipelined parallelism through the iterator

execution model (Section 2.1.1). To employ partitioned parallelism, the scheduler part

of the optimiser needs to have the capability to select and allocate multiple resources

to the same plan fragment. The Grid offers an arbitrarily large, and inevitably het-

erogeneous pool of resources. However, the selection and scheduling of the resources

that will participate in query evaluation from an unlimited and heterogeneous pool is

an open issue, even in its static form. Generic Grid schedulers, like Condor [TTL03],

support DAGs that can represent query plans but they do not provide for pipelined or

partitioned parallelism. Existing scheduling algorithms for distributed databases either

support limited partitioned parallelism if all the participating machines have the same

capabilities (e.g., [ESW78]), or no partitioned parallelism at all (e.g., [ML86]). Thus,

they are inappropriate for intensive query applications and unable to harvest the bene-

fits of the typically heterogeneous resources that a Grid makes available to its users.

CHAPTER 2. QUERY PROCESSING AND THE GRID 41

2.4 Polar*: An early Grid query processor

The purpose of this and the following section is to present two real query processors

for the Grid that can realise the concept of evaluating data combination and analysis

tasks using query processing, as discussed in Section 2.3. The sections discuss also the

optimisation and evaluation techniques that the two systems employ, and the extent to

which (i) they adopt traditional DQP techniques, as presented in Section 2.1, and (ii)

they address the challenges to DQP arising from the Grid environment, as discussed in

Section 2.3.

Polar* is the first recorded Grid-enabled query processor [SGW+03, SGW+02]. It

accesses remote data stores and performs remote operation calls using the Globus 2

middleware.

Polar* evolved from an object-oriented (and more specifically, ODMG [CB00]

compliant) parallel database system, called Polar [SSWP04]. As an object-oriented

DQP system, Polar* is capable of handling complex data structures that are com-

mon to many real scientific applications. As an evolution of a parallel system, it is

equipped with mechanisms enabling intensive use of parallelism. Results presented

in [SGW+03] show that parallelism in DQP over heterogeneous resources can have

beneficial effects, similarly to what happens in conventional parallel computing over

homogeneous machines. By being capable of evaluating queries such as the one in

Figure 2.3, Polar* has illustrated that DQP can serve as a suitable platform for tasks

that

• integrate data from multiple sources, and

• call analysis tools on the data.

As such, the development of Polar* has served as a proof of concept, validating the

claims about the potential benefits of Grid query processing made in Section 2.3.

The rest of the section provides a brief overview of the data model employed in

Polar*, the architecture, the compiler and the execution engine.

2.4.1 The ODMG data model

Polar* adopts the model and query language of the ODMG object database standard

[CB00]. As such, all resource wrappers must return data using structures that are

consistent with the ODMG model. Queries are written using the ODMG standard

query language, OQL.

CHAPTER 2. QUERY PROCESSING AND THE GRID 42

The reason for choosing the object data model rather than the relational one, is

that it provides a richer model for source wrapping and for representing intermediate

data. The model used for DQP is thus rich enough to support straightforward wrap-

ping of relational and object databases. In addition, the object model, as opposed to

the relational one, fits better with applications and computations that use advanced

data structures and require relatively more powerful operations. Features of object

databases that must be dealt within (distributed) query processing are the allocation

of unique identifiers to all the objects thereby supporting navigation and path expres-

sions in queries, the support of collection-valued attributes, and the fact that an object

database can be accessed both through a query language and also by mapping database

objects into applications.

The ODMG specification includes the Object Definition Language (ODL), which

is programming language independent, and is used to specify the database schema.

Figure 2.4 shows the database schema of Example 2.3.1 in ODL. In addition, it defines

the Object Interchange Format (OIF) for retrieving and storing data from and to (flat)

files, respectively.

2.4.2 Architecture

Figure 2.5 illustrates the high level architecture of the system. The metadata repository,

which is needed to compile a query, is populated by both data from the database schema

(e.g. types of attributes) in the ODL format, and information about the Grid nodes.

Each Grid node has specific computational capacities and data stores. The coordinator

node is a usual Grid node with the additional characteristic that it stores the metadata

and has the Polar* query compiler installed, as well as the evaluation engine.

Polar*, like its predecessor, Polar, is designed in a modular way, comprising a set

of distinct components (Figure 2.6). The components communicate with each other

through well defined interfaces, without revealing their implementation details. The

components are:

• The Query Compiler, which includes:

– The Query Parser.

– The Query Optimiser, which comprises: (i) the Logical Optimiser; (ii) the

Physical Optimiser; (iii) the Partitioner; and (iv) the Scheduler.

• The Query Evaluator.

CHAPTER 2. QUERY PROCESSING AND THE GRID 43

forward class Classification;
forward class Interaction;

struct blastResult {
string protein;
long score;

};

static set<blastResult> BLAST(in string protein);

class Classification
(extent Classifications

key contologyid)
{

attribute string contologyid;
attribute string cproteinid;

};

class Interaction
(extent Interactions

key iproteinid)
{

attribute string iproteinid;
attribute string iprotein;
attribute string iproportion;

};

Figure 2.4: The ODL schema corresponding to Example 2.3.1

• The Metadata Repository.

The parser is responsible for the translation phase. Optimisation occurs according

to the two-phase approach. As such, it is divided into single-node and multi-node

optimisation. The logical and physical optimisers perform the former, whereas the

partitioner and the scheduler carry out the latter. The instances of query evaluators

execute the plan produced by the optimiser. There is one instance per machine selected

to participate in the execution. The components may access the metadata repository to

perform their tasks. The metadata store is built upon Shore [CDF+94], in compliance

with the ODMG standard.

Polar* is a static query processor. As such, the query translation, optimisation and

execution occur sequentially for each incoming query. The rest of the section examines

in more detail the way in which query plans are constructed and executed in Polar*.

CHAPTER 2. QUERY PROCESSING AND THE GRID 44

Grid Computational
Resources

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � �
� � �
� � �

� � �
� � �
� � �

Node X Node Y Node Z

A A’

B B’ C’ D D’

Coordinator Node

Query
Metadata

Grid Data
Resources

GRID

C

Evaluator
Compiler

OQL

Figure 2.5: The Polar* architecture.

Parser
Logical
Optimiser

Single−node Optimiser

Physical
Optimiser

Metadata

Partitioner Scheduler

Multi−node Optimiser

Query Evaluator

OQL query

Figure 2.6: The components of Polar*.

2.4.3 Query Planning

As mentioned previously, Polar* follows the two-step optimisation paradigm, which is

popular for both parallel and distributed database systems [Kos00]. For the single-node

optimisation, large parts of the optimiser of lambda-DB [FSRM00] have been incorpo-

rated. The internal representation of plans in lambda-DB, and consequently in Polar*,

is based upon themonoid calculusand the associated algebra [FM00] of Fegaras and

Maier. As such, the OQL queries, are parsed and transformed into a monoid calculus

expression. Subsequently, the plan in this intermediate format is typechecked and then

is ready for the actual plan construction.

CHAPTER 2. QUERY PROCESSING AND THE GRID 45

2.4.3.1 Construction of the single-node plan

The single-node plan is constructed by applying logical and physical optimisation to

the output of the parser.

The logical optimiser operates as follows.

• It normalisesthe plan in monoid calculus, which involves (i) query unnesting,

(ii) fusion of multiple selection operators into a single one, and (iii) application

of DeMorgan’s laws to the predicates.

• It maps the monoid calculus into the logical algebra of [FM00]. Figure 2.7(a) de-

picts a plan for the example query in Figure 2.3 expressed in the logical algebra.

The logical algebra contains object-relational operators such asscan, unnest, and

projectwithout specifying their actual implementation, when more than one ex-

ists (e.g.,hash joinandnested loopare both possible implementations of the join

logical operator).

• It creates multiple equivalent logical plans and chooses the one that results in the

production of less intermediate data [Feg98]. Changing the order of the operators

and the shape of the query results in plans that produce different numbers of

intermediate results.

• It pushes, or inserts, projections as close to the scans as possible.

The overall aim of the optimisation is to create a plan with as low a query response

time as possible. The main heuristic employed (i.e., to reduce the volume of temporary

data) performs well to this end [Feg98], incurring minimal overhead, as it is based on

a greedy bottom-up algorithm.

The physical optimiser transforms the optimised logical expressions into physical

plans by selecting algorithms that implement each of the operations in the logical plan

(Figure 2.7(b)). For example, in the presence of data ordering, the optimiser prefers

sort-merge joinsto hash joins. The mapping policies are defined in rules, and trans-

formed into code by the OPTGEN optimiser generator [Feg97].

The number of physical plans that are produced is configurable; the higher this

number is, the more options for the multi-node optimiser exist, but also, the higher the

query compilation cost is.

CHAPTER 2. QUERY PROCESSING AND THE GRID 46

� �� �
��

� �
� �

��
� �� �
� �� �

� �� �
� �� �

� �� �
	 		 	

� �� �

� �� �

hash_join

table_scantable_scan

����

�
�
��

� �� �
� �� �

� �� �
� �� �

����

����

����

����

����
 !!

" "" "
##

$ $$ $
% %% %

& && &
'' ((((

))))

*
*
++

,,-
-

..//

(a)

project

operation_call

project

join

scan

project

(blast(I.protein))

(blast)

(C.cproteinid=I.iproteinid)

(C.cproteinid)

scan

(Classifications)

(contologyid−catA)

(Interactions)

(I.iproteinid, I.protein)

(b)

project

(blast)

(blast(I.protein))

operation_call

(C.cproteinid=I.iproteinid)

project

(C.cproteinid)

(Classifications)

(contologyid−catA)

(Interactions)

(I.iproteinid, I.protein)

project

(iproportion>0.5) (iproportion>0.5)

exchange

hash_join

exchangeexchange

table_scantable_scan

4,5

operation_call

(c)

2,3 6

3,6

project

(blast)

(blast(I.protein))

(C.cproteinid=I.iproteinid)

(C.cproteinid)

project

(Classifications)

(contologyid−catA)

(Interactions)

(iproportion>0.5)

project

(I.iproteinid, I.protein)

Figure 2.7: Example query: (a) single-node logical plan, (b) single-node physical plan,
(c) multi-node physical plan.

2.4.3.2 Construction of the multi-node plan

The multi-node optimiser comprises two components: thepartitioner, which splits

the plan into fragments, thereby defining the points where communication over the

network takes place, and thescheduler, which allocates a set of machines to each such

fragment.

Plan partitioning The first step to transform a single-node plan into a multi-node

one is by inserting parallelisation operators into the query plan, i.e., Polar* follows

the operator model of parallelisation [Gra90], by using theexchangeoperator. Ex-

changes comprise of two parts that can run independently: exchange producers and

exchange consumers (Ex-Prod and Ex-Cons in Figure 2.8, respectively). The pro-

ducers have an outgoing buffer for each consumer, in which they add the tuples they

collect from the operators lower in the query plan. For eachexchangeoperator, a

CHAPTER 2. QUERY PROCESSING AND THE GRID 47

Ex−Cons Ex−Cons

Ex−ProdEx−Prod

data flow

thread boundaries

Machine A Machine B

Figure 2.8: The exchange operators

data distribution policy needs to defined, in order to identify the consumer for each

tuple. Currently, the policies Polar* supports includeround robin, hashdistribution

and rangepartitioning. The last two policies provide support for non-uniform data

distribution among instances of the same physical operator, which is desirable for het-

erogeneous environments.

The partitioner firstly identifies whether an operator requires its input data to be

partitioned by a specific attribute when executed on multiple processors (for example,

so that the potentially matching tuples from the operands of a join can be compared).

These operators are calledattribute sensitiveoperators [Has96]. [SPWS99] presents

the classification of the parallel operators as attribute sensitive or attribute insensitive.

Secondly, the partitioner checks whether data repartitioning is required, i.e., whether

data needs to be exchanged among the processors, for example for joining or for sub-

mitting to anoperationcall on a specific machine. There are two such cases: (i) when

the children of an attribute sensitive operator in a query plan are partitioned by an at-

tribute other than its partitioning attribute, or there is no data partitioning defined for

them, then data repartitioning needs to take place; and (ii), when not all the candidate

nodes for evaluating parts of the query can evaluate a physical operator, which may

be case foroperationcalls. The physical algebra extended withexchangeconstitutes

the parallel algebra used by Polar*. Theexchanges are placed immediately below the

operators that require the data to be repartitioned. A multi-node query plan is shown

in Figure 2.7(c), where theexchanges partition the initial plan into many subplans

(delimited by dashed lines in the figure).

CHAPTER 2. QUERY PROCESSING AND THE GRID 48

In the example query, there is one attribute sensitive operator, thehashjoin, which

needs to receive tuples partitioned by theproteinIDattribute. Since the children of the

hashjoin are not partitioned in this way, twoexchangesare inserted at the top of each

subplan rooted by the join.Operationcall is attribute insensitive, but since it can be

called only from specific nodes, anexchangeis inserted as its child. The optimiser

checks if theexchangestransmit redundant data. Aprojectoperator ensures that only

data that are required by operators higher in the query plan are transferred through the

network. If there are no suchprojectsplaced by the single-node optimiser, the parallel

optimiser inserts them.

Plan scheduling The final phase of query optimisation is to allocate machine re-

sources to each of the subplans derived by the partitioner, a task carried out by the

scheduler in Figure 2.6 using an algorithm based on that of Rahm and Marek [RM95].

This algorithm is principally for parallel databases, which consist of homogeneous

nodes. As such, it can operate well in a limited range of cases in grid querying.

To run the example query, suppose that six machines are available, and that three

of the machines host databases (numbers2 and3 for theClassificationdatabase table,

and6 for the Interactions). The table scanoperators are placed on these machines in

order to save communication cost. For thehashjoin, the scheduler tries to ensure that

the relation used to construct the hash table can fit into main memory, for example, by

allocating more nodes to the join until predicted memory requirements are satisfied or

all available memory is exhausted [RM95]. In the example, nodes3 and6 are allocated

to run thehashjoin. As some of the data is already on these nodes, this helps to reduce

the total network traffic. The data dictionary records which nodes support BLAST, and

thus the scheduler is able to place theoperationcall for BLAST on suitable nodes (4

and5 in Figure 2.7(c)). The cost of a call to BLAST is much higher than the cost to

send a tuple to another node over the network. Additionally, in any case, the whole set

of the results of thehashjoin needs to be moved from the nodes3 and6 at some point,

to be returned to the user, which means that some communication cost is inevitable.

For these two reasons, the optimiser has chosen the maximal degree of parallelism for

the BLAST operation. This choice incurs lower computation cost, without increasing

the communication.

CHAPTER 2. QUERY PROCESSING AND THE GRID 49

2.4.4 Query Evaluation

The query engine implements each operator according to theiterator model. As such,

operators implement three main methods:open, next, andclose. The root operator

of the query tree callsopenon its children, the children call it on their children, and

so on until theopencall is propagated to the leaf operators.Next is called in the

same manner for each tuple, until there are no other tuples to be processed. At that

point, the propagation ofcloseoccurs to finish the execution in a tidied-up way. In

centralised query processing, applying theiterator modelresults in a pure pull-based

mode of execution. The presence ofexchangesalters this characteristic as it enforces

its producers and consumers to run independently in different threads. Thus, in a multi-

node setting, parts of the query plan are executed simultaneously.

Apart from multithreading, Polar* employs another technique common to DQP

systems (Section 2.1.3), which is row blocking. The tuples, which may represent com-

plex collection structures, are serialised and placed into buffers of configurable size.

Communication between nodes occurs only if the buffers are filled or the buffers are

partially filled but there are no more data to be processed. The underlying mechanism

is MPICH-G [KTF02], which is a grid-enabled implementation of MPI (Message Pass-

ing Interface) [SOHL+98].

Polar* supports two kinds of data repositories, which affect the implementation

of the table scanoperator. Firstly, there is built-in support for data retrieval from the

Shore [CDF+94] server, which supports the ODMG model. Secondly, Polar* enables

access to commonly used database systems, such as MySQL, through ODBC and client

libraries. In this case, the results are transformed into the ODMG model, through OIF

mappings, to ensure that there is a common representation of the tuples evaluated.

Another operator that is of specific interest is theoperationcall. This operator is

capable of loading code dynamically that conforms to statically generated stub code

based on signatures of external functions defined in the ODL schema. The stub code is

responsible for transforming the input tuples into the format required by the function,

and the output tuples into the ODMG format.

In summary, query execution in Polar* is performed as follows. The evaluators

receive a plan fragment from the query compiler, which is installed on them via the

MPICH-G interface. Next, the operators in the plan fragment are executed as iterators.

This operator execution may in turn lead to the transmission of data between nodes,

using the MPICH-G interface. MPICH-G is layered above the low-level Globus 2 in-

frastructure, hiding many of its implementation details and providing a higher-level

CHAPTER 2. QUERY PROCESSING AND THE GRID 50

Application Programming Interface (API) for the development. As such, Polar*, like

Polar, realizes a parallel query as a MPI program. Query processing in Polar* involves

concurrent login to multiple machines, transfer of executables and other required files,

and start-up of processes on the separate resources. Concurrent login to separate ac-

counts is managed through GSI (the Grid Security Infrastructure for enabling secure

authentication and communication [FKT01]), executable staging across wide area con-

nections through GASS (Global Access to Secondary Storage [FKT01]), and start-up

through DUROC (Dynamically-Updated Request Online Coallocator [FKT01]). How-

ever, MPICH-G provides an interface to all these features.

2.4.5 Polar*’s approach regarding the novel challenges

Section 2.3 identified two main directions for efficient DQP on the Grid: adaptivity

and parallel scheduling. For the former, the Polar* provides very limited features, as

it is designed as a static query processor. The only dynamic feature is that during data

communication handled byexchanges, a lagging consumer does not constrain the flow

to a quicker consumer, thus hiding limited fluctuations in resource performance and

availability [SHCF03].

Regarding scheduling, the Polar* prototype supports partitioned parallelism, but it

bases its approach on techniques from parallel homogeneous databases [RM95]. Thus,

it essentially does not take into account the heterogeneity of the Grid environment.

2.5 OGSA-DQP: Services meet Grid query processing

Web Services (WSs)[GGKS02] have emerged as a broadly adopted and appealing com-

puting paradigm for loosely-coupled distributed applications, as they provide language

and platform-independent techniques for describing, discovering, invoking and orches-

trating collections of networked computational services. The significance of their ben-

efits has forced the Grid community to recast its middleware functionalities asGrid

Services (GSs)and thus to develop the Open Grid Services Architecture (OGSA), and

a reference middleware implementation released as Globus 3 [FKNT02, TCF+02].

Web and Grid service technologies are converging rapidly and they complement each

other. Indeed, WSs mostly focus on platform-neutral description, discovery and invo-

cation, while GSs are more interested in managing service state and lifetime, dynamic

discovery and efficient use of distributed computational resources.

CHAPTER 2. QUERY PROCESSING AND THE GRID 51

OGSA-DQP [AMP+03] is a service-based distributed query processor, which reuses

large parts of Polar*, and is built on top of Globus 3. OGSA-DQP is service-based in

two orthogonal dimensions:

• it manifests itself as a collection of services, and

• it accesses remote data repositories and analysis tools that are in the form of

services.

OGSA-DQP services are built on top ofGrid Data Services (GDSs)developed

in the context of the OGSA-DAI initiative [OD], which aims to provide a common

service interface to Grid-connected DBMSs. GDSs extend the basic GSs of Globus 3.

In the remainder of this section, the main characteristics of each of the above classes

of service are discussed.

2.5.1 Grid Services and Grid Data Services

GSs in Globus 3 implement basic, application-independent functionalities that are use-

ful to any service. They implement a standard interface for registering their instances

with registry services. This interface enables other services to query the registries and

retrieve information about them. In this way, they provide for registration and discov-

ery. Instances are created dynamically fromService Factoriesand are identified by

their uniquehandle. Their lifetime is manageable; thus failed instances can be dis-

posed of in a tidy manner. GSs provide also mechanisms for notification subscription,

production, delivery and receipt.

GDSs extend GSs by providing a registry facility for the publication of other GDSs.

They are also capable of creating instances tailored to specific, application-dependent

requirements with regard to database location and query language. Also, GDSs can be

Grid-enabled wrappers of relational, object-relational and XML databases.

2.5.2 OGSA-DQP Services

OGSA-DQP [AMP+03] re-engineered Polar* to conform to service-based principles.

OGSA-DQP defines two services, both extending GDSs:

• Grid Distributed Query Services (GDQSs) that encapsulate the Polar* compiler,

and

CHAPTER 2. QUERY PROCESSING AND THE GRID 52

• Grid Query Evaluation Services (GQESs) that implement the functionality of the

Polar* evaluators.

The main differences between the two systems that are relevant to this thesis, are

the following:

• OGSA-DQP is not tightly coupled with any persistent storage system, such as

SHORE. The result is that OGSA-DQP services are significantly more light-

weight than the corresponding Polar* components.

• In OGSA-DQP, metadata are kept in main memory and constructed on a per-

session basis, whereas in Polar* metadata are persistent, and thus can be arbi-

trarily outdated.

• OGSA-DQP employs the GDS generic interface to access remote databases,

whereas Polar* relies on manually constructed wrappers.

• In OGSA-DQP, communication between service instances occurs in the form of

XML documents transmitted over SOAP/HTTP. Thus, there is no need for MPI

messaging, as in Polar*.

• Theoperationcalls in Polar* load local code dynamically, whereas in OGSA-

DQP, although they are still conceived of by the compiler as typeduser-defined

functions (UDFs), they constitute calls to WSs. A consequence of this difference

is that they can be executed in any GQESs, contrary to what happens in Polar*.

2.5.3 Query Planning and Evaluation in OGSA-DQP

The single-node optimisation policy in OGSA-DQP is the same as in Polar*, i.e., em-

ploying heuristics that minimise the volume of intermediate results and the size of data

transmitted over the network, to reduce the query response time. Multi-node optimi-

sation differs in the scheduling policy, to reflect the fact thatoperationcalls can be

deployed on any machine. Also, the compiler is modified to output the query plan in

XML (see Figure 2.9 for a simple example). Finally, the optimiser has been modified

to read metadata from main memory and not to access any repository.

The steps for setting up query sessions and submitting queries in a GS environment

are shown in Figure 2.10:

CHAPTER 2. QUERY PROCESSING AND THE GRID 53

<Partition>
<evaluatorURI>6</evaluatorURI>
<Operator operatorID="0" operatorType="TABLE_SCAN">

<tupleType>
<type>Classification</type> <name>Classification.OID</name>
<type>string</type> <name>Classification.contologyid</name>
<type>string</type> <name>Classification.cproteinid</name>

</tupleType>
<TABLE_SCAN>

<dataResourceName> Classifications </dataResourceName>
<GDSHandle> http://rpc52.cs.man.ac.uk:9090/ogsa/services/ogsadai

/GridDataServiceFactory </GDSHandle>
<tableName> Classifications </tableName>

</TABLE_SCAN>
</Operator>
<Operator operatorID="1" operatorType="APPLY">

<tupleType>
<type>string</type> <name>Classification.cproteinid</name>

</tupleType>
<APPLY>

<inputOperator> <OperatorID>0</OperatorID></inputOperator>
<applyOperationType>PROJECT</applyOperationType>
<parameters>

<attributeName>Classification.cproteinid</attributeName>
</parameters>

</APPLY>
</Operator>
<Operator operatorID="2" operatorType="EXCHANGE">

<tupleType>
<type>string</type> <name>Classification.cproteinid</name>

</tupleType>
<EXCHANGE>

<inputOperator> <OperatorID>1</OperatorID></inputOperator>
<consumers>

<operatorReference>
<EvaluatorURI>7</EvaluatorURI>
<OperatorID>0</OperatorID>

</operatorReference>
<operatorReference>

<EvaluatorURI>1</EvaluatorURI>
<OperatorID>0</OperatorID>

</operatorReference>
</consumers>
<producersNumber>0</producersNumber>
<producers>
</producers>
<arbitratorPolicy>

<ROUND_ROBIN> 1
</ROUND_ROBIN>

</arbitratorPolicy>
</EXCHANGE>

</Operator>
</Partition>

Figure 2.9: An example plan fragment that retrieves theClassificationrelation from
evaluator6, projects thecproteinidattribute, and sends the resulted tuples to evaluators
1 and7. The fragment corresponds to the lower right partition in Figure 2.7(c).

CHAPTER 2. QUERY PROCESSING AND THE GRID 54

1. Grid Data Services (GDSs) are registered to a Grid Registry. WSs that may play

the role of UDFs are registered too.

2. The client starts a session and chooses which registry to contact, and which Grid

and Web services registered to this registry to use.

3. The client informs the static query coordinator about the selected services. The

coordinator creates a global database schema by collating the local schemata

(only naming conflicts are resolved, as data integration issues are out of the

scope of this thesis). The WSs are interpreted as typed UDFs, based on their

WSDLs. This step concludes the creation of a query session.

4. The client submits a query to the query coordinator. The latter is responsible for

parsing the query statement, creating a query plan, optimizing and parallelising

it.

5. The static coordinator dynamically creates as many GQESs as the different sites

chosen for evaluation.

6. The results are returned to the client.

2.5.4 OGSA-DQP’s approach regarding the novel challenges

OGSA-DQP does not differ from Polar* in how it tackles the issues of resource hetero-

geneity and adaptivity. However, as data and resource metadata are retrieved for each

session in OGSA-DQP, there is a higher probability that the metadata is more accurate

than in Polar*.

2.6 Other Grid-enabled database query systems

Although the initial focus of Grid data management was on file-based storage and

movement [MBM+99], and until the writing of this thesis, Polar* and OGSA-DQP

have been the only known fully fledged generic Grid-enabled query processors, there

is an increasingly growing interest in adopting database query technologies in a Grid

context.

For example, SkyQuery [MSBT03, NSGS+05] applies DQP over Grid-connected

databases containing astronomic data. The execution has similarities with OGSA-

DQP/Polar*, e.g., calls to WSs are regarded as typed UDFs. The main differences

CHAPTER 2. QUERY PROCESSING AND THE GRID 55

WS

GDS

......

1. register
 services

2. choose services

3. setup query session

4. submit query

6. return results

per session

per query

GQES GQES GQES

Coordinator
(GDQS) Query

Client

Registry

GDS

5. create GQESs

Figure 2.10: The typical steps for setting up a query session (1-3) and evaluating
queries (4-6).

is that OGSA-DQP i) accesses Grid rather than Web services, ii) supports partitioned

parallelism, iii) can employ Grid machines that may not hold data in order to evaluate

parts of the query plan, and iv) is generic with respect to the underlying databases

supported and not tailored to a specific scientific scenario.

GridDB-lite [NCK+03] is a project motivated by data-intensive scientific appli-

cations on the Grid, built upon DataCutter [BFK+00]. It identifies, like Polar* and

OGSA-DQP, the importance of combining data integration with analysis, but employs

query technologies for facilitating only the former. The data is stored in flat files,

viewed as database tables with the help of specific, manually constructed wrappers.

Then, the users express their retrieval tasks as SQL-like queries. However, the query

is not evaluated using database technologies. Functionalities that correspond to data-

base scan, predicate evaluation in an operator, and operation call, are implemented

not as database operators but as stand-alone independent services. Thus, the benefits

CHAPTER 2. QUERY PROCESSING AND THE GRID 56

of well-established query optimisations with respect to operator order and implemen-

tation algorithm selection cannot be applied. Parallelism is supported but needs to

be specified explicitly by the user. Overall, GridDB-lite benefits from the declarative

manner of expressing potentially complex tasks in query processing, but develops its

own execution mechanisms, thus not exploiting the full potential of a DQP system.

Another project that supports database interfaces for data processed in a workflow

is GridDB [LFP03]. Its key feature is that the inputs and outputs of each workflow

process are presented to the user as database tables, over which queries can be submit-

ted. As in GridDB-Lite, this enables declarative task expression. However, GridDB

takes one step further, and employs a technique devised for adaptive query processors

[RRH00] to prioritise partial results.

Generic interfaces to Grid databases have been developed in two projects, OGSA-

DAI [OD] and European Datagrid’s Spitfire [BBH+02]. In OGSA-DQP, the former

has been adopted, as it exposes itself as a GS and provides a uniform access (i.e.,

wrapping) for a wide range of commercial DBMSs. In addition, it is developed in

close association with the emerging standard for database access [DAI].

2.7 Summary

This chapter provided background material about Distributed Query Processing (DQP)

and Grid Computations, and discussed their integration. From the perspective of Grid

computing, DQP offers an alternative manner to describe and run computations, char-

acterised by ease of expression and system-performed optimisation. From the DQP

perspective, the Grid offers a platform that addresses infrastructure concerns regard-

ing security and coordinated discovery and allocation of remote and autonomous re-

sources.

In addition, this chapter identified the issues of generic adaptivity mechanisms cov-

ering adaptations to volatile wide-area environments, and resource scheduling, which

constitute the research problems addressed in this thesis (Chapter 1), as an important

challenge for efficient and effective DQP on the Grid.

The last sections dealt with Grid-enabled database systems, presenting in more

detail two existing DQP systems for the Grid, Polar* and OGSA-DQP. The develop-

ment of these systems is of considerable importance for the remainder of the thesis.

As there are no relevant validated simulators and models describing the Grid environ-

ment and the behaviour of Grid-enabled query processors yet, the research results are

CHAPTER 2. QUERY PROCESSING AND THE GRID 57

evaluated in the context of these two real systems. Thus, they form the basis for a

testing platform. As stated in Chapter 1 explicitly, the contribution of this thesis to the

development of Polar* and OGSA-DQP corresponds to the compiler of the systems.

The integration of Grid and database technologies (Section 2.3) has been discussed

also in [GPSF04]. Descriptions of Polar* have appeared in [SGW+03, SGW+02], and

of OGSA-DQP in [AMP+03, AMG+04].

Chapter 3

Scheduling Queries in Grids

This chapter presents a novel scheduling algorithm for queries running in distributed

heterogeneous environments like the Grid. In wide-area query processing, the resource

scheduling problem is defined as the problem of (i) selecting resources and (ii) match-

ing subplans with resources. In the non-database literature, sometimes, scheduling

involves the problems of defining the execution order of jobs (which may correspond

to subplans in query processing) and exploiting pipelined parallelism in addition to the

resource selection and the job matching [DSB+03]. However, in databases, the issues

of execution order and pipelined parallelism have been effectively and efficiently ad-

dressed by adopting well-established execution models, such as iterators [Gra93], and

thus need not be the responsibility of query schedulers.

To date, scheduling algorithms for heterogeneous distributed databases compro-

mise partitioned parallelism (e.g., [ESW78, Kos00]) and consequently are not suitable

for a significantly wide range of intensive queries1, for which parallelism is particu-

larly beneficial. The algorithm proposed addresses this limitation in a practical way

with low-complexity cost. It allows queries over Grid databases to employ both par-

titioned and pipelined parallelism using a diverse set of resources that may or may

not store data. This contribution allows one to move a step towards attaining high

performance in grid querying as it may improve the performance of query processing

significantly.

Resource selection is an integral phase of query optimisation in distributed query

processing. Regardless of the plan enumeration approach, e.g., dynamic programming,

two-step optimisation, and so on, the query optimiser needs to decide which resource

1Intensive queries are the queries that either process large volumes of data, or apply expensive com-
putations onto the data processed, and consequently place a heavy demand on any of the CPU, I/O
bandwidth and network bandwidth types of resources (or their combinations).

58

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 59

will evaluate each part of the query. In architectures similar to the ones of Polar* and

OGSA-DQP, there is a dedicated component in the query optimiser for this purpose,

namely the scheduler, as described in Chapter 2. The new algorithm is implemented

by re-engineering this component.

The chapter is organised as follows. The discussion of related work appears in Sec-

tion 3.1. The proposed solution is described in Section 3.2. This solution is evaluated

in Section 3.3. Section 3.4 summarises the chapter.

3.1 Related Work

Existing scheduling algorithms and techniques, either from the database or the Grid

or the parallel computing research communities, are inadequate for parallel query

processing on the Grid basically because the way they select machines and allocate

tasks compromises partitioned parallelism in a heterogeneous environment. For exam-

ple, generic DAG schedulers (e.g., [KA99, TWML02, SZ04]), and their Grid variants

(e.g., [TTL03]) tend to allocate a graph vertex to a single machine, which corresponds

to no partitioned parallelism (if the DAG represents a query plan, a vertex corresponds

to a query operator). More comprehensive proposals (e.g., GrADS [DSB+03]) still

rely on application-dependent“mappers” to map data and tasks to resources, and

thus come short of constituting complete scheduling algorithms on their own right.

In addition, no mapper has been proposed that covers query processing on the Grid.

Efficient proposals for mixed-parallelism scheduling (e.g., [RvG01]) and parallel data-

base scheduling (e.g. [ESW78, DGG+86]), are restricted to homogeneous settings.

Contrary to the above approaches, the proposal of this thesis effectively addresses the

resource scheduling problem for Grid databases in its entirety, allowing for arbitrarily

high degrees of partitioned parallelism across heterogeneous machines.

This section presents additional scheduling proposals found in the literature and

discusses their differences with the algorithm proposed. It is divided into two parts,

one examining contributions coming from the database community and thus tailored to

database queries, and the other referring to schedulers for more generic computations

in Grids.

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 60

3.1.1 Resource Allocation in Database Queries

Distributed query processing has mostly been influenced by some pioneering systems.

The most influential, R* [ML86], simplified the problem of resource scheduling by

neglecting the benefits of partitioned parallelism. The data is retrieved from a single

site only, and are joined on a single site, which is either the site of one of the inputs

or the site that asked for the data. SDD-1 [BGW+81] focused onsemijoinsand also

did not employ partitioned parallelism. Distributed Ingres [ESW78] took a step for-

ward, and provided for partitioned parallelism, but only for machines that store data.

Their scheduling algorithm assumed that all the participating machines have the same

computational capabilities (a property that, in the general case, cannot be expected to

hold on the Grid). It also forced a choice to use either all nodes available or just one.

[RM95] discusses an approach for load balancing employing partitioned parallelism,

and although it refers to completely homogeneous environments, it does not force the

system to employ all the available nodes when these are not needed, extending the

work of [WFA92]. Other existing techniques for parallel and distributed databases do

not consider partitioned parallelism or completely skip the resource selection phase by

assuming a fixed set of resources and then trying to schedule tasks over these resources

(e.g., [GI97, MBGS03]). Moreover, they usually assume homogeneous and stable en-

vironments (e.g., [WFA92, WCwHK04]). For example, Gamma [DGG+86] assumes

that all the available machines are similar in terms of capabilities, connection speed

and ownership.

In early commercial distributed database systems, the reason for not developing

schedulers supporting partitioned parallelism was that the communication cost was the

predominant cost. The biggest effort was put into minimising this cost [TTC+90],

and each operator was executed at a single site. In modern applications, and due to

advances in network technologies, the computation cost is often the dominating cost

(e.g., [SA02]). However, advanced distributed query processing systems may employ

only pipelined and independent parallelism (e.g., [ROH99, SAL+96]). A question may

arise as to whether existing techniques that do not employ partitioned parallelism (like,

for example, thequery/data/hybrid shippingin client-server architectures [Kos00]) are

efficient in most cases. For a large range of queries, the answer is negative. The

parallelisation saturation point (i.e. the point after which further parallelisation does

not yield any benefit) is lower when the start-up cost increases. The start-up cost

depends strongly on the machine and the evaluation method, but in most cases it occurs

once for all the operators processed on a single machine. Therefore, the contribution

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 61

of the startup cost becomes less significant for expensive queries. When the ratio

between workload and machines used increases, the saturation point increases as well.

These properties are quite appealing for tasks in computational grids insofar as they

are envisaged to be of significant size and complexity.

3.1.2 Generic Resource Scheduling on the Grid

In the area of DAG scheduling to support mixed parallelism, there have been many

interesting proposals. The algorithm proposed may be regarded as an adaptation of

the task allocation in [RNvGJ01, RvG01] for heterogeneous environments, tailored

to the needs of query processing. With respect to heterogeneity, [BDS03] takes one

step further, by considering heterogeneous clusters of homogeneous machines, but

has significantly higher complexity and is not compatible with the iterator model of

query execution [Gra93]. Ordinary DAG schedulers for Grid environments, such as

[SCS+04, SZ04, TTL03], do not consider partitioned parallelism, nor the type of inter-

dependencies between operators in a query execution plan (e.g., the order of operators

in a query plan may be fixed and some operators need to be computed earlier than oth-

ers, whereas other operator sets may be able to execute in a pipeline). Not considering

partitioned parallelism is the usual case even for homogeneous systems [KA99].

The proposal in Section 3.2 is, to a certain extent, compatible with the GrADS

project [DSB+03], as it can play the role of the GrADS mapper for database query

applications. The main differences lie in the fact that, in query processing, the initial

pruning of the resource sets cannot be done in a completely application-independent

way, as in GrADS, because database locality is very important for efficient query plan

construction. Also, in GrADS, the scheduling algorithm runs many times, one for

each candidate machine group, whereas, in the proposal of this thesis, the scheduler

is executed only once, resulting in lower algorithm execution times. In the context

of [DSB+03], [YD02] has presented a heuristic that allocates nodes in an incremental

way similar to the scheduler proposed. One difference between the two techniques,

apart from the fact that the graphs in [YD02] are simpler than typical query plans, is

that in [YD02] the machines are first chosen and then it is decided how to use them,

whereas in the approach followed in this thesis, a bottleneck is first identified and then

an attempt is made to increase the parallelism. Other schedulers developed in GrADS

(e.g., [PBD+01]) do not provide for different degrees of parallelism in different parts

of the query plan, and may require the user to prune first, explicitly, an extended set of

resources. In the current proposal, this is a responsibility of the scheduler.

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 62

Other powerful schedulers, such as Condor [TWML02, TTL03], suffer mainly

from the limitations in the dependencies in the graphs supported, and the restriction

of allocating each node in the graph to a single site [KA99].

3.2 An algorithm for scheduling queries in heteroge-

neous environments

3.2.1 Problem Definition

It has been demonstrated that parallelising a subplan over the complete set of available

resources may cause significant performance degradations, and harms the efficiency of

resource utilisation [WFA92]. In homogeneous systems, for which each machine has

the same processing capacity, the scheduling problem is simplified to the problem of

finding the optimal degree of parallelism for each subplan. However, the problem of

resource scheduling on the Grid is actually more complicated than choosing the correct

degree of parallelism. Grid schedulers should decide not only how many machines

should be used in total, butexactly which these machines are, and which parts of the

query plan each machine is allocated2.

The three dimensions (i.e., how many, which and for which part of the query) can-

not be separated from each other to simplify the algorithm in a divide-and-conquer

fashion. For example, it is meaningless to determine the number of selected nodes

from a heterogeneous pool without specifying these machines; this is in contrast to

what can be done in homogeneous systems since in a heterogeneous setting each ma-

chine may have different capabilities. Another important aspect is the efficiency of

parallelisation, which indicates how efficiently the resources have been used (a more

specific definition is given in Section 3.3.4). The parallelisation efficiency is of signifi-

cant importance especially when the available machines belong to multiple administra-

tive domains and/or are not provided for free. Thus, the aim is, on one hand to provide

a scheduler that enables partitioned parallelism in heterogeneous environments with

potentially unlimited resources, and on the other hand to keep a balance between per-

formance and efficient resource utilisation. As the problem is theoretically intractable

[KA99], effective and efficient heuristics need to be employed.

2The related and common problem of devising optimal workload distribution among the selected
machines is orthogonal to the scheduling problem and will not be discussed here.

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 63

3.2.2 Solution Approach

Existing schedulers (mostly from the parallel database community) that allow for intra-

operator parallelism do not deal with resource selection and try to tackle the problem

of how to use the complete set of preselected resources (e.g., [GI96, GI97, WFA95,

CYW96, LCRY93, HCY94, HCY97, MWK98, HM95]). In addition, some of these

schedulers are able to prune such sets of resources rather than using all the available

ones (e.g., [RM95]), although they typically make the assumption that all the resources

available are similar (e.g., [WFA92, HS91, Hon92, Has96, Liu97a, Liu97b]). As, in a

Grid setting, a scheduler also needs to decide which particular resources to use, because

of the machine heterogeneity, such solutions are not practical. On the other hand, an

exhaustive search for all the possible combinations of machines and query subplans is

an obviously inefficient solution. Thus, employing a heuristic, the requirement is to

provide a solution that can scale well with the number of machines that are available;

the algorithm proposed here meets this requirement.

Algorithm 1 High level description of the scheduling algorithm.
Phase1 : perform initial allocation
Phase2 :
repeat

get costliest parallelisable operator
define the criteria for machine selection
repeat

get the set of available machines
check if more parallelism is beneficial

until no changes in the degree of parallelism of the costliest operator
until no changes in which operator is the costliest

The algorithm receives a query plan which is partitioned into subplans and each of

the operators of the query plan is scheduled on one machine. After this initial resource

allocation, which is at the lowest possible degree of partitioned parallelism, it enters a

loop (see Algorithm 1). In that loop, the algorithm takes the most costly operator that

can be parallelised, and defines which criteria should be used for selecting machines

for this operator. Following this step, the algorithm increases the operator’s degree of

parallelism if that increase improves the performance of the query plan above a certain

threshold, in line with [RNvGJ01, RvG01]. When no more changes can be made for

that operator, the algorithm re-estimates the cost of the plan and the operators in order

to do the same for the new most costly operator. The loop exits when no changes in the

parallelism of the most costly operator can be made. The threshold is of considerable

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 64

importance. In principle, the smaller the threshold, the closer the final point is expected

to be to the optimal point3. However, this comes at the expense of higher compilation

time. A bigger threshold may force the algorithm to terminate faster, but also to stop

and return a number of nodes, which yields a final response time that can be improved

on, although it can still be much smaller than the initial.

From a higher level point of view the algorithm transforms an existing plan to a

more efficient one at each step, by modifying the set of resources allocated to a part

of the query plan. Transformational approaches to query optimisation have already

been employed for constructing query plans (e.g., simulated annealing and iterative

improvement techniques [Ioa96]) but not for scheduling resources [CHS99]. The al-

gorithm assumes that a two-step optimisation approach is followed, as the single-node

query plan needs to have already been constructed.

To estimate the costs, the scheduler requires a cost model which

• assigns a cost to a parallel query plan, and

• assigns a cost to every physical operator of that query plan.

Any such cost model is suitable, as the scheduling algorithm is not based on any

particular one, following the approach of [DBC03, DSB+03]. By decoupling the cost

model and the scheduling algorithm, enhancements in both these parts can be devel-

oped and deployed independently. The cost model is also responsible for defining the

cost metric, with query completion time being a typical choice. The importance of cost

models is significant, given that heuristic-based optimisations can err substantially in

distributed heterogeneous environments [ROH99]. In this work, a variant of the cost

model developed in [SSWP04] is used.

3.2.3 The Input of the Algorithm

The inputs to the algorithm are:

• A partitioned single-node optimised plan, withexchangesplaced beforeattribute

sensitiveoperators (e.g., joins) andoperationcalls. Attribute sensitive opera-

tors are those that, when partitioned parallelism is applied, the data partitioning

among the operator clones depends on values of specific attributes of the data.

3The convergence to the optimal point depends additionally (i) on the accuracy of cost estimates,
and (ii) on the absence of local minima in the performance for different degrees of parallelism.

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 65

• A set of candidate machines. For each node, certain characteristics need to be

available. The complete set of these characteristics depends on the cost model

and its ability to handle them. However, a minimum set that is required by the

algorithm consists of the available CPU power, the available memory, the I/O

speed, the connection speed, and locality information with regard to the data

and external functions employed in the query (i.e., which database tables and

external programs are local to this resource). Such metadata can be provided by

MDS [CFFK01] and NWS [WSH99], which is the typical approach for many

Grid tools (e.g., [DSB+03]).

• A thresholda, referring to the improvement in performance. This improve-

ment is caused by transformations to the query plan. The improvement ratio

is given by told − tnew

told
, wheretold andtnew are the time costs before and after the

transformation, respectively. The cost model is responsible for computing these

costs. The partitioned parallelism is increased only when the improvement ratio

is equal to or greater than the threshold.

3.2.4 Detailed Description of the Algorithm’s Steps

3.2.4.1 Notation

A query planQueryP lan is represented as a directed acyclic graphG = (V, E), where

V is a set ofn operators, andE is the set of edges.M is the set of them available

machines. Each machineMi is described by the vector:

{CPUi,Memi, I/Oi, ConSpeedi, tablesi, programsi},

whereCPUi, Memi, I/Oi andConSpeedi are the available CPU power, available

memory, disk bandwidth and average connection speed of theith machine respec-

tively (to keep the presentation simple, it is assumed here that all connections from the

ith machine are of the same speed).tablesi andprogramsi are the lists of database

tables participating in the query and programs called externally by the query that re-

side on that machine, respectively.Mtable is the set of machines that can evaluate a

scan(table,...)operator, whereasMprogram is the set of machines that can evaluate an

operationcall(...,program,...). Without loss of generality, an assumption is made that

the cost metric is time units.TimeCost(G) (or TimeCost(QueryP lan)) is the time

cost of the plan, whileTimeCost(Vi) is the time cost of operatorVi.

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 66

Algorithm 2 The first step of the scheduling algorithm after the initial resource allo-
cation in detail.

repeat
STEP 1: Estimate the cost of query and operators
n = NumberOfOperators
m = NumberOfMachines
a = threshold
for i = 1 to n do

estimate T imeCost(Vi)
end for
estimate T imeCost(QueryP lan)
list Vsorted = SORT (V) on T imeCost(Vi)
//if true, the costliest operator has been allocated more machines

bool changes made = false
RUN STEP 2: Examine the costliest operator - see Algorithm 3

until !changes made

3.2.4.2 Algorithm description

The algorithm consists of two phases. In the first phase, a query plan without parti-

tioned parallelism is constructed. The resource allocation in this phase is mostly driven

by data locality. For example, thescansare placed where the relevant data reside

and thejoins are placed on the node of the larger input, unless more memory is re-

quired [RM95]. As there already exists a significant number of proposals for resource

scheduling without partitioned parallelism (e.g., [ML86]), this phase is not covered in

detail.

In the second phase, which is the main contribution of this work and was sum-

marised in Algorithm 1, there are two basic steps (Algorithms 2 and 3), and a third

one for exiting (Algorithm 4). In the first step, the cost model evaluates the cost of the

query plan and its individual operators. The operators are sorted by their cost. The

second step is the step where the partitioned parallelism can be increased. The most

costly operator that has a non-empty set of candidate machinesM
′

is selected. The

set of candidate machines consists of the nodes that (i) are capable of evaluating the

relevant operator, (ii) have not yet been assigned to that operator, and (iii) have either

been started up, or have a start-up cost (SUC) that permits performance improvement

larger than the relevant thresholds (see the firstrepeatloop in Algorithm 3). For this

operator thecheckmoreparallelismfunction (Algorithm 5) is repeatedly called until

the query plan cannot be modified any more. Each call can increase the partitioned

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 67

Algorithm 3 The second step of the scheduling algorithm after the initial resource
allocation in detail.

STEP 2: Examine the costliest operator
i = 0
repeat

i + +
if Vsorted[i] = SCAN(table, ...) then

//define the candidate nodes for each kind of operator

M
′
= Mtable

else ifVsorted[i] = OPERATION CALL(..., program, ...) then
M

′
= Mprogram

else
M

′
= M

end if
//remove already allocated nodes

M
′
= M

′ − (Vsorted[i] → machines)
for j = 1 to LengthOf(M

′
) do

if (SUCj ≥ (1− a)× TimeCost(Vsorted[i]))
OR (SUCj ≥ (1− a)× TimeCost(QueryP lan)) then

//do not consider machines with relatively high startup cost

M
′
= M

′ −M
′
j

end if
end for

until (M
′
not empty) OR (i = n)

//Parallelise the most expensive parallelisable operator, which isVsorted[i]
if Vsorted[i] = Communication−Bounded then

L[1] = ConSpeed, L[2] = ConSpeed× CPU, L[3] = CPU
else ifVsorted[i] = I/O −Bounded then

L[1] = I/O × ConSpeed, L[2] = CPU, L[3] = Mem
else ifVsorted[i] = Memory −Bounded then

L[1] = Mem, L[2] = CPU
else ifVsorted[i] = CPU −Bounded then

L[1] = CPU, L[2] = ConSpeed× CPU, L[3] = ConSpeed
end if
repeat

local changes made = check more parallelism(L,M
′
, Vsorted[i])

changes made = changes made OR local changes made
if local changes made then

//update the set of candidate machines

M
′
= M

′ − (Vsorted[i] → machines)
end if

until !local changes made

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 68

Algorithm 4 The exiting step of the scheduling algorithm.
STEP 3: Exit
for i = 1 to n do

if Vi = EXCHANGE && LengthOf(Vi → machines) = 1 then
parent(child(Vi)) = parent(Vi), child(parent(Vi)) = child(Vi)

end if
end for
EXIT

Algorithm 5 The basic auxiliary function, which is responsible for checking greater
degrees of parallelism.

This function returns true if allocating a new machine
to operator v is beneficial.
bool check more parallelism(criteria list L,

machine set M
′
, operator v){

bool result = false
// the loop runs until all the criteria are checked

// or an addition of a machine improves the query plan adequately

while L do
machine i = choose according to(L,M

′
)

if (ImprovementRatio(v) ≥ a) then
if (ImprovementRatio(QueryP lan) ≥ a) then

// v → machines holds the set of machines allocated to v

v → machines = v → machines → add(i)
update scheduling of other operators affected
return true

else
// the first choice criterion is removed

L = L− L[1]
end if

end if
end while
return result
}

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 69

Algorithm 6 The auxiliary functions, which are responsible for machine selection and
conflict resolution

This function is called by chooseaccording to. It checks whether machineM
is better than the machinetemp in terms of the choice criteria for machines of
list L.

machine check properties(list L, machine M
′
i , machine temp){

machine result = temp
int k = 1
while L[k] do

if F (M,L[k]) > F (result, L[k]) then
return M

else if(F (M, L[k]) = F (result, L[k])) AND (L[k + 1]) then
k = k + 1 //go to the next criterion in the choice list

else
return result

end if
end while
return result
}

This function returns the machine from the set of machinesM
′
that satisfies the

choice criteria that are in the list L

machine choose according to(criteria list L, set M
′
){

machine result = M
′
1

for i = 2 to LengthOf(M
′
) do

result = check properties(M
′
i , L, result)

end for
return result
}

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 70

parallelism by one degree at most, as only one machine can be added to an operator at

a time.

checkmoreparallelism (Algorithm 5) is the main auxiliary function that checks

whether the addition of one machine for a specific operator in the query plan is prof-

itable. Such an addition affects all the operators between the closestexchangehigher

and the closestexchangelower in the plan. The list of choice criteria for machines,

which is one of the function’s parameters, defines which machine is checked first, with

the machine selection and conflict resolution being done in thechooseaccordingto

function (Algorithm 6).L symbolises the list of choice criteria for machines. The cri-

teria can either be in the form of the standard machine properties (e.g., available CPU)

or combinations of them. The functionF (Algorithm 6) is used to quantify properties

of machines, and returns the absolute value of a criterion when applied on a specific

node. For example, ifL = [mem,CPU × ConSpeed], this corresponds to two crite-

ria. The first is the available memory, and the second is the product of the CPU speed

with the available connection speed. As such, in this example,F (Mi, L[1]) returns

the available memory of theith machine as an absolute value, andF (Mi, L[2]) returns

the product of the values of the CPU and connection speeds of theith machine. The

functionF is defined as follows:

a, b ε (CPU, Mem, I/O, ConSpeed), op ε (+,−, ∗, /)
L[x] : a {F (My, L[x]) = My[a]}

| a op b {F (My, L[x]) = My[a] op My[b]}
The next command incheckmoreparallelism, i.e., after the machine to be checked

has been selected, involves the evaluation of the achieved improvement ratios with the

help of the cost model. Two improvement ratios are computed: one that refers to a

specific operator and another that refers to the whole plan. The decisions are based

essentially only on the evaluation of the second one, as the aim is to make the query

plan run faster, and not simply to speed up specific operators. The reason the first one

is computed is that it is less complex than the second, and if a modification does not

satisfy the first condition, there is no reason to evaluate the cost of the complete plan for

the second improvement ratio. If the improvement ratios are above the threshold, then

the query plan is modified accordingly. Otherwise, the function iterates after removing

the first element of the list of choice criteria for machines.

A prerequisite for the evaluation of the improvement ratios, and of the cost of

operators in general, is to define a data distribution policy, i.e., to define the amount of

data each operator instance will evaluate. Finding an optimal data distribution policy is

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 71

NP-hard [WC96]; however, a simple and efficient approach for heterogeneous settings

is to allocate to each machine an amount of tuples that is proportional to its available

CPU power, if is assumed that the CPU cost is the cost that dominates according to the

cost model, and proportional to its connection speed, if the communication cost is the

higher cost.

Step 3 of the scheduling algorithm evaluates the exit function. If Step 2 (Algorithm

3) has not resulted in any changes in the query plan, then the algorithm checks the

scheduling ofexchanges, deletes them if necessary, and exits (Algorithm 4). Other-

wise, the algorithm goes back to step 1, to evaluate again the cost of the plan and their

operators, and subsequently to try to parallelise the operator that has become the most

costly after the changes. The scheduling ofexchangesis checked in order to delete the

ones that receive data from and send data to the same single node.

The algorithm is independent of the physical implementation of the operators that

can differ between database systems. As shown in Step 2 (Algorithm 3), the machines

with high disk I/O rates are preferred for retrieving data, the machines with high con-

nection speeds are preferred when the query cost is network-bound, the machines with

large available memory are chosen for non-CPU intensive tasks, likeunnests, and the

machines with high CPU capacity are selected for the rest, CPU-intensive operations.

3.2.5 Algorithm’s Complexity

The algorithm comprises two loops. Steps 1 and 2 (Algorithms 2 and 3) are repeated

until the exit condition is met. Also, step 2 runs a second loop until a local exit condi-

tion is satisfied. The outer loop can be repeated up ton times, wheren is the number

of physical operators in the query plan. The inner loop can be repeated up tom times,

wherem is the number of available machines. So, the worst-case complexity of the

algorithm is ofO(n×m), which makes it suitable for complex queries and when the

set of available machines is large.

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 72

(b)(a)
scan3 scan6

scan1 scan2
scan1 scan2

join1

join5

join4

join3join2

scan4 scan5

join1

Figure 3.1: The two queries used in the evaluation.

3.3 Evaluation

This section presents the evaluation of the scheduler proposed against existing and

other common-sense techniques from distributed databases that do not employ, or em-

ploy only limited partitioned parallelism, and against techniques from parallel data-

bases that use all the available nodes. The aim is to compare the efficiency of the pro-

posal for resource selection and allocation to subplans by taking into account both the

performance in time units and the parallelisation efficiency. According to the results

of the evaluation, the scheduling proposal can significantly improve the performance

of distributed queries evaluated in heterogeneous environments.

3.3.1 Evaluation Approach and Settings

The evaluation of the proposed scheduler has been based on simulation; the simu-

lator was built by extending the Grid-enabled query compiler in Polar* [SGW+03,

AMP+03] with a simplified version of the cost model in [SPSW02] (the simplified

version is presented in Appendix A). The cost model is used by the query compiler to

estimate query response time for different schedules.

Two queries, with one and five joins, respectively, are used for the evaluation (Fig-

ure 3.1). These queries retrieve data from two and six remote tables, respectively. Each

table contains 100,000 tuples. Two datasets are used. In the first one,setA, the average

size of a tuple is 100 bytes, whereas in the second,setB, it is 1Kbyte. All the joins

are on a key-foreign key condition, and produce 100,000 tuples. The joins are imple-

mented by single-passhash joins, which are CPU-bound (i.e., their cost depends on

the CPU power of the evaluating machine). Also, there are no replicas, so thescans

cannot be parallelised.

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 73

The initial machine characteristics are set as follows: those machines that hold data

(2 in the first query and 6 in the second) are able to retrieve data from their store at a rate

of 1MB/sec. The average time, over all machines participating in the experiment, to

join two tuples is 30 microseconds. On average, data is transmitted over the network at

a connection speed of 600KB/sec. It is assumed (i) that the available memory on each

machine is enough to hold the hash table if this machine is assigned ahash join, and

(ii) that the connection speed is a property of the data sender only and not of the pair

sender-receiver. The machine start-up cost, which includes the initialisation of a pre-

existing query evaluation engine and the submission of the query subplan, is 1 second.

The parameters above form the input to the cost model adopted by the system, and are

realistic, according to the experience gained from the OGSA-DQP Grid-enabled query

processor [AMP+03].

For such configurations and datasets, the two queries are CPU intensive. That is,

when they are applied to the first dataset, and due to the size of the joins, the compu-

tation cost is greater than the communication cost and the disk I/O cost by an order of

magnitude without partitioned parallelism. If the second dataset is used, the I/O cost is

still smaller, but the communication cost, although smaller before the increase of the

partitioned parallelism, contributes significantly to the final cost.

3.3.1.1 Workload Distribution

The parallel execution of operators is alwaysworkload-balanced, in the sense that each

machine chosen to evaluate a portion of ahash joinis allocated a number of tuples

that is inversely proportional to itshash joinevaluation speed. For example, if 1000

tuples are to be distributed across two machines for ahash-join, and these machines

evaluate thehash-joinin 15 and 60 microseconds, respectively, then the machines will

be allocated 800 and 200 tuples, respectively. In a few cases in the following sections

where a different workload distribution is assumed, this is explicitly stated. As the

computation cost is the dominant cost, this workload distribution policy ensures high

performance, without adding much complexity.

3.3.2 Performance Improvements

In this experiment, the two example queries are evaluated when the number of extra

nodes (i.e., the machines that do not store any base data) varies between 0 and 20.

From the extra machines, 25% have double the CPU power and connection speed

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 74

of the average (i.e., they evaluate a join between two tuples in 15 microseconds and

transmit data at 1.2MB/sec), 25% have double CPU power and half connection speed

(i.e., they evaluate a join between two tuples in 15 microseconds and transmit data

at 300KB/sec), 25% have half CPU power and double connection speed (i.e., they

evaluate a join between two tuples in 60 microseconds and transmit data at 1.2MB/sec),

and 25% have half CPU power and connection speed (i.e., they evaluate a join between

two tuples in 60 microseconds and transmit data at 300KB/sec). Two configurations of

the proposal are compared, one with lower improvement ratio threshold and one with

higher, against six other simpler approaches:

1. using all the available nodes in the way that parallel systems tend to do, tak-

ing into consideration their heterogeneous capabilities for workload balancing

though (in the way described in Section 3.3.1.1), and not considering them as

being the same (i.e., using all the available nodes without applying workload

balancing);

2. not employing partitioned parallelism and placing thehash joinson the site

where the larger input resides in order to save communication cost;

3. employing limited partitioned parallelism and placing thehash joinson the

nodes that already hold data participating in the join, i.e., not employing nodes

that have not been used for scanning data from store;

4. using only the two most powerful from the extra machines to parallelise all the

query operators;

5. using all machines evenly, which is the only case where the number of tuples

assigned to each machine is equal (i.e., the workload is not inversely proportional

to thehash joinevaluation speed as in the first approach); and

6. applying the first approach only to the most expensive operator and not to the

complete query plan (this applies only to the multi-join query).

Figures 3.2-3.5 show the results when the two queries are applied to the two datasets

(the thresholds are different in the two queries). The dashed lines in the charts depict

the non parallelisable cost of the queries. For these queries, the non parallelisable cost

is the cost to retrieve data from the non-replicated stores, which is not affected by the

different degrees of the join parallelism. The numbers above the bars representing the

performance of the algorithm proposed in this chapter, show how many machines are

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 75

2 6 10 14 18 22
0

53.3

100

200

300

400

500

600

700

800

900

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

threshold=0.01
threshold=0.03
use all machines with workload balancing
no intra−operator parallelism
use only the machines that hold data
use only the two most powerful machines
use all machines evenly

2 2

6 6

10 8
14

8
14

6
17 7

Figure 3.2: Comparison of different scheduling policies for the 1-join query for setA

chosen. In all the other cases, the number of machines used is a result of the approach

applied.

The scheduling approach described in the thesis is tunable, and better execution

times can be achieved by using a smaller threshold. However, this benefit comes at

the expense of employing more machines. From the figures, the following conclusions

can be drawn:

1. the proposed scheduler manages to reduce the parallelisable cost; compare, for

example, the difference of the algorithm proposed (first two bars in each bar set)

from the dashed line, with the difference of the performance of the system with

no intra-operator parallelism (fourth bar in each bar set) from this line;

2. techniques with no, or limited, partitioned parallelism (e.g., employing only the

machines that store the databases, parallelising only the most costly operator)

yield significantly worse performance than the algorithm described;

3. policies that use only a small set of powerful nodes or do not try to perform work-

load balancing (i.e., the workload is not distributed according to the machine

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 76

2 6 10 14 18 22
0

200

400

533.3
600

800

1000

1200

1400

1600

1800

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

threshold=0.01
threshold=0.03
use all machines with workload balancing
no intra−operator parallelism
use only the machines that hold data
use the two most powerful machines
use all machines evenly

2 2

5 4

8
3

8 4
6 5 7 5

Figure 3.3: Comparison of different scheduling policies for the 1-join query for setB

6 10 14 18 22 26
0

160

500

1000

1500

2000

2500

3000

3500

4000

4500

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

threshold=0.01
threshold=0.001
use all machines with workload balancing
no intra−operator prallelism
use only the machines that hold data
use only the two most powerful machines
use all machines evenly
use all machines with balancing distribution for the most expensive operator

6 6
8 10 9 12 9 18 9

18
6

26

Figure 3.4: Comparison of different scheduling policies for the 5-join query for setA

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 77

6 10 14 18 22 26
0

1000

1600

2000

3000

4000

5000

6000

7000

8000

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

threshold=0.01
threshold=0.001
use all machines with workload balancing
no intra−operator parallelism
use only the machines that hold data
use only the two most powerful machines
use all machines evenly
use all machines with workload balancing for the most expensive operator

6 6 7

9
6 12 5 15 5

18 6
20

Figure 3.5: Comparison of different scheduling policies for the 5-join query for setB

capabilities) are also clearly outperformed by the scheduler proposed, provided

that the threshold is not relatively high for complex queries;

4. relatively high thresholds can operate well when the cost of the query is concen-

trated on a single point in the query plan (Fig. 3.2 and 3.3);

5. as expected, using all nodes and applying workload balancing can operate very

well for specific machine configurations, provided that it is easy to calculate the

appropriate workload distribution as in the queries oversetA. However, such a

policy has severe drawbacks which are presented later.

Table 3.1 shows that the time to execute the proposed scheduling algorithm for

each of the two queries and thresholds is reasonable, and negligible compared to the

query completion time cost.

These queries are essentially CPU-bound. Nevertheless, the behaviour of the al-

gorithm is similar for network and disk I/O-bound queries in presence of replicas. In

network-bound queries, the emphasis is placed on parallelising theexchangeopera-

tors, which are responsible for data communication, whereas, in I/O-bound queries,

the performance is improved mostly when the operators that retrieve data from store

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 78

Number of joins Threshold Scheduler Cost
1 0.01 0.0106 secs
1 0.03 0.0055 secs
5 0.001 0.3138 secs
5 0.01 0.2083 secs

Table 3.1: The time cost of the scheduling algorithm for 20 extra nodes.

2 4 6 8 10 12 14 16 18 20 22
0

200

400

600

800

1000

1200

1400

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

threshold=0.01, 1 connection is 10 times slower
use all machines, 1 connection is 10 times slower
threshold=0.01, 1 connection is 100 times slower
use all machines, 1 connection is 100 times slower
use all machines, no slow connection

Figure 3.6: Comparison of different scheduling policies in the presence of a slow con-
nection for the single-join query (note that the 1st and 3rd line types essentially over-
lap).

are partitioned across different machines. In both cases, the scheduling proposal is

capable of identifying the performance bottleneck, as it did for the CPU-bound queries

in the experiments above.

3.3.3 Performance Degradation in Presence of Slow Connections

In Figures 3.6 and 3.7 the approach proposed is compared with the approach of em-

ploying all the nodes when the two queries, which have one and five joins, respectively,

run oversetA, and there is just one machine with a slow connection. Two cases are con-

sidered: in the first, the slow connection is ten times slower than the average (i.e., 60

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 79

6 8 10 12 14 16 18 20 22 24 26
0

500

1000

1500

2000

2500

3000

3500

4000

4500

number of machines available

re
sp

on
se

 ti
m

e
(in

 s
ec

on
ds

)

threshold=0.001, 1 connection is 10 times slower
use all machines, 1 connection is 10 times slower
threshold=0.001, 1 connection is 100 times slower
use all machines, 1 connection is 100 times slower
use all machines, no slow connection

Figure 3.7: Comparison of different scheduling policies in the presence of a slow con-
nection for the 5-join query (note that the 1st and 3rd line types essentially overlap).

KB/sec); and in the second, it is 100 times slower. All the other resources are homo-

geneous, i.e., thehash joinevaluation speed is 30 microseconds for each machine, and

the connection speed is 600 KB/sec for each machine apart from the one with the slow

connection. In a homogeneous setting, using all the machines and applying workload

balancing yields the optimal performance, provided that the workload granularity is

large enough so that start-up costs are outweighed. The approach in Section 3.2 is not

affected by the presence of a slow connection. From the figure, it can be seen that the

new algorithm behaves exactly the same in both cases and does not employ the ma-

chine with the slow connection. Moreover, its performance is very close to the optimal

behaviour (i.e., the performance if all machines are used and there is no machine with

a slow connection - see dotted line in the figures). To the contrary, the performance

degrades significantly when all nodes are used. These results show the merit of ap-

proaches that avoid utilisation of all the available nodes, as they allow the performance

to degrade gracefully when the available machines are slow or they have slow connec-

tions. Even if the number of slow connections is large compared to the total number

of machines available, the new algorithm may show no performance degradation at

all; conversely a single slow connection is enough to slow down the whole query if all

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 80

2 6 10 14 18 22
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

number of machines available

ef
fic

ie
nc

y

threshold=0.01
threshold=0.03
use all machines with workload balancing

Figure 3.8: Comparison of the efficiency of different scheduling policies for the single-
join query.

machines are used. The scenario of this experiment is one of the many where naive

extensions from parallel computing are inappropriate for Grid settings.

3.3.4 Parallelisation Efficiency

Using machines efficiently is an important issue, especially in a Grid setting where

the resources usually belong to different organisations and there may be a charge for

using them. Borrowing notions from parallel systems [Mol93], efficiency is defined

as the inverse of the product of the response time and the number of machines used.

According to this definition, sensible comparisons of the efficiency of different sched-

ulers can be made only for the same query. Higher values of the efficiency indicate,

in practice, better utilisation of the resources. Consider, for example, three cases: (i) a

query executes in 2 time units and 2 machines are used; (ii) a query executes in 1 time

unit and 4 machines are used; and (iii) a query executes in 0.9 time units and 10 ma-

chines are used. In the first two cases, the parallelisation efficiency is the same, and the

machines are exploited to the same extent. However, in the third case, the efficiency is

significantly lower, although the response time is decreased. This indicates that usage

of more machines has not been traded for performance improvements as efficiently as

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 81

6 10 14 18 22 26
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−4

number of machines available

ef
fic

ie
nc

y

threshold=0.01
threshold=0.001
use all machines with workload balancing

Figure 3.9: Comparison of the efficiency of different scheduling policies for the 5-join
query.

in the first two cases.

Figures 3.8 and 3.9 show the efficiency of the scheduler proposed as compared

against the policy of employing all the machines available, for the two queries applied

to the first dataset, respectively (the performance of these queries is shown in Figures

3.2 and 3.4). For lower degrees of parallelism, the efficiency is much higher without

the performance being considerably lower. By tuning the threshold we can trade the

efficiency for better response times. This makes the new proposal easily adaptable

to cases where the nodes are not provided for free and the economic cost may be

considered as significant as the time cost.

3.4 Summary

Current distributed database applications operating in heterogeneous settings, like com-

putational Grids, tend to run queries with a minimal degree of partitioned parallelism,

with negative consequences for performance when the queries are computation and

data intensive. Also, naive adaptations of existing techniques in the parallel systems lit-

erature may not be suitable for heterogeneous environments for the same reasons. The

CHAPTER 3. SCHEDULING QUERIES IN GRIDS 82

main contribution of this chapter is the proposal of a low complexity resource scheduler

that allows for partitioned parallelism to be combined with the other well-established

forms of parallelism (i.e., pipelined and independent) for use in a distributed query

processor over the Grid. Given that high performance and scalable querying cannot be

achieved without partitioned parallelism, the scheduling algorithm contributes signifi-

cantly to the aims of this thesis.

Two main attributes of the scheduler proposed are its resource-awareness and prac-

ticality. The proposal is novel as there is no previous work that deals with the schedul-

ing of resources in heterogeneous environments to support arbitrary degrees of parti-

tioned parallelism, in a way that considers the resource heterogeneity. The practicality

of the approach lies in the fact that it is not time-consuming, it is effective in envi-

ronments where the number of available resources is very large, it is dependable, and

minimises the impact of slow machines or connections.

The evaluation showed that the approach yields performance improvements when

no, or limited, partitioned parallelism is employed, and can outperform extensions

from parallel databases that use all the resources available. It can also mitigate the

effects of slow machines and connections. By being able to choose only the nodes that

contribute significantly to the performance, it uses the machines more efficiently, and

thus can be easily adapted to cases where the resources are not provided for free.

In summary, this chapter has contributed: (i) an analysis of the limitations of ex-

isting parallel database techniques to solve the resource scheduling problem in Grid

settings; (ii) an algorithm that aims to address the limitations characterised in (i); and

(iii) empirical evidence that the algorithm in (ii) meets the requirements that led to its

conception in an appropriate manner and is thus of practical interest.

A less detailed description of the scheduling algorithm has appeared in [GSPF04].

Chapter 4

A Framework for Adaptive Query

Processing

Having dealt with the problem of (static) resource scheduling for Grid queries in the

previous chapter, this chapter proposes an architectural framework for adaptive query

processing (AQP) that is capable of accommodating various kinds of adaptations, and

facilitates the development of adaptive query evaluators. The basis of the framework

is the decomposition of AQP into three phases:

• monitoring, which is concerned with the collection of feedback, both on the

query execution itself and on the resources available;

• assessment, which deals with the evaluation of the collected feedback, and the

identification of problems with the ongoing execution or the establishment of

potential opportunities for improvement; and

• response, which enacts the decisions made.

The benefits of such a decomposition include component reuse, more systematic

development, and easy deployment in a service-oriented environment as discussed

later. The architectural framework has been instantiated by enhancements to the service-

based and Grid-enabled OGSA-DQP system, which was described in Chapter 2. How-

ever, this chapter examines different cases of monitoring, assessment and response,

and reviews existing work on adaptive query processing on the basis of the frame-

work concepts and components; the enhancements to OGSA-DQP are discussed in a

following chapter.

83

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 84

The structure of the chapter is as follows. Section 4.1 discusses related work on

surveys and taxonomy of AQP approaches. Section 4.2 deals with the presentation

of the framework along with its components. The next section, Section 4.3, provides

an overview of the main alternatives in monitoring, assessment and response for AQP.

Sections 4.4 and 4.5 discuss existing centralised and distributed AQP proposals, re-

spectively. Section 4.6 summarises the chapter.

4.1 Related Work

To date, there has been no effort to develop generic frameworks for constructing AQP

systems, like the one introduced in Section 4.3. Thus, this section discusses related

work on surveys and taxonomy of AQP approaches, rather than on adaptivity frame-

works. However, none of them is as comprehensive in terms of the techniques exam-

ined as the discussion in this thesis.

An attempt for a unifying comparison of AQP systems has appeared in [BB05].

The systems in this work are divided in three categories: (i) those that reoptimise query

plans, (ii) those that are based on adaptive tuple routing like Eddies [AH00], and (iii)

those for continuous queries over streams. However, this taxonomy is not consistent,

since adaptive stream query processing can be based on plan modifications, or tuple

rerouting. The aspects examined include monitoring techniques, and techniques to

avoid duplicate results, to reuse work done before adaptations, and to reduce response

overhead. These are complementary to the aspects examined in this thesis, which focus

on the functionality of monitoring, assessment, and response rather than on the specific

implementation approaches for each component. Another drawback of [BB05] is that

it ignores (i) the assessment phase, (ii) techniques for monitoring changing resources

apart from evolving data statistics, and (iii) adaptive operators such as Ripple joins

[HH99]. An earlier survey, classifies the systems based on the monitoring frequency

and the response form (called effect) [HFC+00].

[MRS+04] proposes two dimensions along which one can evaluate AQP tech-

niques: risk, which refers to the degree to which the adaptation may cause perfor-

mance degradation, and opportunity, which refers to the aggressiveness of the system.

However, it is felt that these aspects are covered by the capability of the responder to

choose a profitable response, and by the monitoring frequency, respectively. Finally,

in [Ive02], a number of AQP techniques are compared along adaptivity frequency, re-

sponse form (called power), scope of response impact, and response overhead.

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 85

4.2 The Monitoring-Assessment-Response Framework

A consensus is emerging that, so far, efforts in AQP have resulted in a collection of

effective, but also rather narrowly specialized and isolated techniques [IHW04], rather

than in a generic framework as comprehensive as in other areas of database research

(e.g., generic algebraic transformations for query optimisation, generic interface of

query operators to support the iterator execution model, etc.). This section presents a

generic framework for adaptive techniques in database query processing.

4.2.1 Description and Benefits of the Framework

As mentioned earlier, the framework is based on the decoupling of distinct phases

in adaptive query execution. By definition, a query processing system is adaptive if

it receives information from its environment, analyses this information and revises

its behaviour dynamically in an iterative manner during execution, i.e., if there is a

feedback loop between the environment and the behaviour of the query processing

system during query execution. A finer-grained analysis of the feedback loop leads to

the identification of three conceptually distinct phases, namelymonitoring, assessment

andresponse.

The construction of general frameworks for identifying or composing generic and

reusable techniques for monitoring, assessment or response has the following key ad-

vantages.

• It allows component reuse and enables the assembling of different combina-

tions, thus covering a wider spectrum of capabilities. For example, a particular

approach to monitoring can be used with different forms of assessment and re-

sponse, or different categories of response can be made in the light of a single ap-

proach to monitoring and assessment. Dynamically gathered information about

the actual selectivity of an operator can be used either to re-route tuples through

joins (like in eddies [AH00]), to reconstruct a query execution plan for the re-

mainder of the query (in line with [KD98]), to build more accurate predictions

of the query completion time, etc. By decoupling the generation of selectivity

information and its usage, it becomes possible to use a single monitoring mech-

anism for all the above adaptive techniques. In another example, mechanisms

for identifying memory shortage can be used to allocate more memory, or use

more machines, or change the algorithm being used, or a combination of all

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 86

these. The same problem caused by changes in the environment can be tackled

by many responses to these changes. These responses may be fine grained (e.g.,

directing the next tuple to a particular node) or coarse grained (e.g., rerunning

the optimizer over some or all of the query). Substitutability and reusability are

desirable for assessment and response as well. A form of response can be de-

coupled from the problem it tries to tackle. For example, reoptimisation of the

query plan may be useful in different cases, including the unavailability of ac-

curate statistics at compile time, lack of response from remote data sources, or

unexpected memory shortage.

• The adoption of a generic framework by the developers of AQP systems makes

the design activity more systematic. Developers can focus on the internal logic

of the components of the framework, without worrying about how the others

are implemented internally, but the developer of the internal logic does have to

think about the local and remote interfaces. As such, the development process is

expected to be less costly and less prone to error.

• By focusing on the interfaces of cohesive, decoupled modules, the design of the

framework conforms to the emerging Web and Grid Services paradigms, which

are suitable for advanced, wide-area applications.

• The framework components support the use of high-levelpolicies that modify

and shape their behaviour. An example policy is: respond only if the query

completion time is expected to improve by at least 10%. Such policies are of

paramount importance for autonomic systems [WHW+04].

• Finally, the framework is generic in the sense of being both adaptivity environ-

ment independent, and technique independent, whilst being capable of capturing

many existing AQP techniques. It makes no assumptions as to the number of

adaptivity components cooperating to achieve an adaptation, and their specific

interconnections.

Figure 4.1 depicts the components of the framework and shows how these coop-

erate to cause an adaptation. The query evaluator generates information about the

state and progress of the evaluation of a query execution plan. The resource repos-

itory provides up-to-date information about the available resources. Based on such

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 87

Monitoring
Component

Assessment
Component

Response
Component

Assessment

Response

resource info

Q
ue

ry
 E

va
lu

at
or

prompt for
adaptation

issues with current execution

monitoring events

Monitoring
infoexecution

Query

Resource Repository

Figure 4.1: The monitoring, assessment and response phases of AQP, and the associ-
ated components.

raw monitoring information, events1 are generated, and passed on to the assessment

component. The latter evaluates these events in order to verify (i) whether they imply

changes in the values of relevant properties, and (ii) whether such changes are an issue

to be addressed in the current execution (i.e., whether the optimality of execution has

been compromised). Once an issue has been identified, the responder component is

notified. In the response phase, the system tries to identify potential ways to respond.

If such ways are found, the execution engine is notified accordingly and its behaviour

changes as a result. As such, deploying adaptive strategies involves the interconnection

of monitoring approaches, means of assessment and forms of response.

As shown in Figure 4.1, multiple adaptivity components may be deployed to realise

a single adaptivity phase. In Chapter 6, adaptations based on multiple monitoring

components, and on single assessment and response components will be presented in

detail.

4.2.2 The components of the framework

Any AQP technique requires at least one of each different kind of framework compo-

nents to cover all the adaptivity phases. Thus, even the simplest adaptation is based

on collaboration of decoupled entities. To this end, the components support a pub-

lish/subscribe interface [EFGK03] to provide and ask for services to and from other

1In the context of the adaptivity framework, the termseventandnotificationwill be used interchange-
ably.

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 88

components, respectively. The behaviour of the framework components, i.e., their

functionality and interactions, is as follows:

Monitoring: a monitoring component (MC) acts as a source of notifications on the

dynamic behaviour of distributed resources and of the ongoing query execution. Other

adaptivity components (including monitoring ones) interact with the MC in order to

subscribe to it. The subscription procedure, as well as enabling the MC to compile a list

of the modules that are interested in its notifications, specifies the mode of transmission

(either push or pull, i.e., on request), and the kind of notifications it requires from the

set of all the possible notifications that the MC is able to produce.

The MC interacts with other adaptivity components to deliver the notifications re-

quested. Such notifications are in a standardised or commonly agreed form that hides

how monitoring is carried out. Finally, the MC performs basic integration and filtering

of events both to avoid flooding the system with low-level notifications, and to provide

support for higher-level notification specification (e.g., by sending a notification only

if the load of a machine and the amount of available memory have changed by more

than 10%).

Assessment:The role of the assessment component (AC) is to establish whether

there exist opportunities for improvement of plan performance (or any other QoS cri-

teria), and whether there is a problem with the current execution that needs to be ad-

dressed in order to activate the self-adaptive mechanisms. In either case, the AC sends

a relevant notification to the appropriate response component. The AC performs its

task by correlating and analysing notifications from multiple monitoring components.

The notification analysis may involve the evaluation of event-condition-action rules,

the rerun of (parts of) the query optimiser, the computation of rolling averages, the

update of prediction models, the comparison against static estimates and more. An AC

interacts with other services for two purposes: to subscribe to monitoring components,

and to send notifications about problems and opportunities to response components.

Response components interact with ACs to subscribe, and monitoring components in-

teract with ACs to deliver notifications.

Response:the response component (RC) is responsible for: (i) identifying valid

responses to the issues identified by the assessment component (e.g., by exploring a

search space, or by using predefined lists for each identified issue); (ii) evaluating the

expected benefit and cost for each valid response (e.g., by using cost functions); (iii)

selecting the most efficient one, and (iv) interacting with the evaluation engine in order

to enforce its decisions. The RC is able to subscribe to other components (e.g., ACs)

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 89

and to receive notifications.

4.3 Analysis of Adaptive Query Processing

To date, there is no mechanism or benchmark to compare AQP techniques systemat-

ically. In fact, there are too many non-comparable features amongst them [GPFS02].

The framework introduced in the previous section provides a background for describ-

ing each technique in terms of the way in which it ranges over the three adaptivity

phases of monitoring, assessment and response. As these phases form a pipeline, the

input and the output of each phase are of particular interest. This section provides a

taxonomy of the different types of such output in existing AQP proposals, along with

other, complementary aspects of the behaviour of the components.

4.3.1 Monitoring

4.3.1.1 Monitoring Events and Focus of Adaptivity

The monitoring component analyses raw monitoring information (or feedback, as these

terms will be used interchangeably in the context of adaptivity monitoring) from the

query engine and the resources available. It also produces notifications (monitoring

eventsin Figure 4.1) processed by other adaptivity components, such as the assessment

ones. According to the different type of focus of AQP systems, such notifications cover

various interesting, “suspicious” observations that denote updated property values, but

not necessarily problems. The updated values of these properties are the conditions the

AQP attempts to adapt to. Thus there is a very close correlation between the focus of

adaptivity and the type of monitoring events produced. The focus of AQP can fall into

the following categories:

1. Dataset Volume, which includes

(a) Dataset Cardinality(i.e., the number of tuples in a dataset), and

(b) Dataset Size(i.e., the size of tuples in a dataset).

2. Data Characteristics, which has to do with the properties of the initial, interme-

diate and final datasets. It also includes

(a) Value Distributionof tuple attributes,

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 90

(b) Indices, and

(c) Data Order.

3. Operator Cost, either in time units or in any other QoS metric.

4. Resources, which can be divided into

(a) Resource Poolfor changes in the number of resources that are candidate

for participating in the query evaluation,

(b) Resource Memoryfor up-to-date information on the amount of memory

available, and

(c) Resource Performance and capabilitiesfor statistics on

i. Resource Processing Power, and/or

ii. Resources Connection Bandwidth.

5. User Input, such as priority ratings for different parts of the result, or for the rate

of updates of partial results.

It is worth noting that these updates may be filtered in such a potentially config-

urable way that non-interesting changes are not passed on to other components. For

example, changes in the expected selectivity may be considered interesting if they dif-

fer more than 10% from the previous expected value, or, modifications in the resource

pool may be examined only if the new machines have connection speed and memory

that exceeds a corresponding threshold. Additionally, they can be combined to pro-

vide more meaningful information. For example, the selectivity of an operator can be

calculated from the ratio of the output and input dataset cardinalities of this operator.

4.3.1.2 Raw Monitoring Information

The focus of adaptivity, whose categories were presented previously, defines, to a large

extent, the nature of the feedback collected from the query execution and/or the exe-

cution environment. Indeed, the relationship between the raw monitoring information

and the type of monitoring events produced by the monitoring component is quite

straightforward and intuitive in most of the cases. For example, for changes in dataset

cardinalities and dataset sizes, monitoring information about the number of tuples con-

sumed and produced by operators, and their sizes, respectively, is needed. Monitoring

the number of available resources is the most basic information required for detecting

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 91

modifications in the resource pool. Changes in the resources’ memory can be identi-

fied either by monitoring the memory available in that resource or the memory con-

sumed by the operators running in it. To adapt to resource processing power, several

approaches can be followed: e.g., to monitor either the CPU load of a machine explic-

itly, or to infer the CPU load by monitoring the time cost of CPU-bound operators.

Similarly, for the connection bandwidth changes, the core monitoring information can

be either the bandwidth, or, in some scenarios, the time operators wait for data from

remote sources.

4.3.1.3 Monitoring frequency

The monitoring frequency is a significant characteristic of any AQP technique, as

the frequency of collecting feedback determines the maximum frequency of potential

adaptations. This happens because it is the feedback collection that drives the com-

plete adaptivity cycle, which consists of the three phases of monitoring, assessment

and response. The different levels of frequency are as follows:

1. Inter-operator, which refers to the cases in which the adaptivity cycle can be

triggered through acquisition of raw monitoring information only between the

execution of the operators in the query plan; and

2. Intra-operator, which refers to the cases in which the adaptivity cycle can be

triggered many times during the execution of the same operator.

4.3.2 Assessment

After identifying an event described in Section 4.3.1, the next step is to diagnose

whether this constitutes an issue with the current execution, which means that the

query plan is being evaluated in a suboptimal way without yet having decided if the

execution can be improved, let alone how. That is, the set ofIssues(see Figure 4.1), is

the result of the assessment phase and contains the set of potential states of the system

that can prompt for a modification to the query evaluation, if there exists a beneficial

one. These states explicitly denote the problems that need to be addressed.

There are five main categories of possible diagnosed issues:

1. Suboptimal Execution, which includes:

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 92

(a) Suboptimal Physical Plan: the system knows that there is a better query

plan than the current one, although it does not know whether it is beneficial

to change the plan on the fly.

(b) Suboptimal Operator Scheduling: the system knows that there is a better

execution model and/or order for operator evaluation, although it does not

know whether it is beneficial to change the execution model on the fly.

(c) Suboptimal Resource Selection: the system knows that there is a more suit-

able set of resources that can be selected, although it does not know whether

it is beneficial to change the resource selection and scheduling on the fly.

(d) Workload Imbalance: the system knows that there is a better workload

distribution, although it does not know whether it is beneficial to change

this distribution on the fly.

2. Resource Shortage, which includes:

(a) Insufficient Memory: the system requires more memory.

(b) Insufficient Processing Power: the system requires more processing power.

(c) Insufficient Bandwidth: the system requires more connection bandwidth.

3. Resource Idleness, which includes:

(a) Idle Memory: the system under-utilises its allocated memory.

(b) Idle CPU: the system under-utilises its allocated CPU.

(c) Idle Bandwidth: the system under-utilises its allocated network bandwidth.

4. Unmet Performance Expectations: the query plan is annotated with performance

expectations that the current query execution cannot meet.

5. Unmet User Requirements: the query plan cannot meet the user requirements

that are either submitted along with the query submission, or during query exe-

cution.

These categories examine the quality of the current execution from different, com-

plementary perspectives. The first category views the current execution from the op-

timiser’s perspective: given the existence of updated information, the optimisation

policies applied at compile time would lead to a different query plan if they could be

applied at runtime. The second and the third class examine the quality of execution

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 93

from the perspective of the resource requirements and utilisation, respectively. The

fourth category is concerned with the validity of the assumptions made at compile

time about the execution, and uses these assumptions to establish whether an issue

with the current execution exists or not. Finally, the fifth category considers the quality

of the current execution on the grounds of explicit requirements posed by the users.

4.3.3 Response

4.3.3.1 Response Forms

Each query adaptation is manifested through a specific form, which is called aRe-

sponse Form. We distinguish between five categories of response. In order to achieve

adaptivity, the developer can choose among the following options and their combina-

tions:

1. Operator Reconfiguration, where the operator configuration changes while the

physical implementation and the connections with other operators remain the

same. This class also includes the cases for which the operator implementa-

tion provides for adaptivity itself. These operators are adaptive variants of well-

established physical operators, where the adaptivity phases, including response,

are included within the operator implementation. Operator reconfiguration cor-

responds to the physical reoptimisation of the query plan.

2. Operator Replacement, where the physical implementation of an operator changes

while the other aspects of the query plan remain the same. This response form

corresponds to the physical reoptimisation of the query plan as well.

3. Operator Rescheduling, where the execution order of operators and/or the model

of execution changes (e.g., from iterator to sequential), while the mappings of

logical operators to physical ones in the query plan remains the same.

4. Machine Rescheduling, where the set of machines allocated to a part of the query

plan changes, resulting in a new parallel plan for the same physical one. It

corresponds to the rescheduling of a query.

5. Plan Reoptimisation, where a new equivalent algebraic expression is chosen for

a part of the query plan, resulting in a new, arbitrarily different query execution

plan. It corresponds to the complete reoptimisation of a query.

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 94

From the above, it can be inferred that each response form corresponds to a differ-

ent kind of impact on the execution plan representing the query evaluation.

4.3.3.2 Response Scope

Depending on the granularity and the locality of the part of the query execution plan

affected by the adaptation, the different response can be divided into the following

categories, which correspond to the scope of the response impact on the query plan:

1. Operator instance:only an operator instance on a single machine is affected. In

general, in parallel query processing, there may be many instances of the same

operator running on different machines, which may not be affected. In essence,

this category covers the case of a specific operator instance on a particular ma-

chine adapting autonomously.

2. Operator: all the instances of an operator in the query plan are affected, while

the degree of intra-operator parallelism may be greater than one. In other words,

the adaptations that refer to a specific operator in the query plan regardless its

machine allocation, belong to this group.

3. Partition instance:only a specific instance of a plan partition on a single machine

is affected. Typically, a partition instance is a pipeline plan fragment.

4. Partition: all the instances of a partition are affected.

5. Query plan: the query plan is affected in a more generic way that cannot be

captured by the previous categories.

The basic benefit of distinguishing between the different scope in response is that

it may be more profitable first to try to address a problem at a more local level, like

an operator instance, than to proceed directly to more radical modifications affecting

larger parts of the executing plan.

4.3.4 Architecture and Environment

Orthogonally to the monitoring, assessment and response phases, an important char-

acteristic of AQP proposals is the execution environment they can operate in, and the

architectural paradigms they assume. For these, the main alternatives are presented

next.

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 95

4.3.4.1 Data Locality

AQP techniques differ in the data sources they can access. These data sources can be:

1. Local.

2. Remote.

3. Streams, which is a specific case of remote sources, but due to its peculiarity, is

regarded as a separate class.

4.3.4.2 Query Processing Locality

The data locality may not always define the locality of the parts of query processing

that do not deal with data retrieval. The alternatives are:

1. Centralisedquery processing, where the query execution occurs in a single geo-

graphical place.

2. Non-centralisedquery processing, where the execution occurs in multiple geo-

graphical places.

Additionally, the distinction betweensingle-nodeandmulti-nodeprocessing can

be drawn. Parallel query processing is multi-node and centralised, whereas distributed

query processing is by its nature multi-node and non-centralised.

4.3.4.3 Adaptivity Locality

The adaptivity mechanism can be engineered as the following artifacts:

1. Operator, in which the adaptivity mechanisms are encapsulated in the operator

implementation.

2. Central component, in which there is a central component that drives and coor-

dinates the adaptivity.

3. Distributed components, in which there are multiple distributed components that

cooperate for adaptivity.

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 96

Technique Monitoring Assessment Response Architecture
Focus Freq-

uency
Issue Response Form Impact Data

Local.
QP
Local.

Adapt.
Local.

sorting
[PCL93a]

resource
memory

intra-
operator

insufficient/idle
memory

operator recon-
figuration

operator in-
stance

N/A central operator

PPHJ
[PCL93b]

resource
memory

intra-
operator

insufficient/idle
memory

operator recon-
figuration

operator in-
stance

N/A any operator

ripple
[HH99]

user input intra-
operator

user require-
ments

operator recon-
figuration

operator in-
stance

N/A central operator

XJoin
[UF00]

resource con-
nections

intra-
operator

idle CPU operator
rescheduling

operator in-
stance

remote central operator

juggle
[RRH00]

user input intra-
operator

user require-
ments

operator recon-
figuration.

operator in-
stance

N/A central operator

mergesort
[ZL97]

resource
memory

intra-
operator

insufficient/idle
memory

operator recon-
figuration

operator in-
stance

N/A central central

pipeline
scheduler
[UF01]

user input,
data volume,
operator cost

intra-
operator

suboptimal op-
erator schedul-
ing, user reqs

operator
rescheduling

partition
instance

N/A central central

Table 4.1: Summarising table of operator-based AQP proposals according to the clas-
sifications of Section 4.3.

4.4 Centralised Adaptive Query Processing Techniques

This section presents the AQP techniques that refer to centralised query processing.

Regarding the adaptivity locality, such techniques employ adaptivity mechanisms en-

gineered either as operators (Section 4.4.1), or as a central component. In the latter

case, AQP can be applied to both single-node and multi-node query processing. As the

bulk of the work on AQP is for single-node systems, this class is further partitioned

according to the data locality, i.e., the type of data sources that can be accessed: lo-

cal (Section 4.4.2), remote (Section 4.4.3), and streams (Section 4.4.4). Multi-node

centralised AQP systems are discussed in Section 4.4.5.

4.4.1 Operator-based Adaptivity

This part describes query operators that have the capability to adjust their behaviour

according to changing conditions and the information available at runtime. A sum-

mary of their characteristics is given in Table 4.1. A common property is that, in

adaptive operators, the adaptivity cycle is triggered many times during their execution,

which corresponds to intra-operator monitoring frequency. Adaptive operators also act

autonomously in order to adapt to changes but have limited effects on the executing

query plan, as they cannot perform radical changes to it. Typically, the scope of their

responses is limited to a single operator instance. Additionally, they have all been pro-

posed for centralised query processing, although, in some cases, they can be applied to

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 97

a non-centralised environment as well.

4.4.1.1 Memory Adaptive Sorting and Hash Join

Memory adaptive operators monitor the amount of memory available, and assess this

information to identify if there is idle memory or a memory shortage. In these cases

they respond by self-reconfiguration. [PCL93a] introduces techniques that enable ex-

ternal sorting to adapt to fluctuations in monitored memory availability. External sort-

ing requires many buffers to run efficiently, and memory management significantly

affects the overall performance. The memory-change adaptation strategy introduced is

dynamic splitting, which adjusts the buffer usage of external sorts to reduce the per-

formance penalty resulting from memory shortages and to take advantage of excess

memory. It achieves that by splitting the merge step of external sorts into a number

of sub-steps in case of memory shortage, and by combining sub-steps into larger steps

when sufficient buffers are available. Thus the operator is self-reconfigured. Alterna-

tive OS-level strategies, likepagingandsuspension, are non-adaptive and yield poor

results [PCL93a]. Adopting memory-adaptive physical operators for sort operations

avoids potential under-utilisation of memory resources (e.g., in the case when mem-

ory reserved prior to execution based on estimates is in fact more than the memory

required) or thrashing (e.g., in the case when memory reserved prior to execution is

in fact less than the memory required), and thus reduces the time needed for query

evaluation.

For join execution, when the amount of memory changes during its lifetime, a fam-

ily of memory adaptive hash joins, calledpartially preemptible hash joins (PPHJs), is

proposed in [PCL93b]. As in [PCL93a], they aim at avoiding both memory idleness

and shortage. Initially, source relations are split and held in memory. When memory is

insufficient, one partition held in memory flushes its hash table to disk and deallocates

all but one of its buffer pages. The most efficient variant of PPHJs for utilising ad-

ditional memory is when partitions of the inner relation are fetched in memory while

the outer relation is being scanned and partitioned. This method reduces I/O and,

consequently, the total response time of the query. Although such reconfigurations

cannot adapt very well to rapid memory fluctuations, PPHJ outperforms non-memory-

adaptive hybrid hash joins, which employ strategies such aspagingandsuspension.

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 98

4.4.1.2 Operators for Producing Partial Results Quickly

In many applications, such as online aggregation, it is useful for the user to have the

most important results produced early. To this end, pipelining algorithms are used for

the implementation of join and sort operations. The other kind of operators are block

ones, which produce output after they have received and processed the whole of their

inputs.

Ripple joins are initially proposed in [HH99] and enhanced later in [LEHN02].

They constitute a family of physical pipelining join operators that maximise the flow

of information during processing of statistical queries that involve aggregations. They

generalise block nested loops (in the sense that the roles of the inner and outer relations

are continually interchanged during processing) and hash joins. Ripple joins adapt their

behaviour during processing according to user preferences about the accuracy of the

partial result and the time between updates of the running aggregate. These preferences

can be submitted and modified during execution. Given the user preferences, the ripple

joins adaptively set the rate at which they retrieve tuples from each input of the ripple

join. The ratio of the two rates is reevaluated after a block of tuples has been processed,

to ensure that the user requirements are met.

XJoin [UF00] is a variant of Ripple joins. Apart from producing initial results

quickly, XJoin is also optimised to hide intermittent delays in data arrival from slow

and bursty remote sources by reactively revising the execution order of different parts

in the query plan. Thus idle CPU times are avoided. The connections to remote data

sources are monitored and the objective of the assessment is to identify states that

result in CPU idleness. The execution occurs in three stages. Initially, XJoin builds

two hash tables, one for each source. In the first stage, a tuple, which may reside on

disk or in memory, is inserted into the hash table for that input upon arrival, and then

is immediately used to probe the hash table of the other input. A result tuple will be

produced as soon as a match is found. The second stage is activated when the first stage

blocks, and it is used for producing tuples during delays. Tuples from the disk are then

used to produce some part of the result, if the expected number of tuples generated is

above a certain activation threshold. The last stage is a clean-up stage as the first two

stages may only partially produce the final result. In order to prevent the creation of

duplicates, special lists storing specific time-stamps are used.

To obtain and process the most important data earlier, a sort-like re-ordering opera-

tor, calledjuggle, is proposed in [RRH00]. It is a pipelining dynamic user-controllable

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 99

reorder operator that takes an unordered set of data and produces a nearly sorted re-

sult according to user preferences (which can change during runtime) in an attempt to

ensure that interesting items are processed first. The feedback it collects from the envi-

ronment is user-defined priorities, which are assessed to ensure that interesting tuples

are more likely to be processed early. It is a best-effort operator, in the sense that it does

not provide any performance guarantees. The mechanism, on receipt of updated user

preferences, tries to allocate as many interesting items as possible in main memory

buffers, i.e., juggle is capable of reconfiguring itself dynamically. When consumers

request an item, it decides which item to process. The operator uses the two-phase

Prefetch & Spooltechnique: in the first phase tuples are scanned, and uninteresting

data are spoooled to an auxiliary space until input is fully consumed. In the second

phase the data from the auxiliary space are read.

4.4.1.3 Extensions to Adaptive Operators

A work on memory-adaptive sorting, which is complementary to [PCL93a] as dis-

cussed earlier, is presented in [ZL97]. This method focuses on improving throughput

by allowing many sorts to run concurrently, while the former focuses on improving

the query response time. Because it depends on the sort size distribution, in general,

limiting the number of sorts running concurrently can improve both the throughput and

the response time. The method proposed enables sorts to adapt to the actual input size

and changes in available memory space. For the purpose of memory adjustment, all

the possible stages of a sort operation regarding memory usage are identified and pri-

oritised. The operations may be placed in a wait queue because of insufficient memory

in the system. Priority ratings are assigned to the wait queues as well. When memory

becomes available, the sorts in the queue with the highest priority are processed first.

A detailed memory adjustment policy is responsible for deciding whether a sort should

wait or proceed with its current workspace. If it is decided to wait, further decisions on

which queue to enter, and whether to stay in the current queue or to move to another,

are made. Like [PCL93a], [ZL97] has impact only on the configuration of specific

operator instances and adapts with intra-operator frequency. However, it relies on a

central view of all sorts running on the machine, and thus, contrary to [PCL93a], does

not operate at the operator level.

The method in [UF01] for quicker delivery of initial results in pipelined query plans

extends the notions of Ripple join [HH99] and XJoin [UF00] with the capability to re-

order join operators in the query plan. Instead of scheduling operators, theDynamic

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 100

Technique Monitoring Assessment Response Architecture
Focus Freq-

uency
Issue Response Form Impact Data

Local.
QP
Local.

Adapt.
Local.

mid-
query
reopti-
misation
[KD98]

data volume,
operator cost

inter-
operator

subopt. phys-
ical plan, perf.
expectations

operator re-
conf., plan
reoptimisation

query plan local central central

progressive
optimi-
sation
[MRS+04]

data volume,
operator cost

inter-
operator

subopt. phys-
ical plan, perf.
expectations

operator re-
conf., plan
reoptimisation

query plan local central central

ingres
[SWKH76]

data cardinal-
ity

intra-
operator

subopt. oper.
scheduling

operator
rescheduling

query plan local central central

eddies
[AH00]

data cardinal-
ity, oper. cost

intra-
operator

subopt. oper.
scheduling

operator
rescheduling

query plan any central central

stems
[RDH03]

data cardinal-
ity, oper. cost

intra-
operator

subopt. physi-
cal plan, opera-
tor scheduling

operator
rescheduling,
replacement

query plan any central central

juggle-
eddy
[RH02]

data cardinal-
ity, operator
cost, user
input

intra-
operator

subopt. oper.
scheduling,
user reqs

operator
rescheduling

query plan any central central

Table 4.2: Summarising table of AQP proposals that access local stores, primarily,
according to the classifications of Section 4.3.

Pipeline Schedulergroups them into independent units of execution, and then sched-

ules these units. This reduces the initial response time of the query but may result in

increases in the total execution time. The algorithm monitors the current selectivity

and the cost of each of the execution units, along with dynamically changed user input

about importance ratings of different datasets. The operator order is modified on the

fly in the light of the monitored system behaviour and updated user requirements. The

aim is to produce as many interesting result items quickly as possible, in a way that

meets the user requirements if there are any stated. Ideally, the order should be recom-

puted every time a tuple is processed by a stream, but, in fact, the scheduler is invoked

less often in order to avoid large overheads.

4.4.2 Accessing Local Data Stores

In this part, single-node AQP techniques that rely on central adaptivity-related compo-

nents, rather than on adaptive operators, and, at least in their initial proposal, the query

engine is co-located with the data stores are presented (a summary is given in Table

4.2). However, some of them, as explained below, have been successfully deployed in

query processing over remote databases as well.

Kabra and deWitt [KD98] introduced an algorithm that detects sub-optimality in

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 101

query plans at runtime, through on-the-fly collection of query statistics, and improves

performance by either reallocating resources such as memory or by reoptimising the

remainder of the query plan, i.e., the impact of adaptations is larger compared to the

techniques examined thus far. This method aims to combat the problem of construct-

ing plans based on inaccurate initial statistical estimates about the data sources. The

plan is annotated with expected sizes of intermediate results and time costs of oper-

ators. This information is monitored at runtime, and it is assessed to check if there

is a difference between real values and annotations, which implies that the optimiser

might have constructed a suboptimal plan. For monitoring, a new, dedicated operator

is used. The re-optimisation algorithm relies heavily on intermediate data materiali-

sation, and takes into account monitored information such as value distribution that is

not explicitly used in the assessment phase. However, it is activated only between the

completion of execution of separate pipelined fragments of the plan, which restricts the

opportunities for adaptation. The proposal includes specific techniques to reduce the

monitoring overhead and to prohibit the system from adapting if the expected benefit

is not significant. More recent work, [MRS+04], has enhanced the above technique by

enabling adaptations during the execution of pipelines.

A more dynamic and highly influential technique to tackle the same problem of

inaccurate data statistics isEddies[AH99, AH00, Des04]. Eddies constitute a query

processing mechanism that continuously (i.e., even for each tuple) reorders operators

on the fly in order to adapt dynamically to changes in operator costs and selectivities,

provided that these operators are pipelined [AH99, AH00]. They essentially dynam-

ically reroute the tuples through operators in order to achieve better response times.

The approach is shown to provide significant improvements even in scenarios where

remote data sources are accessed, and in stream query processing [TB02]. In order to

insert eddies in a query plan, joins should allow frequent and efficient reoptimisation.

Joins that are appropriate for eddies include Ripple joins, pipelined hash join, XJoin,

and index joins, with the Ripple join family being the most efficient. Compared to

[KD98], eddies do not alter the nature of operators but only their order, and adapt with

intra-operator frequency. Also eddies do not rely on plan annotations: the assessment

uses only the monitored information to check whether there is a better operator order.

Adaptive ordering of nested-loop joins, based on monitoring information about the

cardinalities of intermediate results, has been employed in the early Ingres database

system [SWKH76], as well.

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 102

Technique Monitoring Assessment Response Architecture
Focus Freq-

uency
Issue Response Form Impact Data

Local.
QP
Local.

Adapt.
Local.

query
scram-
bling
[UFA98]

resource con-
nections

inter-
operator

idle CPU operator
resched., plan
reoptimisation

query plan remote central central

Bouganim
[BFMV00b]

resource
connections,
memory

inter-
operator

idle CPU,
insufficient
memory

operator
resched., plan
reoptimisation

query plan remote central central

Tukwila
[IFF+99,
ILW+00,
Ive02,
IHW04]

resource
connections,
memory,
pool, data
volume,
operator cost

inter-
operator

idle CPU,
insufficient
memory, sub-
opt. physical
plan, perf.
expectations

operator
rescheduling,
reconfigura-
tion, replace-
ment, plan
reoptim.

query plan remote central central

bindjoins
[Man01]

operator cost inter-
operator

suboptimal
resource selec-
tion

operator recon-
figuration

query plan remote central central

Table 4.3: Summarising table of AQP proposals that access remote stores, according
to the classifications of Section 4.3.

Two non-trivial extensions to Eddies have appeared in [DH04] and [RDH03], re-

spectively. The former provides a solution, calledStairs, to the problem of manage-

ment of state (e.g., hash tables) within operators, to enable better routing policies. The

latter introducesSteMs (State Modules), which allow eddies not only to reorder opera-

tors for each tuple (or set of tuples) but also to change operator implementation. The

Stems replace series of pipelined hash joins, and they also enable different queries to

share states, as a single stem exists for each data source independently of the number

of queries that this source participates in. They actually encapsulate indices in a unary

operator and are proved to be efficient for computing multiple joins in a pipelined

fashion.

Finally, eddies have been successfully combined with the juggle operator described

previously, to form thejuggle-eddyoperator [RH02], which reorders both tuples and

operators, in a way that combines the characteristics of the two constituent techniques.

4.4.3 Accessing Remote Sources

In this section, AQP systems that target problems specific to centralised query process-

ing over remote sources are discussed (Table 4.3 provides a summary).

In the light of data arrival delays, a common approach is to minimise idle time by

performing other useful operations, thus attenuating the effect of such delays.Query

Scrambling[AFT98, AFTU96, UFA98] and its variants [BFMV00a, BFMV00b] are

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 103

two representative examples in this area.

Query scrambling focuses on connections to remote sources and more specifically

tries to address problems incurred by delays in receiving the first tuples from a remote

data source that result in idle CPU. The default response form is to reorder operators so

that the system performs other useful work in the hope that the problem will eventually

be resolved and the requested data will arrive at or near the expected rate from then

on. If changes in the execution order to avoid idling (which is always beneficial) do

not solve the problem, new operations are inserted in the query plan, which is risky.

In query scrambling, there is a trade-off between the potential benefit of modifying

the query plan on the fly and the risk of increasing the total response time instead of

reducing it.

[BFMV00a, BFMV00b] also deal with the problem of unpredictable data arrival

rates, and, additionally, with the problem of memory limitation in the context of data

integration systems. A general hierarchical dynamic query processing architecture

is proposed. Planning and execution phases are interleaved in order to respond in a

timely manner to delays. The query plan is adjusted to the remote source connec-

tions and memory consumption. Materialisation points are dynamically inserted into

pipelines to reduce the memory requirements of the query plan, in case of memory

shortage [BKV98]. In a sub-optimal query plan, the operator ordering can be modified

or the whole plan can be re-optimised, by introducing new operators and/or altering

the tree shape. In general, operators that may incur large CPU idle times are pushed

down the tree. Scheduling such operators as soon as possible increases the possibility

that some other work is available to schedule concurrently if they experience delays.

During the construction of query plans, bushy trees are preferred because they offer the

best opportunities to minimise the size of intermediate results. Thus, in case of partial

materialisation, the overhead remains low. The query response time is reduced by run-

ning several query fragments concurrently (with selection and ordering being based on

heuristics) and partial materialisation is used, as mentioned above. Because material-

isation may increase the total response time, abenefit materialisation indicator (bmi)

and abenefit materialisation threshold (bmt)are used. Abmi gives an approximate

indication of the profitability of materialisation and thebmt is its minimum acceptable

value.

TheTukwila[IFF+99, ILW+00] project has developed a data integration system in

which queries are posed across multiple, autonomous and heterogeneous sources. Tuk-

wila attempts to address the challenges of generating and executing plans efficiently

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 104

with little knowledge and variable network conditions. The adaptivity of the system

lies in the fact that it interleaves planning and execution and uses adaptive operators.

The operators in the query plan are annotated with their expected output cardinal-

ity. The system monitors the availability of remote data sources, the time an operator

spends waiting for input tuples to infer the resource connection speed, the number of

tuples each operator produces and the amount of memory it requires, along with the

operator cost. The assessment and response are achieved by event-condition-action

rules. An example of such a rule is: if at the end of the execution of a pipeline, the out-

put cardinality is half of the expected one, then reoptimise the remainder of the query

plan. Possible actions include operator reconfiguration to change the amount of mem-

ory allocated or the remote data source, operator reordering, operator replacement, and

re-optimisation of the remainder of a query plan. The Tukwila system integrates adap-

tive techniques proposed in [KD98, UFA98, BFMV00a]. Re-optimisation is based on

pipelined units of execution. At the boundaries of such units, the pipeline is broken

and partial results are materialised. The main difference from [KD98] is that material-

isation points can be dynamically chosen by the optimiser (e.g., when the system runs

out of memory). Tukwila’s adaptive operators adjust their behaviour to data transfer

rates and memory requirements. Acollector operatoris also used, which is activated

when a data source fails so as to switch to an alternative data source.

The Tukwila adaptive query engine has also been used for XML query processing

[IHW02, Ive02]. As in the case in which data is structured, the monitoring information

includes aspects such as data cardinalities and rates of tuple production. In [Ive02,

IHW04] an extension to [IFF+99] is presented, which incorporates the notion of eddies

to route tuples through operators in order to allow tuples to be routed in different query

plans running in parallel. As many different plans can be used during evaluation, a

final clean-up phase is required to ensure result correctness.

BindJoinshave also the capability to change the data sources accessed on the fly,

like the Tukwila’s collector operator, in a self-reconfiguration manner [Man01]. The

difference is that (i) BindJoins focus on operator cost rather than on resource connec-

tions, and (ii) they adapt when the operator cost can be reduced by a better machine

allocation, rather than when performance expectations are not met.

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 105

Technique Monitoring Assessment Response Architecture
Focus Freq-

uency
Issue Response Form Impact Data

Local.
QP
Local.

Adapt.
Local.

CACQ
[MSHR02],
psoup
[CF03]

data cardinal-
ity, operator
cost

intra-
operator

suboptimal op-
erator schedul-
ing

operator
rescheduling

query plan stream central central

dQUOB
[PS01]

data charac-
teristics

intra-
operator

subopt. oper.
scheduling

operator
rescheduling

query plan stream central central

chain
[BBDM03]

data cardinal-
ity

intra-
operator

subopt. oper.
scheduling

operator
rescheduling

query plan stream central central

stream
[MWA +03,
BMM+04]

data cardinal-
ity, resource
memory

intra-
operator

subopt. oper.
scheduling, in-
suf. memory

operator
rescheduling,
reconfig.

query plan stream central central

Table 4.4: Summarising table of AQP proposals over streams, according to the classi-
fications of Section 4.3.

4.4.4 Stream Query Processing

In stream query processing many assumptions that are the basis of traditional data-

base systems do not hold [CcC+02, GÖ03]. Not only are the queries inherently long-

running, but data are pushed to the query evaluation engine asynchronously, rather

than being pulled from a permanent store on demand. Thus, instead of simply an-

swering streams of queries over static data, data can be streamed over queries as well.

As the data characteristics and arrival rates of input streams fluctuate over time, and

the resources available are subject to changes, AQP techniques have been employed to

gain dependability and reasonable performance. The techniques that will be discussed

next operate over streams produced by sensors and other autonomous remote sources,

but, as in all techniques presented to this point, the query processing takes place in a

centralised manner (Table 4.4).

An initial blending of Eddies [AH00] and Stems [RDH03] yielded theCACQ (Con-

tinuously Adaptive Continuous Queries)technique [MSHR02], which performs adap-

tations over many queries running in parallel. Thus the focus is slightly shifted towards

inter-query rather than intra-query adaptivity, which is out of the scope of this thesis.

CACQ shares the characteristics of Eddies and Stems: it adapts with intra-operator

frequency, it impacts on the complete query plan, it monitors the operator cost and in-

termediate data cardinality (to infer the operator selectivity), and it revises the execu-

tion order, when, in the light of updated information, this becomes suboptimal. Stems

are used only to share state, and their capability to replace operator implementations

is not exploited in the context of CACQ. Nevertheless, CACQ provides a promising

solution for adapting to changing workload, which affects operator cost, and skewed

value distribution, which affects operator selectivity within streams.

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 106

[CF03] presentsPSoup, which is an extension to CACQ. PSoup’s query engine

permits the queries to refer to data arrived before the submission. The basic concept

is to treat data streams and queries in the same way, using and extending the SteM

and Eddies technology. Stems in Psoup store queries as well, and eddies route queries

and not only data tuples, although both stems and eddies were not initially designed

for this. It is important to note that the software platform for all the above has been

TelegraphCQ[CCD+03, KCC+03].

dQUOBconceptualises streaming data with a relational data model, thus allowing

the stream to be manipulated through SQL queries [PS00, PS01]. For query execution,

runtime components embedded into data streams are employed. Such components

are calledquoblets, which correspond to query operators. Detection of changes in

data stream behaviour is accomplished by a statistical sampling algorithm that runs

periodically and gathers statistical information about the selectivities of the operators

into an equi-depth histogram. Based on this information, the quality of quoblets order

is re-assessed, and the system may choose to reorder operators on the fly.

Two other, related adaptive proposals for stream systems are theChain[BBDM03]

andSTREAM (Stanford Stream Data Manager)systems [MWA+03, BMM+04]. The

Chain focuses on adapting to data arrival rates, like, for example, XJoin [UF00]. How-

ever, the aim is to keep memory usage at a minimum level rather than avoiding idle

CPU times. Thus Chain tries to control the size of intermediate results stored in in-

put queues of operators, and monitors their sizes, instead of monitoring the resource

connections. Nevertheless, it employs the response form of operator rescheduling to

achieve this.

[MWA +03] uses the same technique as Chain in the context of the STREAM sys-

tem. It also allows query operators to reconfigure the memory they are allocated ex-

plicitly. When there is not enough memory, the system starts evaluating queries over

streams in an approximate manner. The memory allocation policy is re-evaluated, in

such a way that the precision of final results is maximised. In general, approximation

is not acceptable in traditional query processing, but in many wide-area scenarios ac-

cessing remote data there is no requirement for 100% accuracy. STREAM, like Chain,

also monitors the operator selectivities to obtain their actual value, and thus, to enable

the determination of the optimal execution order [BMM+04]. However, heuristics are

employed as an exhaustive search of possible ordering is not considered due to its

complexity. AQP in STREAM attempts to balance three conflicting objectives: low

runtime overhead, high speed of adaptivity and good convergence to the solution of a

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 107

Technique Monitoring Assessment Response Architecture
Focus Freq-

uency
Issue Response Form Impact Data

Local.
QP
Local.

Adapt.
Local.

river
[ADAT +99]

resource per-
formance

intra-
operator

workload
imbalance

operator recon-
figuration

operator local central central

flux
[SHCF03]

resource per-
formance

intra-
operator

workload
imbalance

operator recon-
figuration

operator local central central

parad
[HM02]

data cardinal-
ity, resource
pool, memory

inter-
operator

insufficient
memory

machine
rescheduling

query plan local central central

Table 4.5: Summarising table of parallel AQP proposals according to the classifications
of Section 4.3.

static system if parameters stabilize. Different variants of operator ordering algorithms

are presented, which trade, to a various extent, one of these objectives in favour of the

others. If the runtime overhead decreases, the convergence and the adaptivity speed

degrade. Algorithms with worse convergence properties adapt more quickly and incur

lower overhead. Quick adaptations may not converge satisfactorily and may be quite

costly as well.

4.4.5 Parallel Query Processing

Most of the work in AQP refers to traditional non-parallel query processing. However,

there exist three proposals that consider adaptations when the execution is partitioned

across many nodes (Table 4.5). The first two operate at the operator level, monitor

the performance of participating nodes, and adapt the workload distribution to avoid

imbalances. The third technique is capable of modifying the machine scheduling on

the fly, to ensure that there is enough aggregate memory to evaluate partitioned joins.

A River [ADAT +99, AD03] is a dataflow programming environment and I/O sub-

strate for clusters of computers to provide maximum performance even in the face

of performance heterogeneity. In intra-operator parallelism, data is partitioned to be

processed among system nodes. The two main innovations in a River aredistributed

queues (DQ), which can tolerate faulty consumers, andgraduated declustering (GD),

which can tolerate faulty producers. These techniques are complementary and enable

the system to provide data partitioning that adapts to changes of the performance in

production and consumption nodes. DQs are responsible for naturally balancing load

across consumers running at different rates. The aim is to make the rate of consumers

equal to the rate of delivery from the producers. GD is used for full-bandwidth bal-

anced production, with the effect that all available bandwidth is utilised at all times,

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 108

and all producers of a given data set complete near-simultaneously. It requires the exis-

tence of replicas of initial data though, and favours the faster producers. In both cases,

the adaptation is manifested through the reconfiguration of either the producers or the

consumers. Thus the impact of adaptation is constrained to these operators.

One limitation of Rivers is that they cannot operate when data cannot be deliv-

ered to arbitrary nodes. E.g., for parallel joins, tuples for which the value of the join

attributes is equal need to be routed to the same node (i.e., the data partitioning is

content-sensitive). TheFlux operator extends the concepts of rivers for repartitioning

of data according to the resources’ performance to avoid workload imbalance, even

when the data distribution is content-sensitive [SHCF03]. Essentially, the flux is an

enhanced version of the exchange operator that encapsulates parallelism and commu-

nication in parallel query processing [Gra90].

Finally, the authors in [HM02] have proposed a technique, calledParAd that ad-

justs the degree of intra-operator parallelism for joins, when all the available nodes are

homogeneous. At the end of the execution of each pipeline plan fragment, the system

monitors the number of processors available, the amount of memory available and data

statistics such as volume of intermediate results. The machine scheduling algorithm

is called when changes in the monitoring information are detected, to ensure that all

joins in the query plan are executed in main memory. I.e., the number of machines

executing joins can be modified dynamically.

4.5 Distributed query processing

Thus far, the AQP techniques referred to centralised query processing. However, query

processing on the Grid falls, by its nature, in the scope of DQP. The AQP systems for

this kind of query processing can be divided into two categories, according the purpose

of monitoring: (i) to keep track of the data volumes processed, and (ii) to keep track

of the properties of the resources that contribute to the query evaluation. These two

categories are discussed separately, and Table 4.6 provides a summary.

4.5.1 Focusing on data properties

To make better decisions regarding query evaluation, algorithms may wait until they

have collected statistics derived from the generation of intermediate results thus far.

Such an approach has been used in centralised query processors, such as the mid-query

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 109

Technique Monitoring Assessment Response Architecture
Focus Freq-

uency
Issue Response Form Impact Data

Local.
QP
Local.

Adapt.
Local.

mind
[ONK+97]

data cardinal-
ity

inter-
operator

subopt. re-
source selec-
tion

machine
rescheduling

partition remote non-
central

central

adaptive
SDD-1
[YS97]

data cardinal-
ity

inter-
operator

subopt. op-
erator schedul.,
resource selec-
tion

operator
resched., ma-
chine resched.

partition remote non-
central

central

aurora*
[CBB+03]

data cardinal-
ity

intra-
operator

resource short-
age

machine
rescheduling

operator stream non-
central

distributed

conquest
[NWM98,
NWMN99]

resources,
data volume

inter-
operator

suboptimal
physical plan,
resource selec-
tion, imbalance

plan reop-
timisation,
machine
rescheduling

query plan remote non-
central

central

SwAP
[ZOTT05]

data cardinal-
ity

intra-
operator

subopt. oper.
scheduling

operator
rescheduling

query plan any non-
central

distributed

Table 4.6: Summarising table of distributed AQP proposals according to the classifi-
cations of Section 4.3.

reoptimisation technique [KD98]. TheMIND system [ONK+97, ONK+96] uses a sim-

ilar approach in a distributed environment. It address the problem of where to perform

combination operations, like joins, on partial results of a global query, which are re-

turned by local DBMSs in a multidatabase system. Due to the fact that useful statistics

about these results are difficult for a static optimiser to estimate, decisions on where

to execute operations on data that reside at remote sources are deferred until the ar-

rival of the actual partial results. The system monitors the cardinality of partial results

produced by each database, and assesses this information in order to identify better

machine scheduling policies. The decisions affect the plan partition that is scheduled

dynamically. Since the system waits for databases to produce partial results, it can

adapt only at predefined points of execution. It also requires a central adaptivity com-

ponent to monitor, assess and respond. [YS97] provides an adaptive variant of the

SDD-1 algorithm that introducedsemi-joins[BGW+81], and exhibits the same adap-

tive behaviour as MIND, with the additional capability to decide at runtime the join

order, and not only the machine allocation. However, this response form is the result

of the assessment of the monitoring information about the data cardinalities as well.

The work in [CBB+03] is distinguished from other adaptive stream query process-

ing techniques in that it does not restrict the execution to occur in a single, central

location. It builds upon theAurora centralised query processor [CcC+02] to pro-

duce distributed stream processors, both for single-ownership domains (Aurora*) and

multiple-ownership ones (Medusa). The system monitors the load of each node par-

ticipating in the evaluation, in terms of the tuples it processes. As the input rates of

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 110

data streams vary over time, and are unpredictable, the load changes frequently, and

resource shortage problems may arise. To tackle these problems, a response, in the

form of machine rescheduling, is made. This can be done in two ways. Firstly, by

changing the machine to which an operator is allocated (box sliding), and secondly, by

partitioning an operator across multiple machines on the fly (box splitting), provided

that the operators do not hold state at the moment of splitting. An important aspect

of the system is that the adaptivity mechanism is decentralised, and the nodes need to

cooperate to adapt.

4.5.2 Focusing on changing resources

TheConquestquery processing system enables dynamic query optimisation in a paral-

lel environment for long-running queries following a triggering approach in response

to runtime changes [NWM98, NWMN99]. The triggering approach is similar to the

event-condition-action rules used in Tukwila [IFF+99]. Monitored changes relate to

resources (e.g., new processors become available, while others may be withdrawn), and

data characteristics relevant to query statistics (e.g., a buffer queue becomes empty, or

the volume of partial results is higher than initially estimated). Such changes make

the re-computation of cost estimates and plan re-optimisation necessary. In the assess-

ment phase, suboptimality in the physical plan and in the scheduling, and imbalance

in the workload distribution are identified. The capabilities of Conquest for modifying

a query plan to address these problems are very strong, especially in terms of partition

scheduling, but are limited to unary operators, such as scans (if there exist replicas)

and single-input user-defined functions. Moreover, the user needs to provide a sig-

nificant set of metadata for each user-defined function registered in order to enable

adaptations, and to define the triggers at compile time, which may not be practical.

In addition, the adaptivity architecture is centralised at all phases (monitoring, assess-

ment, and response), which makes the approach non-scalable.

An investigation of Eddies and Stems in a distributed setting has been made in

[ZOTT05, Zho03]. The resulting system is calledSwAP (Scalable and Adaptable

query Processor). The basic idea of this work is to place an Eddy on each machine used

in the query evaluation. By monitoring input and output dataset cardinalities on each

site, information about the operator selectivities, and the workload and transmission

speed of different machines can be inferred. For example, if one machine consumes

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 111

tuples faster than another, this may indicate that it is less loaded. The monitoring infor-

mation is necessary for applying theroutingpolicies in Eddies. However, the proposal

suffers from serious limitations in the way it handles intra-operator parallelism. In

particular, it replicates data on different sites to avoid the creation of wrong results

when adaptively routing tuples across multiple instances of a join. Nevertheless, a key

feature is that, by deploying an eddy at each site, no central adaptivity control is re-

quired, and thus the architecture is scalable. Orthogonally to SwAP, routing policies

specifically for distributed Eddies are examined in [TD03].

4.6 Summary

The contribution of this chapter is twofold. Firstly, a generic framework for AQP is

proposed, to facilitate the development of AQP systems and their combination. It is

based on the decomposition into and the separate investigation of three distinct phases

that are inherently present in any AQP system: (i)monitoringof query execution and

environment to collect the necessary feedback; (ii)assessmentof the feedback col-

lected; and (iii)respondingaccording to the results of the assessment process. Sec-

ondly, a taxonomy of the existing AQP proposals is presented on the grounds of (i) the

focus of monitoring and the frequency of feedback collection, (ii) the issues examined

in the assessment phase, (iii) the form and impact of response, and (iv) the type of data

sources, and the locality of the query processing and the adaptivity mechanisms.

Table B.1 in Appendix B summarises the characteristics of the AQP proposals ex-

amined, providing a unified view of the Tables 4.1-4.6. From these tables, two signifi-

cant observations can be made:

• The same issue can be tackled by multiple response forms. For example, op-

erator reconfiguration in PPHJ [PCL93b] and machine rescheduling in ParAd

[HM02] both tackle memory shortage. Also, a response form may be employed

for several problems with the current execution. In Eddies [AH00] operators are

reordered to avoid plan suboptimality, whereas in Tukwila [IFF+99] the same re-

sponse form addresses CPU idleness. Moreover, the same monitoring informa-

tion can be assessed with a view to establishing different problems (e.g., [KD98]

and [ONK+97] both monitor data cardinality for different reasons). Finally, the

assessment of different monitoring information can lead to the same result (e.g.,

bindjoins [Man01] and Conquest [NWM98, NWMN99] assess different infor-

mation to identify the same problem). These remarks prove that the framework

CHAPTER 4. A FRAMEWORK FOR ADAPTIVE QUERY PROCESSING 112

is capable of revealing the commonalities between techniques, and thus of serv-

ing its purpose as a basis for combining and reusing adaptivity components.

• The following areas of AQP have not attracted enough attention to date: (i)

monitoring focused on changing resource properties, (ii) AQP for distributed

query processing, and (iii) distributed adaptivity mechanisms. All of them are

particularly relevant to query processing on the Grid, and are examined later in

this thesis.

The description of the AQP framework has been discussed in [GPSF04] as well.

Also, parts of the presentation of the AQP techniques have appeared in an early survey

that is part of the work of this thesis [GPFS02].

Chapter 5

Monitoring a Query Plan

Monitoring constitutes the first phase in any AQP technique, as discussed in Chapter 4.

To adapt the query execution to changing resources, the Grid monitoring middleware

may be useful. More specifically, mechanisms such as the MDS [CFFK01] and NWS

[WSH99] are provided, which monitor Grid resources in an application-independent

way. Complementary to this, this chapter introduces a new generic monitoring ap-

proach, namelyself-monitoringoperators, which can monitor the query execution itself

and its performance with respect to the environment and the resources employed. This

second aspect of monitoring is necessary, as AQP on the Grid relies on runtime infor-

mation both from the resources in the execution environment and from the execution

itself.

In line with the vision of the monitoring-assessment-response framework of the

previous chapter to develop AQP techniques according to a single generic frame-

work in order to facilitate component reuse and sharing, this chapter presents the self-

monitoring operators in an assessment-independent manner. It discusses the monitor-

ing of query execution as a topic in its own right, and it shows how the proposal can

support existing AQP techniques; applications of self-monitoring operators to Grid-

specific adaptations are demonstrated in the next chapter.

The core concept in the approach followed is to make the query execution engine

capable of monitoring itself, by transforming the operators comprising the engine into

self-monitoring ones. Monitoring the execution of a query can provide evolving esti-

mates for properties of the query, such as its completion time and the number of values

in its result. Such information can be useful for providing feedback to users and refin-

ing cost models for use in subsequent queries, as well as for AQP. However, this thesis

113

CHAPTER 5. MONITORING A QUERY PLAN 114

examines monitoring only from the perspective of AQP.

Self-monitoring operators, as a generic mechanism for monitoring, (as well as be-

ing independent of any particular assessment approach) should be characterised by the

following desired properties:

• capability to drive adaptations;

• comprehensiveness, to cover as many monitoring cases as possible;

• ease of incorporation into existing systems, to attain applicability;

• scalability in terms of query size and number of machines participating in query

processing; and

• low overhead, to be of practical interest.

This chapter discusses the extent to which the above properties are achieved by

self-monitoring operators. Its structure is as follows. Section 5.1 discusses the related

work. Section 5.2 introduces the self-monitoring operators, discussing the information

they can capture. Section 5.3 describes how self-monitoring operators are relevant to

the assessment process of adaptivity. The approach is evaluated in Section 5.4. Section

5.5 concludes the chapter.

5.1 Related Work

In AQP, monitoring is not normally addressed as a stand-alone topic. Rather, indi-

vidual proposals either tend to group together an approach to monitoring, a means of

assessment, and a form of response (e.g., [UFA98]); or just take the existence of mon-

itoring for granted (e.g., [TD03]). Simply assuming that the monitoring information

that drives adaptation is in place justifies both the necessity and the pertinence of deal-

ing with monitoring separately. To the best of the author’s knowledge, the work of this

thesis is the first that does so.

Three different approaches to monitoring for AQP can be identified in the litera-

ture: use of an independent and centralised component within the query processor for

monitoring (e.g., [BFMV00b, NWMN99]); construction of new physical query opera-

tors dedicated to statistics collection (e.g., [KD98]); and transformation of traditional

operators to self-monitoring ones (e.g., [HH99]). Other existing proposals employing

self-monitoring operators are tailored to specific AQP techniques rather than providing

CHAPTER 5. MONITORING A QUERY PLAN 115

generic information [UF00, AH00, HH99, UF01, RRH99, PCL93a, ZL97, PCL93b].

Thus they differ significantly from the proposal of this thesis.

Centralised monitoring components and operators dedicated to monitoring suffer

from the following limitations. A centralised monitoring component, apart from re-

quiring significant changes in the architecture of query engines, does not scale well

in parallel or distributed settings, due to the communication overhead incurred. Ded-

icated operators require modifications in the query optimisers, which are responsible

for deciding which monitoring operators are employed for each query and where. Both

centralised components and dedicated operators suffer from limitations in the scope of

the monitoring information that can be gathered. For example, a dedicated monitor-

ing operator can collect useful information about the value distribution of intermediate

results, but cannot provide any information about the time cost of other operators in

the query plan, as it can only monitor the data it processes. On the other hand, a cen-

tralised component can observe the behaviour of algebraic operators and their cost,

but cannot monitor data properties like value distribution. An important detail is that

operator-specific monitoring cannot be performed using the two alternative approaches

to monitoring, i.e., dedicated monitoring operators or centralised components, because

operator implementation details are transparent to them.

Kabra and DeWitt [KD98] provide an example of using a separate monitoring op-

erator for collecting statistics about data on the fly to drive AQP, provided that this is

possible in one pass of the input. The statistics collected include the cardinality of in-

termediate results, their average size, and certain histograms. However, their approach

requires the monitoring points to be defined at compile time, it cannot operate in parts

of the plan that are executed in a pipelined fashion, and, it cannot capture timings re-

ferring to other operators (e.g., the time taken for a lower operator to process a tuple).

These limitations, which are essentially limitations of the approach to monitoring in

which dedicated operators are employed, do not arise in the approach presented in this

thesis.

In essence, a wide range of adaptive techniques can implement their assessment and

response strategy on top of self-monitoring operators (specific examples are mentioned

in Section 5.3.4). This cannot be achieved by operators dedicated to statistics collection

or new components in the architecture of the query engine, as both these techniques

can capture a significantly smaller amount of monitoring information.

The overhead of monitoring has not been explicitly considered in the literature of

AQP. Information about the overhead is included in LEO [SLMK01], which monitors

CHAPTER 5. MONITORING A QUERY PLAN 116

the query plan but only collects information about operator and predicate selectivities,

and about the cardinalities of the intermediate results. This additional information is

stored so as to enable the adjustment of the query optimizer for the subsequent queries.

The overhead is about 5% and has been regarded by the authors as small.

Self-monitoring operators have been employed in two recent techniques that esti-

mate the progress of query execution dynamically. This information can be useful in

AQP, as the system may choose not to proceed to any adaptations if the query is close

to completion. In [LNEW04], the output cardinality and the average tuple size of each

pipelining segment of the query plan is measured. The overhead imposed is around

1%. The prediction formulas employed measure the execution cost in abstract unitsU,

that can cover metrics such as CPU cycles, I/Os and bytes processed. The total cost of

the query is the total number ofUs required by all pipelining segments. The formulas

to build estimates are heuristic and based on proportional logic (i.e., the average cost

per tuple for the remainder of the query execution is equal to the average per tuple cost

for the completed part of the execution), as in the approach of this thesis.

[CNR04] is a similar work that is capable of reporting back the percentage remain-

ing. Metrics such as the number of returned tuples do not reflect the actual execution

status because of blocking operators. For example, there might be a very expensive

pipelining join followed by a (blocking) inexpensive sort. In this case, the first re-

sults are returned after most of the execution has been completed. The total work

is described by the number ofnext()calls needed, as the iterator model is assumed.

The problem is to define accurately how manynext()calls are needed, which involves

the estimation of how many tuples each operator produces. However, this is typically

known only after the completion of the query for operators with variable selectivity.

The solution involves the monitoring of the output cardinalities of the operators that

produce data in a pipeline (i.e., table scans, index scans, group-by, etc.) The overhead

is not considered as it is deemed to be negligible by the authors.

5.2 Self-monitoring operators

The approach to monitoring query execution proposed in this thesis is based on self-

monitoring operators that capture metrics in the form of

• counters;

• timings (i.e., placing two timestamps and computing their difference); and

CHAPTER 5. MONITORING A QUERY PLAN 117

Symbol Description
n number of tuples produced so far
nj

inp number of tuples received from thejth input
t time elapsed since the operator was created
treal time the operator is active
ttuple time to process a tuple, i.e., time to evaluate the next() function

in the iterator model [Gra93]
s size of an output tuple
mem memory used
tjwait time waiting since last tuple from thejth input

Table 5.1: General measurements on a physical query operator.

• computations of tuple sizes.

This section identifies measurements that can be taken from physical operators. Al-

though the measurements should be able to be expressed as counters, timings, or sizes,

this is not a very restricting limitation as they can cover, as shown below, a broad range

of operator properties. There are two kinds of measurements, corresponding to two

different levels of monitoring: generic measurements that can be applied to any physi-

cal operator, e.g., index-scan, hash join and so on; and operator-specific measurements

that decompose the operator’s functionality into simpler parts, and that are essential

for monitoring at a finer granularity.

5.2.1 Operator-independent monitoring

Table 5.1 presents quantifiable properties that are common to all physical operators.

Such properties are not related to specific implementations or functionalities of the

operators, and cover the following distinct aspects of their behaviour:

1. Operator workload and selectivity:for this, the measurements that are useful

are the number of tuples consumednj
inp, which is equal to the number of tuples

processed, and the number of tuples producedn.

2. Operator cost:to monitor the cost of the operator, various timings can be cap-

tured. The time elapsed since the operator’s instantiationt reflects the evaluation

time of that operator in systems where all tuples are first processed by one op-

erator before being sent to another. In systems that follow a different approach

CHAPTER 5. MONITORING A QUERY PLAN 118

(e.g., the iterator model of query execution [Gra93]), in the absence of block-

ing operators, this time may converge for all the operators in a query plan, and

approximate the query execution time. In such systems the time the operator is

active,treal, is not the same ast. At a finer granularity,ttuple gives the time cost

for each data item processed.

3. Resource requirements:when an operator needs to maintain certain state, it is

important to monitor its memory requirementsmem, along with the sizes of

intermediate results produced, especially in the case when these have to be kept

in main memory or on secondary storage, as such resources are not always abun-

dant.

4. Connections with other operators and data stores:as well as obtaining basic

measurements, characteristics of the execution of the part of the query plan

below the relevant operator can be inferred, such as the delivery rate of data

sources, and in a distributed setting, potential points of network failure, by mon-

itoring the time the operator waits for its inputs to deliver data (tjwait).

However, more useful and easily exploited monitoring information is obtained by

aggregate statistics, e.g., averages, sums, counts, minimums and maximums. Aggre-

gates can be taken in two ways. In one approach, a window is assumed and only the

measurements that belong to that window are used to compute the aggregate. Win-

dows can be either overlapping or disjoint, and their widths can be defined in either

time units or the number of most recent tuples. In the second approach, the aggregate

is computed over all the values seen. For each of the metrics in Table 5.1, additional

information can be derived by performing aggregate functions on them. For example,

the average number of result tuplesavg(n) over a period of time gives the output rate

for that period; the sum of the sizes of each output tuplesum(s) equals the size of that

intermediate result; and the minimum time waiting for new tuples from a remote data

sourcemin(tjwait) can provide an upper bound on the data delivery rate.

Orthogonal to the nature of the measurements, there are numerous potential poli-

cies with regard to the frequency of monitoring. Some metrics need to be computed

only once during the lifetime of a particular instance of a physical operator (e.g., the

time elapsed since the operator’s instantiation). Other information is inferred from ob-

serving each of the tuples that comprise the operator’s input separately, or just some of

them (e.g., by sampling).

CHAPTER 5. MONITORING A QUERY PLAN 119

Symbol Description
ncond number of conditions evaluated per predicate
tpred time to evaluate a predicate

Table 5.2: Measurements for operators that evaluate predicates.

5.2.2 Operator-specific monitoring

In Section 5.2.1, the information collected was generic to all operators and independent

of their role in the query plan. However, monitoring at a finer level of granularity may

require specific data from distinct operator instances, according to their functionality.

By drawing such distinctions, the set of measurements in Table 5.1 can be further ex-

tended. As the functionality of different operators is well-established, monitoring the

inner basic functions of each operator is still generic and implementation-independent.

Such monitoring can be crucial to understand in-depth implementation-specific prop-

erties like execution time. For instance, a system may experience significant variances

in the performance of a hash join that is evaluated completely in main memory, due

to the existence of skew in the sizes of the buckets in the hash table. If no operator-

specific monitoring is considered, such a cause of performance degradation is harder

to identify.

Operator-specific monitoring can be applied to any kind of operator. The operators

in Table 2.1 along withexchanges, which are a representative set of physical operators,

have been chosen to demonstrate this approach These operators are sufficient for evalu-

ating SQL and OQL queries of theSelect-From-Whereform in a parallel or distributed

environment.

An example of operator functionality that is not present in all operators is the pred-

icate evaluation (see Table 2.1). A predicate consists of one or more conditions. Table

5.2 summarises monitoring information with regard to the evaluation of predicates.

5.2.2.1 Operators that retrieve tuples from store

Operators that touch the store include scans and some joins in object-oriented environ-

ments. Because the store format is usually different from the tuple format required by

the query processor, a mapping between the two formats needs to take place. Monitor-

ing information that is relevant to this kind of operators is shown in Table 5.3.

CHAPTER 5. MONITORING A QUERY PLAN 120

Symbol Description
tconn time to connect to source
npages number of pages read
tpage time to read a page
tmap time to map store format into evaluation format

Table 5.3: Measurements for operators that touch the store.

Symbol Description
si size of a tuple in theith input in bytes
Bj size of thejth bucket in bytes
Nj cardinality of thejth bucket
Mj number of tuples in the right input that correspond to thejth

bucket
thash time to hash a tuple
tconc time to concatenate two tuples

Table 5.4: Hash-Join-specific measurements.

5.2.2.2 Hash-join

A hash join is executed in two phases. In the first phase, the left input is consumed

and partitioned into buckets by hashing on the join attribute of each tuple in it. In

the second phase, the same hash function is used to hash the tuples in the right input.

The tuples of the right input are concatenated with the corresponding tuples of the

left input by probing the hash table. Subsequently, the predicate is applied over the

resulting tuple. The optimiser needs to ensure that the left input is the smallest input.

Table 5.4 presents metrics that are particular to hash joins.

5.2.2.3 Unnest

The unnest operator takes as input a tuple with an-valued attribute (or relationship),

and producesn single-valued tuples. The cardinality of the collection attribute or

relationshipCardcol can be monitored (Table 5.5).

Symbol Description
Cardcol cardinality of a multi-valued attribute

Table 5.5: Unnest-specific measurements.

CHAPTER 5. MONITORING A QUERY PLAN 121

Symbol Description
si size of input tuple
nbuffers sent i number of buffers sent to theith consumer
nbuffers received i number of buffers received from theith producer
tpack time to pack a tuple
tunpack time to unpack a tuple

Table 5.6: Exchange-specific measurements.

5.2.2.4 Exchange

The exchange operator encapsulates parallelism in multi-node environments. It per-

forms two functions concurrently. It packs tuples into buffers and sends these buffers

to consumer processors, while receiving packed tuples from buffers sent by producers

and unpacking them. The monitoring information for exchanges is given in Table 5.6.

From the above, it is evident that operator-specific measurements for a specific

operator are defined solely on the basis of the distinctive functions that this operator

performs, which are common in any of its implementations. This ensures that the

measurements can apply to multiple systems, and provides the criterion for defining

the measurements of operators not included in Table 2.1.

5.3 Enabling query plan adaptations

Traditionally, database systems use optimisers that rank candidate query plans on their

predicted cost and, typically, select a plan on the basis of its low predicted cost. If

the actual cost of the selected plan turns out to be substantially different from that

predicted by the cost model, this may indicate that the chosen plan is not in fact the

most suitable. Thus there needs to be an association between the information collected

during monitoring and the cost model for the algebra, which models the behaviour of

individual algebra operators. The cost metrics can be indirect (e.g., size of intermediate

results), or direct (e.g., execution time). Not only the complete query plan, but also the

operators that comprise it can be annotated with performance predictions. Monitoring

the cost of the operators can thus inform the calibration of the cost model used in

estimation based on a post-mortem analysis. However, identifying erroneous estimates

that refer to the final state of the operator at runtime, which is a monitoring task directly

related to dynamic query execution, may not be trivial. To this end, the monitoring

CHAPTER 5. MONITORING A QUERY PLAN 122

mechanism should be enhanced (i) with the capability to predict the final cost of a

query plan, or subplan, based on monitoring information that has become available up

to that point; and (ii) with the capability to identify operation states that will prevent

the system from reaching the expected performance.

In this section, the monitoring approach is applied to the operators in Table 2.1.

More specifically, it is verified that a deviation from initial expectations can be not

simply detected (Section 5.3.1), but also predicted on the fly. It is first examined if

this can be achieved throughlocal monitoring (Section 5.3.2), i.e., without passing

monitoring information between operators; then, in Section 5.3.3, this constraint is

relaxed. The reasons why one would choose to perform local monitoring are three-

fold: firstly, one might not want any extra communication overhead regardless of the

potential benefits; secondly, the query plan could be executed using blocking opera-

tors or materialisation points, which means that, effectively, only one operator is active

at any time; and thirdly, initial estimates may only be available for particular opera-

tors or particular properties of operators, as is commonly the case for heuristic-based

optimisation.

Regarding the predictions, this work does not seek to propose accurate formulas for

all the possible cases, implementations, system configurations, value distributions, etc,

but rather to demonstrate that such a generic monitoring approach is suitable as a basis

for prediction mechanisms. For this reason, the signatures of the prediction formulas

are more important than the formulas themselves, as they depict more explicitly the

monitoring information required to predict whether there will finally be a deviation

from the expected performance or not.

The final part of the section (Section 5.3.4) complements the above by demonstrat-

ing how the self-monitoring operators can be applied to other adaptive query process-

ing techniques that support different approaches to assessment and response, some of

which may not use prediction mechanisms at all.

The cost of operators is estimated according to the detailed cost model described

in [SPSW02]1, in which the cost metric is time units. Here, the focus will be on three

aspects of operator execution: the selectivityσ, as it determines the workload for the

remainder of the query plan and is hard to predict accurately at compile time when

no statistics are available; the size of the resultS; and the completion timeT , which

defines the operator’s cost.

In the remainder of the section the following additional notation is used: for each

1This cost model is partially discussed in Appendix A, along with the development of a variant of it.

CHAPTER 5. MONITORING A QUERY PLAN 123

Symbol Description
σ monitored selectivity
S monitored size of result set
Sj

inp monitored size of thejth input
T monitored completion time
σ̂ selectivity as known at compile time
Ŝ size of result set as known at compile time

Ŝj
inp size of thejth input as known at compile time

T̂ completion time as known at compile time

n̂j
inp number of tuples received from thejth input as known at compile

time

Table 5.7: Symbols denoting additional operator properties.

propertyx being monitored at runtime,̂x is its static value, either known or estimated

at compile time. Each operator is annotated at compile time with expected selectivity

σ̂, result sizeŜ, input cardinalityn̂j
inp, input sizeŜj

inp, and time cost̂T . Table 5.7

summarises the additional notation.

5.3.1 Detecting Deviations

Spotting deviations from the expected selectivityσ̂, result sizeŜ and completion time

T̂ is supported by the framework in a straightforward manner. From Table 5.1 we have:

σ =

n
n1

inp·n2
inp

, for binary operators

n
n1

inp
, otherwise

(5.1)

S = sum(s) (5.2)

T =

sum(ttuple), or

treal

(5.3)

After the operator has finished its execution, these values can then be compared

against the initials estimates, i.e.,σ̂, Ŝ and T̂ , respectively, in order to assess their

accuracy.

CHAPTER 5. MONITORING A QUERY PLAN 124

O
pe

ra
to

r
S

el
ec

tiv
ity

σ
R

es
ul

tS
iz

eS
C

om
pl

et
io

n
T

im
e

T

se
q.

sc
an

σ
(n

,n
1 in

p
)

=
n

n
1 in

p
S

(σ
,Ŝ

1 in
p
)

=
σ
·Ŝ

1 in
p
[S

1]
,o

r
T

(t
m

a
p
,t

p
r
ed

,t
p
a
g
e
,n̂

1 in
p
,n̂

p
a
g
es

)
=

(a
v
g
(t

m
a
p
)

+

a
v
g
(t

p
r
ed

))
·n̂

1 in
p
+

a
v
g
(t

p
a
g
e
)
·n̂

p
a
g
es

[T
1]

,o
r

S
(σ

,n̂
1 in

p
,s

)
=

σ
·n̂

1 in
p
·

a
v
g
(s

)
[S

2]
T

(t
tu

p
le
,n̂

1 in
p
)

=
a
v
g
(t

tu
p
le
)
·n̂

1 in
p
[T

2]
,o

r

T
(t

r
ea

l,
t l

a
st

tu
p
le
,n

1 in
p
,n̂

1 in
p
)

=
t r

ea
l
+

t l
a
st

tu
p
le
·(

n̂
1 in

p
−

n
1 in

p
)
[T

3]

ha
sh

jo
in

σ
(n

,n
1 in

p
,n

2 in
p
)

=
n

n
1 in

p
·n

2 in
p

S
(σ

,n̂
1 in

p
,n̂

2 in
p
,Ŝ

1 in
p
,Ŝ

2 in
p
)

=

σ
·n̂

1 in
p
·n̂

2 in
p
·(Ŝ

1 in
p
+

Ŝ
2 in

p
)
[S

1]
,

or

T
(t

h
a
sh

,t
co

n
c
,t

p
r
ed

,n
p
a
ir

s
,n̂

1 in
p
,n̂

2 in
p
)

=
a
v
g
(t

h
a
sh

)
·

(n̂
1 in

p
+

n̂
2 in

p
)
+

(a
v
g
(t

p
r
ed

)
+

a
v
g
(t

co
n
c
))
·n

p
a
ir

s
[T

1]
,o

r

S
(σ

,s
,n̂

1 in
p
,n̂

2 in
p
)

=
σ
·

a
v
g
(s

)
·n̂

1 in
p
·n̂

2 in
p
[S

2]

T
(t

r
ea

l,
t l

a
st

tu
p
le
,n

2 in
p
,n̂

2 in
p
)

=
t r

ea
l
+

t l
a
st

tu
p
le
·(

n̂
2 in

p
−

n
2 in

p
)
[T

3]

pr
oj

ec
t/

σ
()

=
1

S
(n̂

1 in
p
,s

)
=

n̂
1 in

p
·a

v
g
(s

)
[S

2]
T

(t
tu

p
le
,n̂

1 in
p
)

=
a
v
g
(t

tu
p
le
)
·n̂

1 i
[T

2]
,o

r

op
.

ca
ll

T
(t

r
ea

l,
t l

a
st

tu
p
le
,n

1 in
p
,n̂

1 in
p
)

=
t r

ea
l
+

t l
a
st

tu
p
le
·(

n̂
1 in

p
−

n
1 in

p
)
[T

3]

un
ne

st
σ
(n

,n
1 in

p
)

=
n

n
1 in

p
S

(n̂
1 in

p
,s

)
=

n̂
1 in

p
·a

v
g
(s

)
[S

2]
T

(t
tu

p
le
,n̂

1 in
p
)

=
a
v
g
(t

tu
p
le
)
·n̂

1 in
p
[T

2]
,o

r

T
(t

r
ea

l,
t l

a
st

tu
p
le
,n

1 i
,n̂

1 in
p
)

=
t r

ea
l
+

t l
a
st

tu
p
le
·(

n̂
1 in

p
−

n
1 in

p
)
[T

3]

Ta
bl

e
5.

8:
P

re
di

ct
io

n
fo

rm
ul

as
ex

em
pl

ify
in

g
ho

w
th

e
m

on
ito

rin
g

in
fo

rm
at

io
n

ca
n

su
pp

or
tp

re
di

ct
io

ns
in

A
Q

P.

CHAPTER 5. MONITORING A QUERY PLAN 125

5.3.2 Predicting Deviations

If the overall goal is to predict, rather than simply detect deviations, the monitoring

framework should provide the necessary input to the prediction mechanism. Table 5.8

gives examples of prediction formulas that use the monitoring information and can be

applied for that purpose.

The prediction formulas about the final output size belong to two categories: firstly,

when the operator does not change the size of the tuple (i.e., the average size of the

input tuples is equal to the average output size) and the initial estimate of the input

size is correct (S1); and, secondly, when the size does change or the initial estimate is

inaccurate (S2). For the final time cost, three approaches have been considered: firstly,

to decompose the operator function into subfunctions, such as those in the cost model

used (if this is possible), and to use cost information about these subfunctions obtained

up to that point, which implies the most detailed measurements (T1); secondly, to build

the prediction on the cost of the operator up to that point assuming that the elapsed time

is proportional to the number of input tuples, which, intuitively, cannot perform well

when system parameters change (T2); and thirdly, to base the prediction on the cost

of the last tuple (or of then last tuples) processed, which, again intuitively, can adapt

better to load fluctuations, but may be unduly affected by temporary load changes (T3).

5.3.2.1 Monitoring Sequential Scans

Based on the measured cardinalities of the input and output at a given point in the ex-

ecution, the final selectivity can be estimated, e.g., as in Table 5.8. A new estimate for

the final cardinality of the result can be obtained by multiplying the monitored selec-

tivity by the known cardinality of the stored extent̂n1
inp. The total size of result can

be predicted in both ways mentioned in the previous paragraph. For the estimation of

the total execution time, all three ways considered in the previous paragraph can be

applied. In the first one, which requires the identification of simpler operator subfunc-

tions, one can follow the approach of [SPSW02], where the cost can be divided into the

cost for transforming the format of the tuples (if necessary), evaluating the predicates,

and reading the pages:

T = tpage · npages + (tmap + tpred) · n1
inp

CHAPTER 5. MONITORING A QUERY PLAN 126

All these parameters can be monitored (Tables 5.2 and 5.3). Different implementations

are expected to vary significantly as to their cost, and the contribution of each of the

three common subcosts to the total execution time. Thus, monitoring at a finer level

may be important in order to identify and quantify such differences.

5.3.2.2 Monitoring Hash Joins

The approach for predicting the final values of the selectivity and the size of the output

of a hash join is similar to the one used for scans. The main difference between scans

and joins is that the cardinalities of the inputs are more likely to be estimated rather

than measured and building estimates on previous estimates may result in compound

errors [IC91]. The total execution time of a hash join consists of the time to hash the

tuples for both inputs, the time to concatenate all the relevant pairs of tuples and the

time to evaluate the join predicate:

T = thash · (n1
inp + n2

inp) + (tpred + tconc) · npairs

The initial estimate of the cost of a hash join at compile time uses a constant value

for the time required to hash a tuple. This constant can be monitored (Table 5.4)

and thus can be corrected in case it is not accurate. Another constant is used for the

time to concatenate two tuples, which is also error prone. The number of pairs of

tuples concatenated is more difficult to estimate. The optimiser can make a simple

assumption that there is a uniform distribution of tuples across the hash table buckets.

Another option, if the left input has already been consumed, is to use the time elapsed

along with the time taken to evaluate the last tuple, as shown in the second formula in

the relevant field of Table 5.8.

5.3.2.3 Monitoring Projects, Unnests and Operation Calls

For projections and operation calls, the cardinality of the output is the cardinality of the

input, as their selectivity is always equal to 1. The size and time prediction formulas

resemble those for scan (Table 5.8). Unnests differ in that they may have a selectivity

greater than 1.

CHAPTER 5. MONITORING A QUERY PLAN 127

5.3.2.4 Monitoring Exchanges

The time cost of an instance of exchange is the sum of the costs to receive packed

tuples from remote nodes, unpack them, pack tuples into a buffer, and send the packed

tuples to other nodes. The communication cost is the dominant cost.

The actual values of cardinality, size of the output, and time cost of the operator

can be monitored. However, no more accurate estimates for the number of tuples to be

produced can be made at runtime without communication of monitoring information

across a network, other than the estimates made by the optimiser at query compile

time. This is because this metric depends on the number of tuples that other, remote

instances of exchange send to that node, and in order to get this information, data

transmission over network is required. For this reason, exchanges are not considered

in Table 5.8.

On-the-fly updating of the predictions for the output size and the time cost can oc-

cur in a limited range of situations. A better estimate of the size can be made if the

observed average tuple size is different than the estimated one, but again the informa-

tion about the total number of result tuples is missing.

More accurate estimates of the time cost are produced by adding together more

accurate estimates of the component costs. The time cost to transmit data depends on

the input cardinality, the average size of a tuple, and the network speed between the

two nodes involved. It also depends on system parameters that are not expected to vary

for a given system, such as the size of a buffer and the space overhead for each buffer.

From the above three variables, more accurate values can be obtained for the average

tuple size. If this size remains the same, the system cannot detect deviations from

expected cost caused by fluctuations in the network bandwidth, or from the expected

number of incoming tuples. Changes in the expected cardinality of the input and the

output are tracked, but cannot be predicted on the fly.

5.3.2.5 Generalisation for other operators

The prediction formulas for scans and unnests that only use notation from Tables 5.1

and 5.7 can be generalised for any operator with selectivity different from 1. The

formulas for projections can be generalised for any operator with selectivity equal to

1. The formulas for hash joins that do not use notation from Table 5.4 can be applied

to any binary operator. In general, the formulas used here are simple and may not be

appropriate in all usage scenarios. It is not the aim of this thesis to explore their validity

CHAPTER 5. MONITORING A QUERY PLAN 128

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

scan1 scan2

scan3

join2

join1

Site A

Site B

scan4

exchange exchange

join3
Site A,B

scan1 scan2

scan3

scan4

join3

join2

join1

(a) (b)

Figure 5.1: Example query plans executed over (a) a single machine, and (b) two
machines

over more diverse usage scenarios. The role of such formulas in the monitoring task is

to provide feedback for adaptive query processors. Although the performance criteria

were defined to be the selectivity of operators, the size of (intermediate) results, and the

time cost, there is no fundamental reason why this set cannot be extended and tailored

to different system characteristics.

5.3.3 Propagating monitoring information

As the monitoring information is created within the scope of operators, communication

of monitoring information between operators even in different machines can occur in

the same way as the data items manipulated by operators are exchanged (e.g., through

the exchange operator [Gra90] in the operator model of parallel execution), without re-

quiring the development of specific mechanisms for this purpose. Section 5.3.2 exam-

ined the case of monitoring without communication overhead. This section shows how

relaxing this constraint can enhance monitoring precision. Firstly, the case in which

data is not transmitted to remote nodes is discussed, then the case in which monitoring

data is shared among different nodes is discussed. In the first case, the communication

overhead can remain low, as the information does not have to be conveyed through the

network. Actually, it may not need be passed between operators physically at all, but

simply recorded for access by later operators.

CHAPTER 5. MONITORING A QUERY PLAN 129

5.3.3.1 Sharing information among different operations in a node

When lower operators in the query plan propagate more accurate estimates to operators

that lie above them, estimates for the latter become more accurate. The formulas in

Table 5.8 allow on-the-fly predictions of the final number of tuples, the final size of

the result and the final time cost. These formulas depend on initial estimates of the

input cardinality (̂n1
inp and/or n̂2

inp) and size (̂S1
inp and/or Ŝ2

inp). Monitoring allows

more accurate estimates of these properties. The input size and the input cardinality of

an operator are the output size and the output cardinality of its children, respectively.

All physical operators, except exchange, are able to produce more accurate predictions

for these two metrics. This function operates in a recursive way that results in the

propagation of better estimates from the lowermost to the topmost operator provided

that an exchange operator does not break that chain.

Consider the query plan in Fig. 5.1(a). For each join, the expected cardinalities of

the inputs are computed at compile time. Even if the selectivities of the three joins are

estimated with the same accuracy, the estimate for the output of the third join can be

much worse than the estimate for the second join and even worse than for the first one.

[IC91] explains how propagation of errors affects the quality of these estimates. All

operators can continuously update their expected output cardinalities and selectivities

if monitoring is in place. The propagation of these measurements results in the third

join having an up-to-date estimate for its inputs. These inputs also have up-to-date

estimates for their inputs and so on. In that way, the effect of potentially inaccurate

initial estimates can be ameliorated.

The formulas of Table 5.8 remain the same. However, for each operator the values

n̂j
inp andŜj

inp are replaced with the relevant predictions of its child.

5.3.3.2 Sharing information among different nodes

In the previous example, assume now that the fourth scan is placed on another node,

and that the third join is evaluated through partitioned parallelism on both sites. In

the operator model of parallelism, tuples are exchanged between nodes through the

exchange operator (Fig. 5.1(b)). If no communication across sites is permitted for

monitoring, exchanges cannot give up-to-date estimates. In this case, the third join can

only use the initial estimates computed at query compile time. However, if there is no

zero-communication constraint, the monitored information can be transmitted to and

across exchanges. In this way, each instance of exchange can predict on the fly the total

CHAPTER 5. MONITORING A QUERY PLAN 130

number of buffers and the number of tuples that will be sent to each consumer. New

estimates of the output cardinalities can be produced by gathering this information

from all the exchanges.

Allowing monitored information to be transmitted over the network has additional

benefits. The relative workload of the nodes can be monitored by tracking and com-

paring the number of tuples each instance of an operator receives. Moreover, the con-

nection speed between two nodes can be monitored by recording the time when a

buffer is sent from a node and the time it arrives at its destination. Finally, the relative

load between nodes can be monitored by tracking and comparing the average times to

process a tuple on different sites. Hence, communication overhead can be traded for

such benefits.

This approach to propagating the monitoring information through the query plan al-

lows for adaptive schemes where operators adapt autonomously (e.g., [ZL97]) as well

as approaches that co-ordinate the query re-optimisation centrally (e.g., [BFMV00b]).

5.3.4 Supporting Existing Adaptive Approaches

According to the feedback they collect from the query execution, AQP systems can be

classified in three broad categories.

The adaptive systems that monitor the rate at which they receive their input belong

to the first category. A typical example is the XJoin [UF00], a variant of pipelined hash

joins that hides delays in the arrival of the input tuples by performing other operations

when the inputs are blocked. In self-monitoring operators, the input tuple rate and

the time waiting since the last tuple was processed can be monitored for each opera-

tor. Consequently, it can be inferred whether an input is blocked by using a threshold.

Ginga [PLP02], Query Scrambling [UFA98], and Bouganimet al [BFMV00b] also

deal with the problem of experiencing delays in the delivery of the first tuples from

a remote source. [BFMV00b] proposed an approach that generalised Query Scram-

bling to adapt not only to blocked connections, but to any changes in the data delivery

rates as well. To monitor the delivery rates, they employ a new component, whereas in

the approach proposed in this thesis, this could be easily achieved within the operator.

Information about the data delivery rates can trigger adaptation also in the context of

Rivers [ADAT+99], a proposal for parallel I/O intensive applications, which monitors

the bandwidth between data producers (e.g., disks) and consumers (e.g. scan opera-

tors).

CHAPTER 5. MONITORING A QUERY PLAN 131

Another group comprises systems that focus on the workload and the productivity

of operators measured in tuples. For example, Eddies [AH00], a very dynamic tech-

nique, encapsulates a multi-join, and dynamically chooses the order of the individual

joins for each incoming tuple. The basic routing policy observes the number of tuples

received by each join so far, and the number of tuples produced. Both these metrics

are covered by the proposed approach, not only for the joins, but for all the operators

(Table 5.1). Also, Flux [SHCF03] extends the traditional exchange operator to adapt to

fluctuations in resource availability (like resource and memory loads) while executing

a query in a pipelining mode. It relies on the on-the-fly selection of simple statistics

like the number of tuples processed and the time the operator is active. In [UF01], the

Dynamic Pipeline Scheduler tries to reduce the initial response time of the query, bas-

ing its adaptive behaviour on the number of the tuples consumed so far by the operators

and on their selectivities.

More generic systems, in terms of the information they collect from a query plan,

fall in the third category. Kabra and DeWitt [KD98] use a separate monitoring operator

for collecting statistics about data on the fly, provided that this is possible in one pass

of the input. Such statistics include the cardinality of intermediate results, their av-

erage size, and certain histograms. The Tukwila system [IFF+99] integrates adaptive

techniques proposed in [KD98, UFA98]. A special operator is also used to switch to an

alternative data source, when the initial source fails. The execution information that the

system monitors for active operators is the number of tuples produced so far (to check

whether the optimisers estimates were adequately accurate) and the time waiting since

the last tuple was received (to identify slow or blocked connections). The Conquest

query processing system resembles Tukwila in adopting a triggering approach to re-

spond to runtime changes [NWMN99]. Characteristics related to query execution that

can trigger actions include updates to operator selectivities and sizes of intermediate

results. Also, the system monitors the load of the resources. Self-monitoring operators

can infer relative levels of load by comparing the time to process a tuple at different

points of the execution. Operator selectivities and sizes are monitored explicitly.

Table 5.9 summarises the aspects of self-monitoring in Table 5.1 that are used by

the AQP systems examined (referring to specific operators). It demonstrates that the

proposal is generic enough to support many adaptive systems with different function-

alities and requirements. The approach presented integrates and extends existing mon-

itoring approaches with regard to data characteristics and execution cost. In essence,

CHAPTER 5. MONITORING A QUERY PLAN 132

Systems Monitored
Operators

n n
jin

p

t
r
ea

l

t
tu

p
le

s t
jw

a
it

Bouganimet al [BFMV00b] scan & scan’s
parent

√ √ √

Conquest [NWMN99] any
√ √ √ √

Dyn. Pip. Scheduler [UF01] join
√ √

Eddies [AH00] join
√ √

Flux [SHCF03] exchange
√ √

Ginga [PLP02] scan & scan’s
parent

√ √ √

Kabra & DeWitt [KD98] any
√ √

Q. Scrambling [UFA98] join & scan
√ √ √

River [ADAT+99] scan
√ √ √

Tukwila [IFF+99] any
√ √ √ √ √

XJoin [UF00] join
√ √ √

Table 5.9: Monitored information that can provide input to existing AQP systems.

any of the above adaptive techniques can implement its assessment and response strat-

egy on top of the monitoring framework presented.

5.4 Evaluation

The presentation of the experimental results in this section serves two purposes. Firstly,

to provide insights into how large the overhead of monitoring and predicting can be,

and, secondly, to assess the accuracy of the predictions based on monitoring. The data

used in the experiments are from the OO7 benchmark [CDN93]. The measurements

are taken on a dedicated PC with a 1.13GHz AMD Athlon CPU and 512 MB memory

(of which 330 - 370 MB were available for query processing at the time of the mea-

surements), running Redhat Linux 7.1. The query engine used is part of the Polar*

Grid-enabled distributed query processor [SGW+02]. The operators are implemented

in C++ according to the iterator model [Gra93] and all are single-pass, i.e., all inter-

mediate data sets are stored in main memory, although the data starts off on disk. The

granularity of the system’s timer is one microsecond.

CHAPTER 5. MONITORING A QUERY PLAN 133

Operator Characteristics
Scan A average size of tuples is 155bytes
Scan B average size of tuples is 727bytes
Scan C average size of tuples is 2Kbytes
Scan D average size of tuples is 20Kbytes
Hash-Join A 1 tuple per hash table bucket
Hash-Join B 10 tuples per hash table bucket
Hash-Join C 20 tuples per hash table bucket
Hash-Join D 200 tuples per hash table bucket
Project project one tuple field out of 10
Unnest fan-out is set to 3, average size of initial tuples is

155bytes

Table 5.10: The operators used in the experiments for monitoring overheads.

5.4.1 Overhead of Monitoring

The measurements fall in three categories: firstly, those that involve counters (e.g., car-

dinalities of input, output and hash table buckets); secondly, those that require timings,

i.e., two timestamps are taken and their difference is computed (e.g., time to evaluate a

tuple, time to change the tuple format from the storage format to the evaluator format),

and thirdly, those that compute the size of a tuple. The size of the tuple is not statically

known in two cases. Firstly, when the tuple has one or more tuple fields with string

type of undefined length; and, secondly, when there is a collection attribute of unde-

fined collection size. Measuring the size of a collection requires a counter. Measuring

the size of a string of characters involves identifying the tuple fields in the tuple that

are string-valued and computing the length of each.

Inserting a counter in an operator has a very small overhead, measured at0.03 µsecs.

The overhead of measuring timings is of the order of microseconds (1.11 µsecs). The

time cost of measuring the size of a string of characters depends on the size of the

string. For small strings, the overhead is small but for larger strings it can become

several milliseconds (e.g., for a 1MByte string this takes 0.0044 secs).

The operators that were used in the experiments for monitoring overheads are

shown in Table 5.10. All the joins are on a key/foreign key condition. Table 5.11

depicts the magnitude and relative importance of the overheads, as it shows the per-

centage increase in the cost of evaluating a tuple due to monitoring. For each of the op-

erators in Table 5.10, the time cost is given (2nd column in Table 5.11). The last three

columns show the increase in the cost when a counter, a timing and a character counter

CHAPTER 5. MONITORING A QUERY PLAN 134

Operator time (in µsecs) counter (%) timing (%) 100-byte
string (%)

Scan A 16.82 0.18 6.60 70.63
Scan B 25.50 0.12 4.35 46.60
Scan C 48.81 0.06 2.27 24.34
Scan D 350.57 0.01 0.32 3.39
Hash-Join A 8.22 0.36 13.50 144.52
Hash-Join B 13.02 0.23 8.52 91.22
Hash-Join C 16.25 0.18 6.83 73.11
Hash-Join D 62.86 0.05 1.77 18.90
Project 0.89 3.39 125.27 1340.71
Unnest 10.16 0.30 10.92 116.88

Table 5.11: The overhead of taking measurements compared to the cost of the operators
for each tuple processed (for the hash-joins, the cost is for each tuple of the input that
probes the hash table).

for a 100-byte string are applied to each tuple processed, respectively. As expected, the

relative overheads are higher for computationally-inexpensive operators, like project,

and significantly lower for the computationally-expensive ones, like hash join. The

overhead of a counter is negligible for all the operators. Placing two timestamps is

more costly than projecting an attribute, but the percentage overhead is relatively low

for other operators (between 0.32% and 13.5%). Measuring the size of a string has es-

sentially no cost if the string is a few bytes long. If the length is 100 characters or more,

the performance may degrade significantly. For instance, it may increase the cost of a

hash join by up to 144%, when the size is monitored for each tuple processed by the

operator. If the size is computed for one tuple in ten, the increase is only 14.4%, and

if the frequency is 5% (one in twenty tuples is monitored), the increase falls to 7.2%.

However, it is not usually necessary to compute this in a database setting, as often, the

length of a string is stored explicitly. The values in Table 5.11 can inform the choice

of monitoring frequency by indicating broadly the overhead that can be anticipated.

5.4.2 Overhead of Predictions

This part examines the overhead of predicting deviations, as discussed in Section 5.3.2.

Here, only the scan operator is analysed, but a similar approach can be followed for

the remaining operators. The results for all operators are shown in Table 5.12.

It is assumed that the system holds information about the size and cardinality of

CHAPTER 5. MONITORING A QUERY PLAN 135

the stored collections. The selectivity of an operator is given byσ = n
n1

inp
, wheren

andn1
inp are the monitored cardinality of the output and the input up to that point of

execution, respectively (Section 5.3.2.1). The output cardinality is predicted by mul-

tiplying the monitored selectivity with the known input cardinality. It requires two

counters that are updated for each tuple and the evaluation of one formula. The for-

mula may be evaluated at various frequencies, but it is processed in time significantly

less than a microsecond. The cost of the two counters is of the order of nanoseconds

(0.03 µsecs each). So, the overhead of predicting the final number of tuples produced

is some fraction of a microsecond. If the output tuples do not contain strings with vari-

able length, the final output size is predicted by multiplying the monitored selectivity

with the known size of the stored collection, and the overhead of this prediction is the

overhead incurred by two counters as well. If the tuple produced does contain strings

of undefined length, the total size is given by

S = σ · n̂1
inp · avg(s)

whereavg(s) = sum(s)·freq

n1
inp

andfreq specifies every how many tuples the tuple size

s is monitored. The cost of making these predictions is essentially dominated by the

cost of measuring the length of the strings.

Predicting the total time for completion of the operator involves one timingttuple

being captured for each monitored tuple as follows:

Ttotal = avg(ttuple) · n̂1
inp

The average overhead is1.11 µsecs for each monitored tuple, which is the cost of a

single timing, plus the cost of updating a counter.

Table 5.12, which derives from the 3rd and the 4th column of Table 5.11, shows the

relative overhead of making predictions. As the prediction of the output size depends

on the size of the variable length strings (if any) and is not generic, it is not shown in

the table. If there are no collection attributes or variable-length strings, then the cost is

the same as the cost to compute the output cardinality.

CHAPTER 5. MONITORING A QUERY PLAN 136

Operator Overhead computing out-
put cardinality (%)

Overhead computing oper-
ator time (%)

Scan A 0.36 (6.6/freq+ 0.18)
Scan B 0.24 (4.35/freq+ 0.12)
Scan C 0.12 (2.27/freq+ 0.06)
Scan D 0.02 (0.32/freq+ 0.01)
Hash-Join A 0.72 (13.5/freq+ 0.36)
Hash-Join B 0.46 (8.52/freq+ 0.23)
Hash-Join C 0.36 (6.83/freq+ 0.18)
Hash-Join D 0.1 (1.77/freq+ 0.05)
Project 6.78 (125.27/freq+ 3.39)
Unnest 0.60 (10.92/freq+ 0.30)

Table 5.12: The percentage increase in the operator cost when predictions are made.

5.4.3 Accuracy of predictions

The formulas introduced in Section 5.3 are rather straightforward and may be expected

to give better results when the system is uniform in terms of load, attribute value distri-

bution, operator workload, etc. However, it is interesting to examine how large the de-

viations are when the formulas are applied to skewed data. Since all operators require

initial estimates for their input cardinality, an error in that cardinality compromises the

accuracy at exactly the same magnitude. Consequently, it is important that an operator

not only is able to make accurate predictions about the cardinality of its result set, but

also that it is able to pass that information on to its parent operator in the query tree, as

described in Section 5.3.3.

Consider three scans. The first, scan1, has selectivity 10% and the tuples that

satisfy the scan condition are spread in a uniform manner across its extent. The second,

scan2, also has a uniform distribution, but the selectivity is 50%. The third scan, scan3,

has a selectivity of 50%, and is satisfied by all but the first 25% and the last 25% of

the tuples. Figure 5.2 shows how accurate the predictions for the output cardinality

are at each stage in the process of query execution. The formulas used imply that

the final prediction of the selectivity of the predicate is the same as the monitored

selectivity at that point (Table 5.8). This means that the baseline (i.e., 0% deviation

from an accurate prediction) is given either by the prediction when 100% of the query

execution has completed, or by the monitored selectivity after the finish of execution.

If the tuples that satisfy the predicate are distributed across the dataset in a uniform

manner (e.g., scan1 and scan2) the accuracy is very high and not dependent on the

CHAPTER 5. MONITORING A QUERY PLAN 137

10 20 30 40 50 60 70 80 90 100
−100

−80

−60

−40

−20

0

20

40

progress of query execution (%)

de
vi

at
io

n
fr

om
 c

or
re

ct
 p

re
di

ct
io

n
(%

)

scan1
scan2
scan3

Figure 5.2: The accuracy of the predictions for the output cardinality of the three scans
at different stages of the operator execution.

selectivity. However, for skewed distributions with unfavourable shapes (e.g., scan3),

the predictions can be erratic over the course of execution. Figure 5.3 shows that the

operator response time can be accurately predicted from the very early stages for all

three scans, as well (every tuple is monitored and the machine load does not vary

during execution in this experiment2).

5.4.4 General remarks on the evaluation

There are several lessons to be learned from the evaluation of the overheads related to

monitoring:

1. In the approach proposed, there are three types of monitored information: coun-

ters, timings, and sizes of variable-length strings. The overhead of these three

types is not dependent on the type of the query operator. The costs of counting

and of computing a time interval are constant for a given system, whereas the

cost of measuring the size of a string depends on its size.

2In [GPFS03], experiments are presented for more monitoring frequencies and load variations.

CHAPTER 5. MONITORING A QUERY PLAN 138

10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

progress of query execution (%)

de
vi

at
io

n
fr

om
 c

or
re

ct
 p

re
di

ct
io

n
(%

)

scan1
scan2
scan3

Figure 5.3: The accuracy of the predictions for the response time of the three scans.

2. The cost of a counter is negligible for all the operators examined. However, this

is not true for timings and string computations.

3. The cost of computing the output cardinality is lower than 1% for all operators

examined except project, for which it is 6.78%. So, it can be regarded as low.

Additionally, the relative cost of predicting the final response time is lower than

13.5% for all operators except project, even if the time cost of each tuple is

measured separately. If the time cost is measured at a frequency lower than 10%

(i.e., one in ten tuples is timed), the cost becomes lower than 1.5% for these

operators.

4. The results presented can be transferred to anySelect-Project-Joinquery. This

is because (i) such queries can be evaluated using the operators examined here;

and (ii) the number of operators in the query plan does not have any impact on

the monitoring cost as every operator is being monitored independently.

In general, the relative overhead incurred by monitoring remains low if the monitor-

ing frequency of inexpensive operators (and the monitoring frequency of all operators

CHAPTER 5. MONITORING A QUERY PLAN 139

when the environment is stable) remains low. Notice that in multi-pass implementa-

tions of operator algorithms, where the data cannot fit entirely in main memory, the

average cost of the operator is expected to be significantly higher, whereas the cost of

monitoring is expected to remain the same. Consequently, in such systems the con-

tribution of the monitoring cost to the total execution time is envisaged to be even

smaller. Thus, the results presented here with respect to the proportional overhead

of monitoring approximate the worst-case scenario, as other query processors are ex-

pected to behave either similarly to or worse than the query processor used, in terms of

the monitoring overhead. For accurate predictions, a good knowledge of the input sizes

and cardinalities is always required, which means that the children also need to be able

to make good predictions and pass on relevant information to their parent. If the load

of the system does not vary, the total response time can be predicted accurately from

the early stages of execution. Skewed distributions impose significant errors but, even

in such cases, predictions based on the very simple formulas presented can be better

than direct usage of estimates produced at compile time.

5.5 Summary

So far, adaptive query processors have tended to use potentially efficient, butad hoc,

ways of collecting feedback from the environment and the query plan itself, analysing

that feedback and choosing a reaction, all grouped together. It has been argued in

this thesis that these three functions can be studied separately, in order to exploit the

benefits ofdivide-and-conquertechniques and to gain generality, substitutability, and

reusability. The main contribution of this section is the construction of a generic tech-

nique for monitoring the execution of query plans, based on self-monitoring query

operators, with a view to employing this technique for adaptive query processing on

the Grid.

The main features of the approach presented are:

1. The approach is generic in the sense that it does not depend on any particular

adaptive system or form of adaptation.

2. The approach is capable of driving adaptations. It is able to collect information

that is directly relevant to the assessment process of adaptivity by establishing

where a plan is deviating from its anticipated behaviour, as it can identify and

CHAPTER 5. MONITORING A QUERY PLAN 140

predict erroneous initial estimates on the fly. In other words, it can provide the

necessary background for on-the-fly adaptation, as discussed in Section 5.3.

3. The approach is comprehensive. It covers a broad range of query execution

aspects, although it is based only on counters, timings, and size computations,

as discussed in Section 5.2. Moreover, it provides monitoring information that

is sufficient to support most AQP proposals to date, as demonstrated in Section

5.3.4.

4. The approach can be easily implemented and incorporated in existing query

processors. It can be easily implemented as it employs only counters, timestamps

and tuple size computations. It can be easily integrated into existing query en-

gines, as it does not require changes in the architecture or in the internal logic

of the query optimiser. Thus modifications are required neither in the engine

architecture nor in the optimiser, but only in the implementation of the operators

themselves, which is deemed to be less disruptive to the query compilation and

evaluation architecture.

5. The approach can scale well with the number of machines used in query exe-

cution because there exists no central monitoring point. For the same reason, it

is not affected by the size of a query plan in terms of the number of operators

comprising the latter. Consequently, it fits better into distributed environments

with potentially large numbers of nodes.

6. It accommodates different levels of detail in the monitoring information (i.e.,

operator-independent vs. operator-specific monitoring), monitoring frequency

and data movement. In particular, this section discusses instantiations of the ap-

proach in which (i) no monitoring data is passed between the operators of the al-

gebra, (ii) monitoring data is passed between operators of the algebra only within

a single computational node, and (iii) information is passed between computa-

tional nodes in a distributed plan. Thus the approach is able to trade monitoring

quality for monitoring overhead, as discussed in Section 5.3.3.

7. Finally, the monitoring approach was experimentally evaluated. As thecostof

monitoring and thequality of the results obtained by monitoring are important,

experiments have been conducted on both these features, which are presented in

Section 5.4. This cost cannot be described as low or high as there is no general

CHAPTER 5. MONITORING A QUERY PLAN 141

consensus on these terms, but it is felt that the overheads incurred are reason-

able and our results encouraging. In addition, the experimental results provide

insights into how the frequency and the intensity of monitoring impact on its

cost.

The material of this section has appeared in [GPFS04], and is discussed in more

detail in [GPFS03].

Chapter 6

Adapting to Changing Resources

In Chapter 4, with a view to making the development of AQP systems more sys-

tematic, an implementation strategy was suggested, in which monitoring, assessment

and response can be clearly distinguished. In the same chapter, it was identified that

adapting to changing resources is a field that has not been sufficiently explored in AQP

to date, especially in wide-area environments. Also, in Chapter 5, it was discussed

how self-monitoring operators can provide up-to-date information about the query ex-

ecution to drive adaptations.

The aim of this chapter is to bring all these together and, in particular, to present

a complete instantiation of the adaptivity framework presented in Chapter 4 in the

context of the OGSA-DQP query processor that was introduced in Section 2.5. The

resulting adaptive prototype employs self-monitoring operators, and is capable of

• adapting to workload imbalance by repartitioning data (and operator state when

required); and

• reacting to changes in the resource pool, by employing new machines that be-

come available.

The remainder of the chapter is structured as follows. Related work is in Section

6.1. The extensions to the static OGSA-DQP system in order to transform it into an

adaptive one are presented in Section 6.2. Sections 6.3 and 6.4 demonstrate adaptations

to workload imbalance and resource availability, respectively. Section 6.5 concludes.

142

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 143

6.1 Related Work

Query processing on the Grid is a special form of distributed query processing over

wide-area autonomous environments. Work in this area has resulted in many in-

teresting proposals such as ObjectGlobe [BKK+01], Garlic [JSHL02] and Mariposa

[SAL+96], but has largely ignored the issues of intra-query adaptivity.

Adaptive query processing is an active research area [BB05]; solutions have been

developed to compensate for inaccurate or unavailable data properties (e.g., [AH00,

KD98]), manage bursty data retrieval rates from remote sources (e.g., [Ive02]), and

provide prioritized results as early as possible (e.g., [RRH99]). However, as already

identified in Chapter 4, they usually focus on centralised, mostly single-node query

processing, and do not yet provide robust mechanisms for responding to changes in

the available resources, especially when an arbitrarily large number of autonomous

resources can participate in the query execution, as it is the case in Grid query process-

ing.

As an example that does consider distributed settings, [IHW04] deals with adapta-

tions to changing statistics of data from remote sources, whereas the proposal of the

current thesis, complementarily, focuses on changing resources. Moreover, sources in

[IHW04] only provide data, and do not otherwise contribute to the query evaluation,

which takes place centrally. Eddies [AH00] are also used in centralised processing

of data streams to adapt to changing data characteristics (e.g., [CF03]) and operator

consumption speeds. When Eddies are distributed, as in [TD03, ZOTT05], such con-

sumption speeds may indicate changing resources. Distributed Eddies in [ZOTT05]

can perform inter-operator balancing, whereas the focus here is on intra-operator bal-

ancing; in this dimension, the two proposals complement each other. Nevertheless, the

approach proposed in this thesis is more generic as (i) it is not clear how distributed

Eddies in [TD03] can extract the statistics they need in a wide-area environment, and

how they can keep the messaging overhead low; (ii) Eddies cannot handle all kinds

of physical operators (e.g., traditional hash joins); (iii) redistribution of operator state

is not supported; and (iv) Eddies are difficult to encapsulate mechanisms for types of

adaptation other than tuple routing, such as dynamic resource allocation. Adapting to

changing data properties has also been considered in distributed query processing over

streams [CBB+03]. Some forms of reoptimisation of parallel plans, including using

new machines on the fly, are presented in [NWMN99]. However, this approach is not

generic since it can be applied only to a limited range of unary operators. In [Ive02],

substitution of data sources on the fly is supported to tackle data source failure; the

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 144

approach presented in this thesis is more generic as it can cover resources that provide

both data and computations, and can adapt not only to failures.

For data and state repartitioning, the most relevant work is the Flux operator for

continuous queries [SHCF03], which extends exchanges and uses partitioned paral-

lelism. However, the Flux approach is more suitable for more tightly coupled architec-

tures (such as shared-nothing parallel machines) in which synchronous communication

is more realistic, as it assumes low latency of messaging, and feasible direct migration

of operator state across processors. Thus it cannot be applied easily to a Grid setting.

Further, it is not extensible to support other kinds of adaptations, such as increasing the

degree of parallelism dynamically. Rivers [ADAT+99] follow a simpler approach, and

are capable of performing only data (but not state) repartitioning. State management

has also been considered in [DH04], but only with a view to allowing more efficient,

adaptive tuple rerouting within a single-node query plan. Finally, [ZRH04] has ex-

amined possible operator state management techniques to be used in any single-node

adaptation.

6.2 Grid Services for Adaptive Query Processing

The adaptivity framework described in Chapter 4 has been implemented as an ex-

tension to OGSA-DQP [AMG+04]. This section presents a summary of the exten-

sions made, whereas the following sections demonstrate how the extensions are used

to achieve adaptations to changing resources. The overall architecture is presented in

Figure 6.1. TheMonitoringEventDetectorcomponent instantiates the monitoring com-

ponent of the framework (see also Figure 4.1) and integrates the raw events produced

by the query engine. TheDiagnoserperforms the assessment phase, i.e., establishes

whether there is an issue with the current execution. TheResponderis notified of

any such issues and chooses how to react. In the adaptations examined in this chap-

ter, a singleDiagnoserand a singleResponderare sufficient, whereas multipleMoni-

toringEventDetectorsare required, one at each evaluation site.

In summary, the execution engine produces notifications that include the per tuple

cost of individual operators (or sets of operators) in the query plan, or the per tuple

cost of sending data from one evaluator to another, or information about the amount

of memory available and the current machine load. These notifications are processed

by theMonitoringEventDetector, which notifies theDiagnoser, when substantial value

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 145

Assessment

Response

resource info

Q
ue

ry
 E

va
lu

at
or

prompt for
adaptation

issues with current execution

monitoring events

Monitoring
infoexecution

Query

MonitoringEventDetector

Diagnoser

Responder

Resource Repository

Figure 6.1: The architecture of the instantiation of the adaptivity framework.

changes have been detected. TheDiagnoseris capable of diagnosing two issues, im-

balanced workload distribution across evaluators or insufficient number of evaluators,

and of notifying theResponderaccordingly. TheResponder, when it decides to react,

it does so in two ways: either by modifying the workload distribution, or by changing

the machine allocation. For both cases, appropriate messages are sent back to the eval-

uation engine. Also, the components can exchange subscription messages. The notifi-

cations mentioned can be combined in various ways, to implement several adaptation

strategies and to address different issues. For instance, changing machine allocation

may be the performed to boost performance, or to replace a failed machine. The exact

protocols will be presented later for each of the two types of adaptations examined in

this thesis separately.

Certain measures have been taken in order to avoid unstable conditions and flood-

ing the system with messages unnecessarily. Firstly, small value changes are not prop-

agated to theDiagnoser, and small changes in the workload distribution are not sent

for further consideration to theResponder. Moreover, theRespondermay not react if

the execution is close to completion or the interval between adaptations is short.

The extensions made to the static version of OGSA-DQP fall into three categories

that will be examined separately:

1. extensions that are concerned with the role of GQESs, and the implementation

of the framework components;

2. extensions to the evaluation engine, within GQESs; and

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 146

3. extensions to GDQS.

6.2.1 Adaptive GQESs

As discussed in Section 2.5, OGSA-DQP has been implemented over the Globus

Toolkit 3 Grid middleware [GLO] in Java, apart from the compiler, which has been

inherited from Polar* and has been implemented in C/C++. It provides two types of

Grid Services to perform static query processing on the Grid, GDQS (Grid Distrib-

uted Query Service) and GQES (Grid Query Evaluation Service). A GDQS contacts

resource registries that contain the addresses of the computational and data resources

available, to update the metadata catalog of the system. It accepts queries from the

users in OQL, which are subsequently parsed, optimised, and scheduled employing

intra-operator parallelism (Section 2.4). The query plan consists of a set of subplans

that are evaluated by GQESs. A GQES is dynamically created on each machine that

has been selected by the GDQS’s optimiser to contribute to the execution. GQESs

contain the query execution engine. Data communication is encapsulated within the

exchange operator [Gra90], which has been enhanced as described later. Inter-service

tuple transmission is handled by SOAP/HTTP as in many Web/Grid Service applica-

tions, and, for performance reasons, it does not happen for each tuple separately, but

the tuples to be transmitted are aggregated in buffers.

Adaptive GQESs (AGQESs) encapsulate the framework components for monitor-

ing, assessment and response (Chapter 4). Each AGQES comprises four components:

one for implementing the query operators and thus forming the query engine (which is

the only component in static GQESs), and three for adaptivity, in line with the adap-

tivity framework. Monitoring is based on self-monitoring operators, as reported in

Chapter 5 and in [GPFS04]. As such, the query engine is capable of monitoring its

own behaviour, and of producing raw, low-level monitoring information (such as the

number of tuples each operator has produced to this point, and the actual time cost

of an operator). TheMonitoringEventDetectorcomponent integrates the raw events

produced by the query engine. It detects value changes (e.g., change in the average

cost of an operator and the number of machines available). TheDiagnoserestablishes

whether there is an issue with the current execution, such as workload imbalance. The

Responderis responsible for the response phase. For each type of diagnosed issue that

it can be notified of, it stores a corresponding response base containing all the possible

responses to this issue. Its decisions may affect not only the local query engine, but any

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 147

<complexType name="Notification">
<sequence>

<!-- generic fields -->
<element name="description"/>
<element name="destinationId"/>
<element name="originatorService"/>
<element name="messageId"/>
<element name="correlatedMessageId"/>
<!-- specific fields -->
<choice>

<element name="MonitoringInformation">
<complexType>...</complexType>

</element>
<element name="PerformanceChange">

<complexType>...</complexType>
</element>
<element name="ImbalancedNode">

<complexType>...</complexType>
</element>
...

</choice>
</sequence>

</complexType>

Figure 6.2: Notification schema definition.

query engine participating in the evaluation. The query engine is extended to be capa-

ble of handling such response messages. The adaptivity notifications and subscription

requests are transmitted across AGQESs as XML documents over SOAP/HTTP.

It is important to note that the above approach implies that the GDQS optimiser

need not play any role during adaptations, and the distributed AGQESs encapsulate all

the mechanisms required to adjust their execution in a decentralised way.

6.2.1.1 Adaptivity Notifications

The set of types of notifications exchanged between components are described in

the AGQES interface in XSD (XML Schema Definition language). The notification

schema is shown in Figure 6.2, and consists of two parts:

• generic fields, which are common to all notifications;

• specific fields, which may differ for different types of notifications.

The generic fields include: (i)description, which specifies the type of the notifica-

tion (e.g., whether it is a subscription); (ii)destinationId, which specifies the recipient

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 148

AdaptivityComponent {
public:

Queue inputQueue;

private:
AdaptivityComponent[] subscribers;

analyseNotification(Notification) {
}

sendNotification(Notification,subscribers) {
}

subscribe() {
}

while (true) {
Notification not = inputQueue.getNotification();
analyseNotification(not);

}
}

Figure 6.3: Sketch of the interface of adaptivity components.

component in a possibly remote AGQES; (iii)originatorService, which specifies the

handle of the AGQES that sends the notification; (iv)messageId, which allows unique

message identification; and (v)correlatedMessageId, which specifies any other notifi-

cations that may need to be taken into account for the correct processing of the current

message.

The specific fields are defined separately for each type of notification, and thus,

are tailored to the particular kinds of adaptations that the system supports. Examples

include fields to propagate monitoring information from the query engine (see Chapter

5), to denote that the performance of a physical machine has changed, to denote that

a physical operator is partitioned across machines in an imbalanced way, and so on

(Figure 6.2).

6.2.1.2 Implementation of Adaptivity Components

Figure 6.3 provides a sketch of the implementation of each adaptivity component, re-

gardless its kind (i.e.,MonitoringEventDetector, Diagnoser, Responder). Each adap-

tivity component exposes to other parts of the system only its queue for incoming

messages. At runtime, in each component, a thread is running continuously in the

background to retrieve the notifications that have arrived in the queue. The analysis of

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 149

a notification is specific to the notification type (e.g., notifications for denoting change

in the cost of an operator, workload imbalance, request for plan modification, etc.) and

may involve sending a new notification to (some of the) subscribed components.

Each component conforms to a generic interface in which there are the following

functions:

• analyseNotification(Notification), for the analysis of input messages;

• sendNotification(Notification), for publishing events; and

• subscribe(), for registering with other adaptivity components.

As such, the adaptivity components differ in the types of notification they can

analyse, and how the analysis is conducted, i.e., how theanalyseNotification(Notification)

function is implemented. This is in analogy to the iterator model of execution [Gra93],

according to which the operators conform to theopen()-next()-close()interface, and

differ in the exact implementation of the above functions.

6.2.2 Extensions to the Evaluation Engine

The extensions to the evaluation engine are at two levels: (i) the execution engine has

become capable of receiving adaptivity notifications that prompt for modifications of

the current execution; and (ii) the exchange operator has been extended both to produce

monitoring information that drives the adaptivity cycle, and to modify its behaviour

dynamically.

The first type of extensions has been realised through the development of a func-

tion analyseNotification()within the query engine, similarly to theanalyseNotifica-

tion() functions in the adaptivity components. This entails that the evaluation engine

receives adaptivity-related messages in a dedicated message queue, and provides the

mechanisms for their correct interpretation.

Extensions to exchanges are more intrusive and are described in more detail below.

6.2.2.1 Extending Exchanges

Fault-tolerance capabilities1 To achieve fault tolerance the system relies on a roll-

back checkpoint-based protocol, which extends the approach in [CBB+03] (details

1The development of fault tolerance capabilities in the context of the adaptive OGSA-DQP is not
part of the work of the thesis. However, this functionality is presented here, as it will be leveraged to
perform some of the adaptations that are described later.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 150

Ex−Cons Ex−Cons

Ex−ProdEx−Prod

Log Log

data flow

acknowledgement

flow

thread boundaries

Machine A Machine B

Figure 6.4: The enhanced exchanges

can be found in [SW04]). As mentioned earlier, exchanges comprise of exchange pro-

ducers and exchange consumers (Ex-Prod and Ex-Cons in Figure 6.4, respectively).

The producers insert checkpoint tuples into the set of data tuples they send to their

consumers. They also keep a copy of the outgoing data in their local recovery log.

When the tuples between two checkpoints have finished their processing and they are

not needed any more by the operators higher in the query plan, the checkpoints are

returned in the form of acknowledgment tuples. Figure 6.4 shows an example of the

data and acknowledgement flows when data is partitioned between two machines (that

also hold the data initially). On receipt of the acknowledgement tuples, the recovery

logs are pruned accordingly. In practice, the recovery logs contain, at any point, the

tuples that have not finished their processing by the evaluators to which they were sent,

and thus include all the in-transit tuples, and the tuples that form operator state.

Monitoring Capabilities In the adaptive OGSA-DQP system, exchanges implement

the self-monitoring approach introduced in Chapter 5. Moreover, they are capable of

propagating such monitoring information as adaptivity notifications, which are subse-

quently integrated in theMonitoringEventDetectorcomponent.

Response Capabilities The interface of exchanges has been enhanced with the fol-

lowing functions:

• setDataReDistribution(), which applies to the producer thread of exchanges, and

modifies the proportion of workload that each of the consumers receives.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 151

<Partition>
<ADAPTIVITY_CONFIGURATION>

<!-- ADAPTIVITY_COMPONENTS ->
...
<!-- QUERY_PLAN_INFO ->
...

</ADAPTIVITY_CONFIGURATION>
<Operator operatorID="2" operatorType="EXCHANGE">

<tupleType> ... </tupleType>
<EXCHANGE>

<inputOperator> <OperatorID> ... </OperatorID></inputOperator>
<consumers> ... </consumers>
<producersNumber> ... </producersNumber>
<producers> ... </producers>
<arbitratorPolicy> ... </arbitratorPolicy>
<EXPECTED_CARDINALITY> ... </EXPECTED_CARDINALITY>

</EXCHANGE>
</Operator>

</Partition>

Figure 6.5: An example of a plan fragment in adaptive OGSA-DQP.

• addConsumer(), which applies to the producer thread of exchanges, and adds a

new exchange consumer.

• addProducer(), which applies to the consumer thread of exchanges, and adds a

new exchange producer.

To implement a response, when a response notification received by the query en-

gine, and analysed, one of the functions above may be called.

6.2.3 Extensions to the GDQS

In static OGSA-DQP, a GDQS contacts the GQESs it has created once, in order to

send the query plan fragment that is to be evaluated by the evaluation engine within

this GQES. This information is required to initialise the evaluation engine, and is sent

in an XML document. In the adaptive OGSA-DQP, as AGQESs contain not only an

evaluation engine but also the adaptivity components, more information needs to be

included in this XML document, to initialise these components properly.

Figure 6.5 shows an example excerpt of such documents, which can be compared

against the excerpt in Figure 2.9 in Section 2.5, and in which the new fields are in

capital letters. Regarding the description of the query plan, the only change is that

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 152

exchanges that form the local root of plan fragments are annotated with the estimated

cardinality of the result set.

Also, to make AGQESs capable of adapting autonomously, without the interven-

tion of the GDQS, part of the metadata that is stored in the latter needs to be transferred

to the former. An AGQES needs to be aware of the existence of other AGQESs, even

if there is no direct data communication between them, in order to allow its adaptivity

components to subscribe to remote counterparts. In addition, in order to take some

adaptivity decisions, knowledge of the complete query plan is required, e.g., which

subplans are clones of each other, and which subplans send data to other subplans.

Thus, the metadata sent by GDQSs to AGQESs can be divided in two main categories:

• metadata about the AGQESs participating in the execution, or available to par-

ticipate (adaptivity components field in Figure 6.5); and

• metadata about the global query plan (query plan info field in Figure 6.5).

6.3 Adapting to Workload Imbalance

6.3.1 Motivation and Problem Statement

Grid query processing, like many Grid computations, is likely to place a significant

emphasis on high-performance and scalability. Traditionally, query processors often

attain scalability by partitioning the operators within a query execution plan across

multiple nodes, a form of parallelism commonly referred to asintra-operatoror par-

titioned [Gra93]. In this way, all the clones of an operator evaluate a different portion

of the same dataset in parallel. In Chapter 3, a novel algorithm has been introduced

to schedule resources and to define the degree of partitioned parallelism for each part

of the query, when there is a potentially huge pool of available resources. Orthogo-

nally to the issue of resource scheduling, a basic difficulty in efficiently executing a

query on the Grid is that the unavailability of accurate statistics at compile time and

evolving runtime conditions may causeload imbalancethat detrimentally affects the

performance of the query execution. The execution of a plan fragment over a stati-

cally scheduled set of resources is considered asbalancedwhen all the participating

machines finish at the same (or about the same) time. Workload imbalance may be the

result of uneven load distribution in the case of homogeneous machines. But in the

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 153

case of heterogeneous machines and the Grid, it might be the result of a distribution

that is not proportional to the capabilities of the machines employed.

In the Grid, common problems stem from the different CPU characteristics of each

machine contributing to the evaluation of a partitioned operator, the loads on machines

(which are autonomous and may run many other jobs), the amount of memory available

per node, the bandwidth of the connections between machines providing raw data, the

cost of processing foreign functions, and so on. In a heterogeneous setting, loads,

network bandwidth and available memory differ between machines, so a challenge for

the query optimiser is to define intra-operator load-partitioning that takes into account

these differences. If the necessary information is unavailable at compile time, the

system needs to be able to extract it on the fly and adapt the execution accordingly.

Failing to do so in an efficient way may, to a significant extent, if not totally, annul

the benefits of parallelism. Just as in homogeneous, controlled environments (e.g.,

clusters of similar nodes), a slowdown in even a single machine that is not followed

by the correct rebalancing, causes the whole system to underperform at the level of the

slow machine [ADAT+99]. For long-running queries an additional challenge lies in

the fact that properties like machine load, connection bandwidth and cost of operators

are modified during execution. The result is that the per-tuple processing cost of each

evaluator is constantly changing in an unpredictable way. To tackle this, the query

processor needs not only to be able to capture these changes occurring in a wide-area

environment, but also to respond to them in a comprehensive, timely and inexpensive

manner by devising and deploying appropriate repartitioning policies.

Adaptive load balancing becomes more complicated if the parallelised operations

store intermediate state, like the hash join and group-by relational operations (such

operators are called stateful). Let us assume, for example, that a query optimizer con-

structs a plan in which there is a hash join parallelised across multiple sites. The

smaller input is used to build the hash table, which is probed by the other input. A

hash function applied to the join attribute defines the site for each tuple. In this case,

any data repartitioning concerning the tuples not processed yet, needs to be accompa-

nied by repartitioning of the state that has already been created within the instances of

the hash joins in the form of hash tables.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 154

1
2

2

23

6

4

5

Diagnoser

Responder

Q
ue

ry
 E

ng
in

e

Diagnoser

Responder

Q
ue

ry
 E

ng
in

e

subscribe

adapt execution

submit plan
fragment

AGQES

subscribe

subscribe

raw monitoring
events

Monitoring Event Detector

Monitoring Event Detector
send notification

AGQESs

if resource performance changes

send notification
in case of imbalance

Figure 6.6: Instantiating the adaptive architecture for dynamic workload balancing.

6.3.2 Approach

To achieve workload balance during execution, the AGQESs are configured in the fol-

lowing way. TheMonitoringEventDetectoris active in each site evaluating a query

fragment, receiving raw monitoring events from the local query engine. There also

needs to be a single activated, globally accessibleDiagnoserandResponder, that sub-

scribes to theMonitoringEventDetectors. Further, it is assumed that the locations of

the DiagnoserandResponderdo not change during execution. Figure 6.6 presents

this configuration, along with a summary of the messages exchanged and their order.

Below, it is described in more detail how the monitoring, assessment, and response

phases take place.

The configuration information sent by the GDQS to the AGQESs includes:

• The handles of all participating AGQESs. This information is considered only

by the AGQES that holds the globally accessibleDiagnoserandResponder, and

is necessary to conduct the subscription.

• The sets of clone instances of exchange producers and their corresponding con-

sumers, along with the identifiers of the operators that form the boundaries of

subplan fragments, i.e., the operators that form the local root and the local leaf

operators. This information is sufficient for obtaining complete knowledge on

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 155

<complexType name="adaptivityConfigurationType">
<sequence>

<!-- ADAPTIVITY_COMPONENTS ->
<element name="AGQESHandle" maxOccurs="unbounded"/>
<!-- QUERY_PLAN_INFO ->
<element name="ExchangeSet" maxOccurs="unbounded">

<complexType>
<sequence>

<element name="ProducerExchange" maxOccurs="unbounded"/>
<element name="ConsumerExchange" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>
<element name="LocalConnection" maxOccurs="unbounded">

<complexType>
<sequence>

<element name="SubplanRoot"/>
<element name="SubplanRightMostLeaf"/>
<element name="SubplanLeftMostLeaf" minOccurs="0"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>

Figure 6.7: XSD for the adaptivity configuration metadata for dynamic workload bal-
ancing.

how data flows across subplans.

The corresponding XSD is shown in Figure 6.7.

6.3.3 Monitoring

The query engine generates notifications of the following two types:

• M1, which includes notifications containing information about the processing

cost of a tuple. Such notifications are generated by the exchange operators that

form the local root of subplans (i.e, exchange producers) and their specific fields

include (Figure 6.2):

– the cost of processing an incoming tuple in milliseconds;

– the average waiting time of the subplan leaf operator for this tuple in mil-

liseconds, which corresponds to the idle time that the relevant thread has

spent; and

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 156

<complexType name="Notification">
<sequence>

<element name="description" value="DETECTED_EVENT"/>
<element name="destinationId value="DIAGNOSER"/>
<!-- rest generic fields -->
....
<!-- specific fields -->
<element name="rootOperatorID" />
<element name="nonCommunicationCostMsec" />
<element name="waitingCostMsec" />
<element name="communicationCostMsec" />
<element name="receiverEvalID" />
<element name="numProducedTuples"/>
<element name="blockCounter" />
<element name="blockSize"/>

</sequence>
</complexType>

Figure 6.8: Schema definition of notifications sent by theMonitoringEventDetector
component.

– the current selectivity.

• M2, which includes notifications containing information about the communica-

tion cost of an outgoing buffer of tuples. Such notifications are generated by

exchanges that form the local root of subplans, and include:

– the cost of sending a buffer in milliseconds;

– the recipient of the buffer; and

– the number of tuples that the buffer contains.

These low-level notifications are sent to aMonitoringEventDetectorcomponent,

which:

• groups the notifications of type M1 by the identifier of the operator that gener-

ated the notification, and the notifications of the type M2 by the concatenated

identifiers of the producer and recipient of the relevant buffer;

• computes the running average of the cost over a window of a certain length,

discarding the minimum and maximum values as outliers; and

• generates a notification to be sent to subscribedDiagnosers, if these average

values change by a specified thresholdthresM. The XSD of such a notification

is shown in Figure 6.8, and covers both M1 and M2 analysis.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 157

<complexType name="Notification">
<sequence>

<element name="description" value="DIAGNOSED_ISSUE"/>
<element name="destinationId value="RESPONDER"/>
<!-- rest generic fields -->
....
<!-- specific fields -->
<element name="ImbalancedNode" maxOccurs="unbounded">
<complexType>

<element name="subplanRootOpId"/>
<element name="subplanRootOpEvaluator"/>
<element name="performanceIndicator" />
<element name="currentProportion" />
<element name="proposedProportion" />

</complexType>
</element>

</sequence>
</complexType>

Figure 6.9: Schema definition of notifications sent by theDiagnosercomponent.

The default configuration is characterised by the following parameters:

• the monitoring frequency for the query engine is one notification for each 10

tuples produced (for the type M1) and one notification for each buffer sent (for

the type M2);

• the low level notifications from the query engine are sent to the localMoni-

toringEventDetector;

• the window over which the average is calculated (in theMonitoringEventDetec-

tor) contains the last 25 events; and

• the thresholdthresMto generate notifications forDiagnosersis set to 20%. This

means that the average processing cost of a tuple needs to change by at least

20%, before theDiagnoseris notified.

6.3.4 Assessment

The assessment is carried out within aDiagnoser. A Diagnosergathers information

produced byMonitoringEventDetectorsto establish whether there is workload imbal-

ance.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 158

Let us assume that a subplanp is partitioned acrossn machines, andpi, i = 1 . . . n,

is the subplan fragment sent to theith AGQES. TheMonitoringEventDetectorsno-

tify the cost per processed tuplec(pi) for each such subplan, as explained earlier.

Firstly, theDiagnoseridentifies the different partition instances based on the config-

uration information it has received during initialisation (Figure 6.7). Also, theDiag-

noseris aware of the current tuple distribution policy, which is represented as a vector

W = (w1, w2, . . . , wn), wherewi represents the proportion of tuples that is sent to

pi. To balance execution, the objective is to allocate a workloadw
′
i to each AGQES

that is inversely proportional toc(pi). TheDiagnosercomputes the balanced vector

W
′
= (w

′
1, w

′
2, . . . , w

′
n). However, it only notifies theResponderwith the proposed

W
′

if there exists a pair ofwi andw
′
i for which |wi−w

′
i |

wi
exceeds a thresholdthresA.

This is to avoid triggering adaptations with low expected benefit.

Figure 6.9 shows the schema of the notifications published. Thepi fragment is

defined by thesubplanRootOpId andsubplanRootOpEvaluator elements.

performanceIndicator corresponds to the cost per tuplec(pi). wi andw
′
i are

specified incurrentProportion andproposedProportion , respectively.

The cost per tuple for a subplan,c(pi), can be computed in two ways:

• A1, which takes into account only the notifications of type M1 that are produced

by the relevant subplan instance; or

• A2, which additionally takes into account the notifications of type M2 that are

produced by the subplans that deliver data to the relevant subplan instance, and

contain the communication costs for this delivery.

The default configuration is characterised by the following parameters:

• the thresholdthresAto generate notifications forRespondersis set to 20%; and

• the communication cost between subplans in the same machine (i.e., when the

exchange producer and consumer reside on the same machine) is considered

zero.

6.3.5 Response

TheResponderreceives notifications about imbalance from theDiagnosersin the form

of proposed enhanced workload distribution vectorsW
′
. To decide whether to ac-

cept this proposal, it contacts all the evaluators that retrieve store data to estimate the

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 159

<complexType name="Notification">
<sequence>

<element name="description" value="RESPONSE_IMBALANCE"/>
<element name="destinationId value="AGQES_RESPONDER"/>
<!-- rest generic fields -->
....
<!-- specific fields -->
<element name="ExchangeReconfiguration">
<complexType>

<element name="modifiedOpId" />
<element name="consumerReference" maxOccurs="unbounded"/>
<element name="newProportion" maxOccurs="unbounded"/>

</complexType>
</element>

</sequence>
</complexType>

Figure 6.10: Schema definition of notifications sent by theRespondercomponent.

progress of execution in line with [CNR04]. According to this approach, the ratio of

the tuples already produced by the evaluators that contact the store, and the expected

final cardinality (which exists as annotation in the query plan), provides a good ap-

proximation of the progress of the query execution. The information about the number

of tuples already produced is available from theMonitoringEventDetectors, and is pro-

vided as a response to a request of theResponder(numProducedTuples field in

Figure 6.8).

If the execution is not close to completion, i.e., the progress has not exceeded a

thresholdthresR, it notifies the evaluators that need to change their distribution policy,

which are the evaluators that send data to the imbalanced subplan, and theDiagnosers

that need to update the information about the current tuple distribution (i.e,W ← W
′
).

The former are identified based on the configuration information received during ini-

tialisation (Figure 6.7).

The schema of the notifications that are delivered to all the AGQES, which send

data to the imbalanced subplan, is shown in Figure 6.10. This message is put in the

relevant queue of the evaluation engine and not in the queues of the adaptivity compo-

nents (the value of thedestinationId is “AGQES RESPONDER”). The analysis

of the message leads to a call to thesetDataReDistribution()function of the exchanges

sending data to the problematic subplan (modifiedOpId in Figure 6.10). For each

consumer of such exchanges, there is an entry of typeconsumerReference in the

notification, and a corresponding entry of typenewProportion , which specifies the

new proportion that the relevant consumer is allocated to.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 160

The recovery logs, deployed mainly to attain failure recovery, provide an opportu-

nity to repartition operator state across consumer nodes by extracting the tuples stored

in the recovery logs, and applying the data repartitioning policy to these tuples as well.

Thus, the data distribution can change in two ways:

• R1, in which the tuples in the recovery logs (i.e., the tuples already buffered to

be sent, and the tuples already sent to their consumers but not processed) are

redistributed in accordance with the new data distribution policy. This redis-

tribution is calledretrospective, as it applies both to new tuples being received

for distribution, and also to tuples already forwarded through this redistribution

point, as long as the tuples have not been finished with by the operators we are

redistributing to; and

• R2, in which the buffered tuples and the recovery logs are not affected. This

redistribution is calledprospective, as it applies only from the present point on-

wards.

In the R1 case, operator state (in the form of buffers of exchange producers, in-

coming queues of exchange consumers, hash tables of hash-based operators, etc.) is

effectively recreated in other machines. This may be useful when adaptations need to

take effect as soon as possible, and it is imperative for redistributing tuples processed

by stateful operators (to ensure result correctness). In other words, if the plan partition

affected by the rebalancing contains operators such ashash-joinsthat build hash tables,

retrospective redistribution is the only valid option.

By allocating a number of tuples to each subplan instance that is inversely propor-

tional to its cost per tuple, all the instancespi of a subplanp are expected to finish at

the same time (i.e., balanced execution), which results in better response times.

The default configuration of theResponderis not to react if more than 95% of the

execution has completed, i.e.,thresR = 0.95.

Figure 6.11 summarises the different combinations of assessment and response for

the two types of monitoring information produced by the evaluation engine.

6.3.6 Evaluation

The experiments presented in this section show the benefits of redistributing the tuple

workload on the fly to keep the evaluation balanced across evaluators, which results in

better performance. The main results can be summarised as follows:

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 161

A1 A2

R1 R2

M1 M2

Responder

Diagnoser

MonitoringEvent
Detector

Figure 6.11: The flow of notifications across adaptivity components for dynamic work-
load balancing.

• in the presence of perturbed machines, the performance (i.e., response time)

improves by several factors and the magnitude of degradation, in some cases, by

an order of magnitude;

• the overhead remains low and no flooding of messages occurs; and

• the system can adapt efficiently even to very rapid changes.

Two example queries are used:

Q1: select EntropyAnalyser(p.sequence)

from protein sequences p

Q2: select i.ORF2 from protein sequences p,

protein interactions i where i.ORF1=p.ORF;

The tablesprotein sequencesand protein interactions, along with theEntropy-

AnalyserWeb Service (WS) operation, are from the OGSA-DQP demo database2 and

they contain data on proteins and results of a bioinformatics experiment, respectively

(ORF, ORF1, ORF2are all protein identifiers). Theprotein sequencesused in the

experiments is slightly modified to make all the tuples the same length to facilitate

result analysis. Q1 retrieves and produces 3000 tuples. It is computation-intensive

2The demo database is free for download from www.ogsadai.org.uk/dqp, as the rest of the OGSA-
DQP system.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 162

rather than data- or communication-intensive. The reason why a small dataset is cho-

sen is that the current OGSA-DQP infrastructure is a service-based one, and so, data

and message communication between services is XML-document-centric, which pre-

vents high performance for big datasets. Thus, the adaptive prototype, which relies

on SOAP/HTTP messaging, is more suitable for computationally expensive queries

(e.g., queries that contain calls to complex data analyses). However, this is a tempo-

rary limitation as there are already proposals to develop high-performance message

sending in SOAP/HTTP (e.g., [SSW04]), and has not inhibited the evaluation of the

adaptivity mechanisms. Moreover, as shown in the experiments, Q1 is chosen in such

a way that data communication and retrieval do contribute to the total response time.

This contribution is even more significant in Q2 which joinsprotein sequenceswith

protein interactions, which contains 4700 tuples (using ahash join, the hash table of

which is copied across all instances to facilitate adaptations). So, Q1 and Q2 are com-

plementary to each other: in the former, the most expensive operator is the call to the

WS, and in the latter, a traditional operator such as join.

The adaptations described can be applied to an arbitrarily large number of ma-

chines. However, to enable carefully controlled experiments to be conducted, and to

ease interpretation of the behaviour of the system for specific kinds of adaptation, two

machines are used for the evaluation ofEntropyAnalyserin Q1, and the join in Q2,

unless otherwise stated. The data are retrieved from a third machine. All machines run

RH Linux 9, are connected by a 100Mbps network, and are autonomously exposed as

Grid resources. It was ensured that they were unloaded at the time of the experiments

in order to avoid result distortion. The third machine retrieves and sends data to the

first two as fast as it can. The iterator model is followed, but the incoming queues

within exchanges can fit the complete dataset. Thus, and due to the pipelined paral-

lelism, the data retrieval is completed independently of the progress of the WS calls

and joins. For each result, the query was run three times, and the average is presented

here. Finally, two methods to create artificial load for machine perturbation have been:

(i) by programming a computation to iterate over the same function multiple times,

and (ii) by insertingsleep()calls.

6.3.6.1 Performance Improvements

This set of experiments demonstrates the capability of AGQESs to degrade their per-

formance gracefully when some machines experience perturbations. Thus they exhibit

significantly improved performance compared to static GQESs. In the first experiment,

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 163

Query-
Response

no ad / no
imb

ad / no imb no ad / imb ad / imb

Q1 - R2 1 1.059 3.53 1.45
Q1 - R1 1 1.15 3.53 1.57
Q2 - R1 1 1.11 1.71 1.31

Table 6.1: Performance of queries in normalised units.

the cost of the WS call in Q1 in one machine is set to be exactly 10 times more than in

the other, and the responses are prospective (response type R2). The first row of Table

6.1 shows how the system behaves under different configurations. More specifically,

the columns in the table correspond to the following cases:

• no ad / no imb:there is no imbalance between the performance of the two ser-

vices, and adaptivity is not enabled;

• ad / no imb:there is no imbalance between the performance of the two services,

and adaptivity is enabled;

• no ad / imb:one WS call is ten times costlier than the other, thus there is imbal-

ance between the two services. Adaptivity is not enabled; and

• ad / imb: there is imbalance between the two services, and adaptivity is enabled.

The results are normalised, so that the response time corresponding tono ad / no

imb is set to 1 unit for each query. The percentage of degradation due to imbalance is

given by the difference of the normalised performance from 1. The adaptivity overhead

is defined as the overhead incurred when adaptivity seems not to be needed (i.e., there

is no imbalance)3, which can be computed by the difference of the second and the third

column of Table 6.1 (1st row). This difference is 5.9%. When one WS is perturbed and

there are no adaptivity mechanisms, the response time of the query increases 3.53 times

(4th column in Table 6.1). For this type of query, the cost to evaluate the WS calls is the

highest cost; however, it is not dominant, as there is significant I/O and communication

cost. Thus, a 10-fold increase in the WS cost, results in 3.53-fold increase in the

query response time. The adaptive system manages to drop this increase to 1.45 times,

3Without adaptivity, the machines finish at the same time (the difference is in the order of fractions
of seconds). This, in general, cannot be attained in a distributed setting. In more realistic scenarios,
adaptivity is very rarely “unnecessary”, even when distributed services are expected to behave similarly,
but these experiments aim to show the actual overhead.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 164

performing significantly better than without adaptivity (45% increase when adaptivity

is enabled as opposed to 253% when it is disabled). This increase is just 17.8% of the

increase without adaptivity.

The 2nd row in Table 6.1 shows the results when the experiment is repeated, and

the adaptation is retrospective (type R1 of response). The increase in response time

when the adaptivity is not enabled (no ad / imb) remains stable as expected (3.53

units). However, the average overhead (ad / no imb) is nearly three times more (15.3%

of the execution). This is because it is now more costly to perform log management,

as the tuples already sent to remote evaluators need to be discarded and redistributed

in a tidy manner. Because of the larger overhead, the degradation of the performance

in the imbalanced case (ad / imb) is larger than for prospective response (1.57 times

from 1.45).

The same general pattern is observed for Q2 as well, using the second method to

create imbalance artificially. In this case, the perturbation is caused in one machine by

the insertion of asleep(10msecs)call before the processing of each tuple by the join.

The 3rd row of Table 6.1 shows the performance when the adaptations are retrospec-

tive. The overhead is 11%, and adaptivity, in the case of imbalance, makes the system

run 1.31 times slower instead of 1.71.

Varying the Size of Perturbation Q1 is rerun for the cases in which the perturbed

WS is 10, 20 and 30 times costlier, and adaptations are prospective. Figure 6.12 shows

that the improvements in performance are consistent over a reasonably wide range of

perturbations. When the WS cost on one of the machines becomes 10, 20 and 30 times

costlier, the response time becomes 3.53, 6.66 and 9.76 times higher, respectively,

without dynamic balancing. With dynamic balancing, these drop to 1.45, 2.48 and

3.79 times higher, respectively, i.e., the performance improvement is of several factors,

consistently.

Effects of Different Policies Thus far, the assessment has been carried out according

to the type A1, in which communication cost is not taken into account. The next

experiment takes a closer look at the effects of different adaptivity policies. Three

cases are examined:

• when theDiagnoserdoes not take into account the communication cost to send

data to the subplan examined for imbalance, and no state is recreated (type A1

of assessment combined with type R2 of response);

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 165

10 times 20 times 30 times
0

1

2

3

4

5

6

7

8

9

10

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

adaptivity disabled
adaptivity enabled

Figure 6.12: Performance of Q1 for prospective adaptations.

• when theDiagnoserdoes not take into account the communication cost to send

data to the subplan examined for imbalance, and state is recreated (type A1 of

assessment combined with type R1 of response); and

• when theDiagnoserdoes take into account the communication cost to send data

to the subplan examined for imbalance, and no state is recreated (type A2 of

assessment combined with type R2 of response).

In essence, when the communication cost is not considered (assessment A1), an as-

sumption is made that the cost for sending data overlaps with the cost of processing

data due to pipelined parallelism (i.e., assessment A1 takes into account the pipelin-

ing). It is believed that such an assumption is valid for the specific example queries,

and indeed, this is verified by the experimental results discussed next.

The performance of the three configurations for Q1 is shown in Figure 6.13. Al-

though all of them result in significant gains compared to the static system, some per-

form better than others. From this figure it can be observed: (i) that taking into consid-

eration the pipelining by performing the assessment of type A1 has an impact on the

quality of the decisions and results in better repartitioning (see the difference between

the leftmost and the rightmost bar in each group); and (ii) that retrospective adaptations

(R1 response) behave better than the prospective ones for bigger perturbations (see the

difference between the leftmost and the middle bar in each group). The latter is also

expected, as the overhead for recreating state remains stable independently of the size

of perturbations, whereas the benefits of removing tuples already sent to the slower

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 166

10 times 20 times 30 times
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

A1 − R2
A1 − R1
A2 − R2

Figure 6.13: Performance of Q1 for different adaptivity policies.

consumers, and re-sending them to the faster ones increases for bigger perturbations.

Also, from Figure 6.13, it can been seen that the bars referring to retrospective

adaptations remain similar with different sizes of perturbation, which means that the

size of performance improvements increases with the size of perturbations. This hap-

pens for two complementary reasons: (i) the higher the perturbation, the more tuples

are evaluated by the faster machine, in a way that outweighs the increased overhead for

redistributing tuples already sent or buffered to be sent; and (ii) for any of these per-

turbations, only a very small portion of the tuples is evaluated by the slower machine,

which makes the performance of the system less sensitive to the size of perturbation of

this machine.

Experiments with Q2 lead to the same conclusions. Figure 6.14 shows the be-

haviour of the join query when thesleep()process sleeps for 10, 50 and 100 msecs,

respectively, and adaptations are of type A1 of assessment and R1 of response. As

already identified in Figure 6.13, retrospective adaptations are characterised by better

scalability, and their performance is less dependent on the perturbation.

Table 6.2 corresponds to Figure 6.13 and shows the ratio4 of the number of tuples

sent to the two evaluators calling the WSs. The ratio is significantly higher for ret-

rospective adaptations, which means that the system manages, in practice, to reroute

data according to the performance of the evaluators. For prospective adaptations, for

this demo query, although the monitoring information is the same, rerouting is not as

4ratio = number of tuples sent to the faster machine / number of tuples sent to the slower machine.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 167

10msec 50msec 100msec
0

1

2

3

4

5

6

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

adaptivity disabled
adaptivity enabled

Figure 6.14: Performance of Q2 for retrospective adaptations.

Case A1-R2 A1-R1 A2-R2
10 times 5.58 11.21 3.16
20 times 4.95 11.42 4.33
30 times 4.55 16.45 3.89

Table 6.2: Ratio of tuples sent to the two evaluators.

effective. This is because the dataset is relatively small, and by the time workload im-

balance has been detected, a significant number of tuples has already been sent to its

consumers. In retrospective adaptations, these tuples are redistributed, whereas such a

redistribution cannot happen in the prospective ones. However, as will be demonstrated

later, this is mitigated when the dataset increases.

Varying the dataset size From the figures presented up to this point, retrospective

adaptations outperform the prospective ones, but suffer from higher overhead. The

reason why prospective adaptations exhibit worse performance is that a significant

proportion of the tuples have been distributed before the adaptations can take place.

Intuitively, this can be mitigated in larger queries. Indeed, this is verified by increasing

the dataset size of Q1 from 3000 tuples to 6000, and making one WS call 10, 20 and 30

times costlier than the other, while the adaptations are prospective. Figure 6.15 shows

the results, whose trends are more similar to those when adaptations are retrospective

(i.e., Figure 6.15 is closer to Figures 6.13 for Q1 and 6.14 for Q2, compared to Figure

6.12), and lead to better performance improvements.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 168

10 times 20 times 30 times
0

1

2

3

4

5

6

7

8

9

10

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

adaptivity disabled
adaptivity enabled

Figure 6.15: Performance of Q1 for prospective adaptations and double data size.

Case A1-R2 Increase from Table 6.2
10 times 9.28 166%
20 times 9.01 182%
30 times 10.96 240%

Table 6.3: Ratio of tuples sent to the two evaluators.

Table 6.3 shows the ratio of tuple distribution for this dataset, and the comparison

with the relevant values in Table 6.2. Again, the difference between prospective and

retrospective adaptations is much smaller than previously.

Varying the number of perturbed machines Figure 6.16 complements the above

remarks by showing the performance of Q1 for different numbers of perturbed ma-

chines when adaptations are retrospective (three machines have been used for WS eval-

uation in this experiment). Again, perturbations are inserted by making one WS call

10, 20 and 30 times costlier than the other (Figure 6.16(a), (b) and (c), respectively).

Due to the dynamic balancing property, the performance degrades very gracefully in

the presence of perturbed machines. As explained in detail earlier, the performance

when adaptivity is enabled, is very similar for different magnitudes of perturbation,

when there is at least one unperturbed machine. Thus the plots corresponding to the

case of enabled adaptivity are similar for up to two out of three perturbed machines.

Note that the percentage of degradation (i.e., difference from value 1 in the figures)

can be improved by an order of magnitude.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 169

0 1 2 3
1

1.5

2

2.5

3

3.5

number of perturbed machines

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

no adaptivity
adaptivity

(a) 10 times

0 1 2 3
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

number of perturbed machines

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

no adaptivity
adaptivity

(b) 20 times

1 2 3
1

2

3

4

5

6

7

8

9

number of perturbed machines

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

no adaptivity
adaptivity

(c) 30 times

Figure 6.16: Performance of Q1 for retrospective adaptations.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 170

0 1/30 1/20 1/10
1

1.5

2

2.5

3

3.5

frequency(ratio of number of tuples monitored/number of tuples)

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

no imbalance/stateless adaptations
imbalance/stateless adaptations
no imbalance/stateful adaptations
imbalance/stateful adaptations

Figure 6.17: Effects of different monitoring frequencies in Q1.

6.3.6.2 Overheads

This set of experiments investigates overheads. Q1 is run when there is no WS per-

turbation. As shown from Table 6.1, the overhead of prospective adaptations is 5.9%

(the ad / no imbperformance value is 1.059 units). This value is the average of two

cases. When the adaptivity mechanism is enabled but no actual redistribution takes

place, the overhead is 6.2%. However, due to slight fluctuations in performance that

are inevitable in a real wide-area environment, if the query is relatively long-running,

the system may adapt even though the WSs are the same. For prospective adaptations,

a poor initial redistribution may have detrimental effects, since by the time the system

realises that there was no need for adaptation, the stored tuples may already have been

sent to their destination. Nevertheless, on average, the system behaves reasonably with

respect to small changes in performance and incurs a 5.6% overhead. The ratio of the

number of tuples sent to the two machines is slightly imbalanced: 1.21. The overhead

is slightly smaller than when no actual redistribution occurs as there are benefits from

the redistribution.

When the adaptations are retrospective, the overhead is significantly higher, as al-

ready discussed. However, the ratio of the tuples is close to the one indicating perfect

balance: 1.01. From the above, it can be concluded that retrospective adaptations, if

they are not necessary for ensuring correctness, may be employed when perturbations

are large. However, it is felt that the overheads imposed for both types of distribution

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 171

prospective retrospective
0

0.5

1

1.5

2

2.5

3

3.5

4

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

[30,30]
[25,35]
[20,40]
[1,60]

Figure 6.18: Performance of Q1 under changing perturbations.

are reasonable and are worth-while, given the scale of expected gains during perturba-

tions.

Varying the monitoring frequency The behaviour of the system for Q1 is also ex-

amined when the WS cost on one machine is 10 times greater than on the other, and the

frequency of generating raw monitoring events from the query engine varies between 0

(i.e., no monitoring to drive adaptivity), and 1 notification per 10, 20 and 30 tuples pro-

duced. Both the adaptation quality (2nd and 4th plots in Figure 6.17) and the overhead

incurred (1st and 3rd plots in Figure 6.17) are rather insensitive to these monitoring

frequencies. This is because (i) the mechanism to produce low-level monitoring notifi-

cations has been shown to have very low overhead (Section 5.4), and (ii) the adaptivity

components filter the notifications effectively. On average, between 100 and 300 noti-

fications are generated from the query engine, but theMonitoringEventDetectorneeds

to notify theDiagnoseronly around 10 times, 1-3 of which lead to actual rebalancing.

Thus the system is not flooded by messages, which keeps the overhead low.

6.3.6.3 Rapid Changes

The next set of experiments aims to show the dynamic nature of the system. Thus

far, the perturbations have been stable throughout execution. A question arises as to

whether the system can exhibit similar performance gains when perturbations vary in

magnitude over the lifetime of the run. In these experiments the perturbation varies

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 172

Runtime perturbation Difference from near-optimal static
[30,30] 10.2%
[25,35] 29.0%
[20,40] 16.4%
[1,60] 34.7%

Table 6.4: Ratio of tuples sent to the two evaluators.

for each incoming tuple in a normally distributed way, so that the mean value remains

stable. Figure 6.18 shows the results when the differences in the two WS costs in Q1

vary between 25 and 35 times, between 20 and 40 times, and between 1 and 60 times

The leftmost bar in each group in the figure corresponds to a stable cost, which is 30

times higher (this is the same as the bar A1-R2, 30 times in Figure 6.13 for prospective

adaptations), and is presented again for comparison purposes. It can be seen that the

performance of the adaptivity is modified only slightly, which enables us to claim that

the approach to dynamic balancing proposed in this thesis can adapt efficiently to rapid

changes of resource performance.

Comparison with near-optimal static configuration Continuing the previous test,

let us assume that the system has a perfect prediction mechanism, which enables it to

estimate near-optimal distribution policies statically (thus avoiding all the overheads).

Table 6.4 shows the difference in performance when the system adapts to machine

perturbations at runtime, and the redistributions are retrospective. From the table, and

taking into consideration also the fact that the adaptivity mechanisms incur a non-

negligible overhead, it can be seen that the adaptations are reasonably close to the

optimal behaviour, even when the size of perturbation changes dynamically.

6.4 Adapting to Resource Availability

6.4.1 Motivation and Problem Statement

Dynamic data (and possibly state) repartitioning is just one aspect of the problem of

adapting to changing resources, as they both deal with the changing behaviour of a sta-

ble set of computational resources. In a more generic case, this simplifying assumption

must be relaxed. Long-running queries should be able to acquire new resources on the

fly, both to resolve performance problems and to respond to new opportunities.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 173

There are many reasons why this cannot happen statically at compile time. The re-

sources may be initially unavailable; or, the load of a machine up to a certain point of

execution may be too high for the system to decide to use it; or, due to unpredictabil-

ity, unavailability and incorrectness of data statistics, the query cost may have been

underestimated. For all these undesirable situations, the query processing needs to be

re-adjusted on the fly, with an eye on the remote resources that can be allocated.

Such adaptations are complicated by the fact that a dynamic resource allocation

must be accompanied by dynamic data (and possibly state) repartitioning so that the

new machines are allocated a proportion of the query workload. Consequently, the

adaptations that employ resources on the fly subsume the adaptations that repartition

data at runtime and were presented in Section 6.3. However, this section deals only

with the aspects that install a new AGQES and allocate an initial workload to it during

execution, as the other aspects were examined previously.

6.4.2 Approach

Themonitoring-assessment-responsearchitectural framework can accommodate adap-

tations of this kind by activating a singleMonitoringEventDetector, a singleDiag-

noser, and a singleResponder. These components need not reside at the same machine,

although this is desirable in order to reduce communication costs.

The configuration information sent by the GDQS to the AGQESs includes:

• All the information sent for dynamic balancing as discussed in Section 6.3.2.

• The handles of all AGQES Factories that are registered. This information is con-

sidered only by the AGQES that holds the globally accessibleMonitoringEvent-

Detector, and is necessary to conduct the monitoring of available resources.

• For the AGQES holding theResponder, a copy of the subplans comprising the

query plan, so that theRespondercan clone them in new AGQESs.

6.4.3 Monitoring

The MonitoringEventDetectorcomponent subscribes to all registered AGQES facto-

ries (AGQESFs). The factories have the capability to spawn AGQESs, but they do so

only if the static optimiser, at compile time, or aResponder, at runtime, decide accord-

ingly. The AGQESFs continuously update a specific element of their interface with

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 174

<complexType name="Notification">
<sequence>

<element name="description" value="DETECTED_EVENT"/>
<element name="destinationId" value="DIAGNOSER"/>
<!-- rest generic fields -->
....
<!-- specific fields -->
<element name="isAvailable" />
<element name="memoryAvailableMB" />
<element name="cpuLoad" />

</sequence>
</complexType>

Figure 6.19: Schema definition of notifications sent by theMonitoringEventDetector
component.

the current amount of memory available (retrieved through the Java VM), and, if they

are Unix-based, with their recent load. The difference between monitoring a query en-

gine and an AGQESF from the viewpoint of aMonitoringEventDetectoris that, for the

former, the notifications are sent in push mode, whereas the latter send the monitoring

notifications upon request by theMonitoringEventDetector.

A notification is published when the availability changes, or when either the load

of the amount of memory available changes more than a thresholdthresM, which is set

to 20%. The schema in XSD of such notifications is presented in Figure 6.19.

6.4.4 Assessment

In this prototype development and evaluation, the objective is to handle the common

case where the external cost is significant to overall performance. To this end, the fol-

lowing simple rule has been used: use any machine that becomes available and assign

to it a subplan that contains a WS invocation (if there is any), provided that the new

machine can evaluate such a WS locally. Thus theDiagnoserpropagates a notifica-

tion sent by theMonitoringEventDetectorto theResponder, if this notification denotes

change of the status of a machine from non-available to available. The development of

more robust and comprehensive mechanisms to decide whether a new machine should

be employed on the fly is left for future work.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 175

<complexType name="Notification">
<sequence>

<element name="description" value="RESPONSE_NEWPRODUCER"/>
<element name="destinationId value="AGQES_RESPONDER"/>
<!-- rest generic fields -->
....
<!-- specific fields -->
<element name="ExchangeReconfiguration">
<complexType>

<element name="modifiedOpId" />
<element name="producerReference" />

</complexType>
</element>

</sequence>
</complexType>

Figure 6.20: Schema definition of notifications sent by theRespondercomponent to
notify of a new producer.

6.4.5 Response

As in the case of workload imbalance, theResponderreacts to new machine avail-

abilities, only if the execution is not close to completion, i.e. the progress has not

exceeded a threshold. This threshold is a tunable parameter set to 95% in the default

configuration. The actual response consists of the following three steps:

1. An AGQES is created remotely by theResponder. Subsequently, the partitioned

subplan that contains a WS invocation is sent to the new AGQES. For both ac-

tions, the same mechanism as the one employed by the GDQS to initiate execu-

tion is used. At this point, the new evaluator remains temporarily idle because

the other AGQESs have not been notified of its existence yet.

2. A notification is sent to the AGQESs that consume data from the new evaluator,

for them to update their catalogs and wait for data (example schema is presented

in Figure 6.20). The analysis of this notification within the evaluation engine, re-

sults in a call to theaddProducer()function of the exchange consumers affected.

3. A notification is sent to the AGQESs that send data to the new evaluator (i) to in-

form their relevant exchange producers that data can be sent to the new AGQES

by calling theiraddConsumer()function (Figure 6.21); and (ii) to modify the

data partitioning policy of the AGQESs that send data to the new AGQES to

take into account the new consumer. The new consumer is initially assigned a

proportion of the complete workload which is equal to the average proportion

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 176

<complexType name="Notification">
<sequence>

<element name="description" value="RESPONSE_NEWCONSUMER"/>
<element name="destinationId value="AGQES_RESPONDER"/>
<!-- rest generic fields -->
....
<!-- specific fields -->
<element name="ExchangeReconfiguration">
<complexType>

<element name="modifiedOpId" />
<element name="consumerReference" />

</complexType>
</element>

</sequence>
</complexType>

Figure 6.21: Schema definition of notifications sent by theRespondercomponent to
notify of a new consumer.

of the pre-existing AGQESs. If this default policy is not to be followed, an ex-

plicit notification like the one in Figure 6.10 is sent. The dynamic balancing

mechanism presented in Section 6.3 can correct bad initial decisions at runtime.

Both retrospective and prospective partitioning can be applied; however, only

the latter is used during evaluation.

6.4.6 Evaluation

The main aim of the evaluation is to establish if the overheads for monitoring resources

dynamically, and for allocating additional machines at runtime, can be outweighed by

the performance gains. Q1 of Section 6.3 is used as the example query.

6.4.6.1 Performance Gains

Q1 is evaluated for different costs of WS calls, specifically when the cost is 40, 80 and

120 msecs per tuple. We assume that at compile time only a single machine is available

to evaluate theEntropyAnalyserWS, but that another machine becomes available as

soon as the execution starts. Table 6.5 presents the gain in query response time when

the system allocates the new machine. As the number of machines evaluating the

costlier part of the query has doubled, the query response time drops almost by half.

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 177

WS cost no new AGQES new AGQES
0.040 123.02 68.51
0.080 242.47 131.82
0.120 360.82 195.98

Table 6.5: Performance of Q1 with and without dynamic resource allocation (in secs).

6.4.6.2 Overheads

Two types of overhead are considered: the monitoring overhead to contact a remote

machine to retrieve up-to-date information, and the overhead of response, which com-

prises the three steps described in Section 5.1. Both involve non-trivial inter-service

communication, and thus are non-negligible. The monitoring overhead is approxi-

mately 0.3 secs every time a remote machine is contacted. For the previous query in

which one AGQES is created on the fly and two existing AGQESs are notified of the

existence of the new AGQES, the response overhead is approximately 1 second (the

cost to create a new AGQES and install a plan fragment is the dominant cost). From

Table 6.5, it can be seen that the improvements are well worth such overheads.

6.5 Summary

The volatility of the environment in parallel query processing over heterogeneous and

autonomous wide-area resources makes it imperative to adapt to changing resource

properties, in order not to suffer from serious performance degradation. This chapter

proposes two solutions, one for dynamic workload balancing through data and oper-

ator state repartitioning, and another for dynamic resource allocation. Both solutions

have been implemented through extensions to the Grid-enabled open-source OGSA-

DQP system. The implementation is particularly appealing for environments such as

the Grid, as it is based on loosely-coupled components, engineered as Grid Services.

The results of the empirical evaluation are promising: performance is significantly im-

proved (by an order of magnitude in some cases), while the overhead remains low

enough to allow the benefits of adaptation to outweigh its cost for a wide range of

scenarios.

In particular, the chapter makes the following key contributions:

• It proposes an instantiation of themonitoring-assessment-responsearchitectural

CHAPTER 6. ADAPTING TO CHANGING RESOURCES 178

framework for AQP, which was introduced in Chapter 4. The framework instan-

tiation (i) covers both data and operator state repartitioning, and (ii) is capable of

allocating new resources dynamically. The development of such adaptivity func-

tionalities in the same architectural context is a contribution in its own right. Key

features of the architecture include that it is non-centralised, service-oriented,

and its components communicate with each other asynchronously according to

the publish/subscribe model. Thus it can be applied to loosely-coupled, au-

tonomous environments such as the Grid.

• It presents the implementation, which has been made through extensions to the

OGSA-DQP distributed query processor for the Grid (Section 2.5). This demon-

strates the practicality of the approach. The resulting prototype has been empiri-

cally evaluated and the results show that it can yield performance improvements

by several factors, if not order of magnitude, in representative examples. In addi-

tion, the overhead remains reasonably low, which is significant when adaptivity

is not required.

• It examines two case studies that have not been sufficiently explored in AQP to

date, namely adaptive workload balancing and resource allocation in wide-area

distributed query processing.

• The approach followed in this thesis leverages mechanisms deployed for fault-

tolerance to achieve management and movement of operator state, aiming at

component and software reuse.

Chapter 7

Conclusions

This chapter concludes the thesis with a review of the work presented and of the way

in which the aim of this thesis has been accomplished (Section 7.1). In addition, this

chapter summarises the main results, stating their significance (Section 7.2), and dis-

cusses outstanding issues along with directions for future work (Section 7.3).

7.1 Overview

The aim of the thesis was to propose and evaluate techniques that significantly improve

the performance and robustness of query processing on the Grid. This aim has been

attained through the development and performance investigation of:

• a resource selection and scheduling algorithm, which is suitable also for inten-

sive queries, through the provision of partitioned parallelism; and

• an adaptive query processing (AQP) approach, which addresses the inherent

volatility and unpredictability of the Grid environment and conforms to a generic

architectural framework.

Both proposals revolve on a common goal: to take account of the potentially evolving

characteristics and behaviour of the computational resources that are available. The

proposed scheduler allocates resources as long as these are expected to improve the

performance of the query evaluation, whereas the adaptivity techniques adapt to run-

time resource behaviour and state.

The evaluation has been conducted in the context of two Grid-enabled query process-

ing systems, namely Polar* and OGSA-DQP, the development of which has been, to

179

CHAPTER 7. CONCLUSIONS 180

a certain degree, part of the work of the current thesis. The evaluation results support

the claim that the proposals presented are both efficient and practical. They incur low

overhead, whereas they can improve performance by an order of magnitude in some

cases.

For the development of the resource scheduling algorithm, considerable attention

has been paid to its suitability for practical use. To achieve this, the algorithm em-

ployed a computationally inexpensive heuristic rather than an exhaustive search for all

possible solutions.

The design of the AQP techniques has been largely influenced by the need to avoid

this to occur in anad hoc, isolated, non-extensible way. The fact that many dif-

ferent AQP approaches may be desirable and yield performance improvements in a

Grid setting, has increased the need for a more systematic development process that

enables their combination. To this end, a generic framework for AQP has been in-

troduced, which has provided the context for the specific adaptations that have been

examined. The basis of the framework is the decomposition of adaptivity intomoni-

toring, assessmentandresponse, an approach which is well-established in many au-

tonomous and adaptive systems (e.g., [KC03]), but rather unknown in the AQP com-

munity [GPSF04]1. Pursuing the idea of a generic adaptivity framework even further,

a generic approach to extracting information from the execution of a query plan has

been developed to drive adaptations both in a Grid setting and in a more traditional

environment.

7.2 Significance of Major Results

The major results of this thesis are:

• An evaluated resource selection and scheduling algorithm that selects and allo-

cates resources to query fragments, which together comprise the query execution

plan (Chapter 3).

• A generic adaptivity framework for AQP, which distinguishes between the mon-

itoring, assessment and response phases that are inherently present in adaptivity

(Chapter 4).

1A reason for this might be the fact that most of the AQP approaches have been proposed after the
mid-90s, and as described in [HFC+00], AQP is a technology in evolution. Thus the emphasis has
mostly been on functionality, rather than on broadly accepted abstractions, systematic development and
component reuse.

CHAPTER 7. CONCLUSIONS 181

• An evaluated generic mechanism to extract information from the execution of

query plans, which is based on self-monitoring operators (Chapter 5).

• An instantiation of the adaptivity framework as an extension to the OGSA-DQP

system, which provides (static) Grid Services for query processing (Section 6.2).

The resulting system has been used to implement and evaluate techniques for

adapting to changing resources, and, in particular:

– for adapting to changing resource behaviour that results in imbalanced ex-

ecution (Section 6.3), and

– for adapting to changing resource availability (Section 6.4).

The Polar* and OGSA-DQP systems discussed in Sections 2.4 and 2.5 respec-

tively, apart from providing the basis for the development and the evaluation of the

contributions above, are also of significant interest in their own right. These systems

have been implemented by the Polar*/OGSA-DQP project’s team [POL], being a joint

effort between the Universities of Manchester and Newcastle upon Tyne. The contri-

bution of the work of this thesis to the development of Polar* and of the non-adaptive

OGSA-DQP is related to the compiler/optimiser component.

7.2.1 Resource Scheduling for Grid Query Processing

A resource scheduling algorithm has been designed to support scalable and computa-

tionally intensive query processing on the Grid. Both these requirements are in line

with the broader vision of Grid computing and its orientation towards large-scale, non-

trivial, and possibly high-performance applications. The proposal goes beyond the

current state-of-the-art in distributed query processing (DQP), as it lays emphasis on

and does not overlook partitioned parallelism, which is an effective approach to ob-

taining scalability and improved performance. Moreover, it can take into account the

potentially vast pool of available resources, and the specific capabilities of the latter.

Thus, it avoids oversimplifying assumptions that are typically made in parallel data-

bases, such as that all machines are characterised by the same properties, and that the

physical location of an operator does not have an impact on the query execution. The

evaluation results show significant improvements compared to other approaches, de-

veloped for use with distributed or parallel databases. For the evaluation, the Polar*

query engine has been used, employing a variant of the cost model developed in Polar

[SSWP04].

CHAPTER 7. CONCLUSIONS 182

The scheduling algorithm is of reasonably low computational complexity, and is

presented in an application-independent way. It is extensible in terms of the query

operators considered, and orthogonal in terms of the cost model, which describes the

behaviour of each operator if run on a specific machine. As such, it can be applied to

a wide range of query processors operating in a heterogeneous environment.

7.2.2 The Monitoring-Assessment-Response Framework for Adap-

tive Query Processing

It has become a consensus that AQP techniques are being implemented in anad hoc

way (e.g., [IHW04, BB05, GPSF04]), which compromises their capability to be com-

bined. To make the development of AQP techniques more systematic, a generic frame-

work has been developed. The core idea is to investigate separately the phases of

collecting feedback from the execution and environment, analysing this feedback, and

responding to changes based on the feedback analysis, steps that are inherently present

but often conflated in AQP systems. Thus, AQP is decomposed into monitoring, as-

sessment and response phases. Three different kinds of adaptivity components are

identified, i.e., one component for each phase of the adaptivity cycle. Any AQP tech-

nique requires at least one component of each different kind to cover all the adaptivity

phases. Consequently, any adaptation is based on collaboration of decoupled entities,

which is a suitable paradigm for the Grid.

The construction of frameworks for identifying or composing generic and reusable

techniques for monitoring, assessment or response has the following key advantages.

Firstly, it allows component reuse and enables the assembling of different combina-

tions, thus covering a wider spectrum of capabilities. Secondly, the adoption of a

generic framework by the developers of AQP systems makes the design activity more

systematic. Thirdly, by focusing on the interfaces of cohesive, decoupled modules, the

design of the framework conforms to the emerging Web and Grid Services paradigms,

which are suitable for advanced, wide-area applications. Finally, a framework like the

one proposed is generic in the sense of being both adaptivity environment independent,

and technique independent. It makes no assumptions as to the number of adaptivity

components cooperating to achieve an adaptation, or their specific interconnections.

CHAPTER 7. CONCLUSIONS 183

7.2.3 Self-monitoring operators

Self-monitoring operators have been proposed for extracting monitoring information

from the query plan in a generic manner, independently of the techniques for assess-

ment and response. However, they are capable of collecting information that is directly

relevant to the assessment process by establishing where a plan is deviating from its

anticipated behaviour, as they can identify and predict erroneous initial estimates on

the fly, and are sufficient to support most AQP proposals to date. Thus, self-monitoring

operators can provide the necessary background for on-the-fly adaptations, and conse-

quently, they can be of interest for many AQP proposals.

A key feature of the approach is that it can be easily implemented and incorporated

in existing query processors, as it employs only counters, timestamps and tuple size

computations and it affects only the implementation of the query operators. In addition,

it can scale well with the number of machines used in query execution because there

exists no central monitoring point. The evaluation has been conducted in the context of

Polar* and the results have been encouraging, both in terms of the cost of monitoring,

and in terms of the quality of the monitoring information.

7.2.4 Adaptive Grid Services for Query Processing

To instantiate the monitoring-assessment-response adaptivity framework, and employ

self-monitoring operators in a Grid environment, anAdaptive Grid Query Evaluation

Service (AGQES)has been developed, as an extension to the static GQES provided by

the OGSA-DQP system.

This engineering approach transforms the query evaluators of OGSA-DQP into

autonomous entities, capable of self-configuring and self-optimising. It allows many

such entities to collaborate for adaptation, through the support of a publish/subscribe

interface. Overall, it provides a context for the development of arbitrarily complex

AQP techniques, and demonstrates the practicality and the benefits of a generic archi-

tectural framework.

7.2.5 Adapting to Changing Resources

Adaptivity techniques have been presented that are capable of (i) adapting to workload

imbalance; and (ii) reacting to changes in the resource pool during query execution

CHAPTER 7. CONCLUSIONS 184

over Grid resources. Both were implemented by using the AGQESs. From the perspec-

tive of AQP technology, they extend the scope of cases for which AQP is demonstrated

to yield benefits, as they explore (i) monitoring of changing resources; (ii) adaptations

in distributed query processing; and (iii) distributed adaptivity mechanisms. Previ-

ously, each of these three fields was insufficiently examined; also, their combination is

a novelty. From the perspective of Grid Service engineering, the adaptations provide

an example of dynamic service orchestration.

The empirical evaluation shows that the performance improvements that can be

achieved in a reasonably wide range of scenarios are significant, and they can outweigh

the overhead incurred. In particular, the experiments demonstrate the capability of the

system to gracefully degrade its performance in the presence of perturbed machines,

and to boost query evaluation when new computational resources become available.

7.2.6 The Polar* and OGSA-DQP systems

The Polar* and OGSA-DQP query processing systems for the Grid have been devel-

oped as proofs of concept, to demonstrate the role that DQP can play in Grid computa-

tions by combining data access and analysis. Indeed, they have been used to show that

a significant set of Grid tasks can be described as database queries, and be executed as

query plans using both well-established and novel query processing techniques. Such

techniques include the capability of query processors to apply optimisation policies

to the graph that represents the query execution plan, and to employ parallelism to

speed-up the execution in a way transparent to the user.

7.2.7 Lessons Learned

Investigating techniques and strategies to improve the performance of query processing

on the Grid has been an exciting exercise. Apart from the results mentioned above, the

following, more generic lessons have been learned:

• Taking into account the heterogeneous resource characteristics, and their dy-

namic evolution, has been a correct choice toward performance improvements.

It is not clear if other approaches can yield improvements by up to an order of

magnitude.

CHAPTER 7. CONCLUSIONS 185

• Empirical evaluation of wide-area, autonomous systems is a difficult and time-

consuming activity. In the absence of sufficient theoretical models, comprehen-

sive and validated simulations may be a better or easier evaluation mechanism.

• Evaluation of frameworks is also difficult and not well defined. In this thesis,

the adaptivity framework has been examined from three complementary points

of view. Firstly, it has been used as an explanatory platform to compare and

present the similarities of different AQP techniques. Secondly, insight has been

provided as to whether generic adaptivity components, such as monitoring ones,

are feasible. Thirdly, complete adaptations have been developed according to the

framework. Although all these implicitly constitute a validation of the frame-

work proposal, it is still not clear whether and how a generic framework can be

formally or more explicitly validated.

• AQP lacks the theoretical background of other relevant domains, such as control

theory. Control theory deals with the problem of assessing collected feedback

and responding to monitored changes from another perspective. It builds upon

two strong assumptions regarding the adaptive system: the performance of the

system is a function of controlled and tunable (set of) parameters, and there

exist mathematical models that describe with sufficient accuracy the behaviour

of the system over time. Unfortunately, query processing cannot satisfy the first

criterion, as it always executes in a best-effort manner. For the latter, modeling

the behaviour of distributed querying is still an open research issue, and involves

several, both independent and correlated, variables that need to be adjusted at

runtime. Thus, it would result in a multivariable non-linear adaptive control

system that can be handled only to a very limited extent theoretically, and not

truly supported by commercial systems in practice [ÅW95]. For these reasons,

results from control theory cannot be transferred into adaptive querying, and

there is very limited theoretical understanding of AQP.

7.3 Open Issues and Directions for Future Work

7.3.1 Outstanding Issues

This thesis does not, of course, represent a complete answer to the problems associated

with efficient query processing on the Grid or with exploitation of (dynamic) resource

CHAPTER 7. CONCLUSIONS 186

metadata to improve performance. There remain a number of outstanding issues, sev-

eral of which are described below:

• The resource scheduler has been evaluated in an environment in which resource

characteristics do not change during execution and thus there is no need to

reschedule resources dynamically; it would be interesting to test the schedul-

ing algorithm for rescheduling the query plan on the fly. Also, although the

algorithm performs well, there is space for further improvements, the perfor-

mance and the associated overhead of which may be worth investigating. For

example, the current version of the algorithm first tries to parallelise the most

costly operator, and if it fails, it stops. Thus, it may not exploit the potential

benefits of further parallelising the other operators. An improvement could con-

sider the difference in the cost of the two most expensive operators and, if it is

below a certain threshold, parallelise both of them. Another improvement could

re-evaluate the capabilities of the machines affected by a scheduling of a new

machine. For example, the load of a machine should be increased after a sub-

plan has been allocated to it. Finally, an open issue is to develop techniques for

efficient threshold parameter setting in different circumstances.

• The adaptivity components for dynamic workload redistribution and resource

allocation on the fly rely heavily on threshold parameters. As for the scheduling

algorithm, little insight has been provided as to how to set these parameters

efficiently. Clearly, there is a trade-off between the speed of adaptations and

the overhead associated, along with the danger of over-reacting. Relatively high

thresholds are used for more conservative approaches, whereas low thresholds

result in a more aggressive adaptivity behaviour. However, this trade-off has not

been examined in this work in depth.

• For the adaptations examined, the query engine (through self-monitoring oper-

ators) and the interface of the AGQESs provide all the monitoring information

required. In a more generic adaptivity case, information from higher level Grid

monitoring services, such as MDS [CFFK01], for computational resources, and

NWS [WSH99], for network bandwidth, may need to be acquired. This does not

affect the design of the AGQESs; it just broadens the scope of adaptations that

can be supported in the future.

CHAPTER 7. CONCLUSIONS 187

• According to the evaluation results, dynamic resource allocation may lead to sig-

nificant gains in response time. Nevertheless, the development of robust, cost-

based assessment policies to decide whether to employ a new resource has not

been examined. As mentioned earlier, the scheduling algorithm is a strong can-

didate, provided that all the metadata it requires is either known or feasible to

obtain at runtime, and a cost model exists.

7.3.2 Future Work

The work of this thesis, along with the development of the Polar* and OGSA-DQP

systems, has suggested several promising avenues for further research:

• Developing a cost model to describe the query engine of OGSA-DQP, like the

one that has been developed for the Polar/Polar* evaluators [SSWP04]. This will

allow the design of a simulator of the OGSA-DQP system, which is significant

(i) for deploying cost-based optimisation approaches; (ii) for faster evaluation

of extensions and techniques built upon OGSA-DQP; and (iii) for better under-

standing of the behaviour of the system.

• Making the monitoring of query plans adaptive itself. For example, it may be

important to be able to modify the intensity, the granularity and the frequency of

monitoring at runtime.

• Evaluating the AQP techniques developed in a real Grid environment, such as

the UK National Grid Service or the PlanetLab [Cul03].

• Investigating and incorporating in the adaptive OGSA-DQP prototype new adap-

tations, such as adapting to fluctuating network bandwidth and substituting re-

sources on the fly. In addition, existing AQP techniques that tackle the problem

of unknown data statistics at compile time are of particular interest for query

processing on the Grid.

• Developing generic components and techniques for assessment and response.

This thesis has demonstrated how adaptations to changing resources in Grid

query processing can be developed according to the monitoring-assessment-

response framework. Moreover, it has discussed how the self-monitoring ap-

proach to extracting information from query execution can be deployed in many

AQP systems. However, as the thesis aim was to extend the state-of-the-art in

CHAPTER 7. CONCLUSIONS 188

Grid query processing, solutions for the problem of generic adaptivity compo-

nents have not been pursued any further2. Such components should also be able

to handle resolution of conflicts between their results, especially when there are

multiple instances of the same type of component.

• Investigating in depth the relationships of AQP withautonomic computing[KC03],

and how results from one area can be transferred to the other. The emergence

of autonomic computing has been motivated by the increasing complexity of

modern systems, on the one hand, and the unpredictable and volatile nature

of platforms for distributed computations, such as the Grid, on the other. As

such, it shares, to a large extent, the same motivations as the work in the cur-

rent thesis. The emphasis of autonomic computing is on the development of

self-managing systems that are capable of monitoring themselves with a view

to continuously maintaining a certain level of QoS, by achieving the properties

of self-configuration, self-optimisation, self-healingand self-protection. AQP

is aimed at achieving several of the goals of autonomic computing, especially

with respect to self-optimisation and self-healing. For example, Section 6.4 has

demonstrated how AQP can by used to achieve self-optimisation by employing

new computational resources during execution to boost performance, when these

resources become available.

• Investigating techniques to improve performance of query processing on the Grid

when the optimisation criteria are other than the query response time (e.g., over-

all resource utilisation and monetary cost). Also, this thesis has focused on single

query optimisation; it will be interesting to propose techniques for multi-query

optimisation as well.

2To this end, a follow-on project has already been funded (EPSRC Grant EP/C537137).

Bibliography

[ACK+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan

Werthimer. Seti@home: an experiment in public-resource computing.

Commun. ACM, 45(11):56–61, 2002.

[AD03] Remzi H. Arpaci-Dusseau. Run-time adaptation in river.ACM Trans.

Comput. Syst., 21(1):36–86, 2003.

[ADAT +99] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E.

Culler, Joseph M. Hellerstein, David A. Patterson, and Katherine A.

Yelick. Cluster i/o with river: Making the fast case common. In

IOPADS, pages 10–22, 1999.

[AFT98] Laurent Amsaleg, Michael J. Franklin, and Anthony Tomasic. Dynamic

query operator scheduling for wide-area remote access.Distributed and

Parallel Databases, 6(3):217–246, 1998.

[AFTU96] Laurent Amsaleg, Michael J. Franklin, Anthony Tomasic, and Tolga

Urhan. Scrambling query plans to cope with unexpected delays. In

Proceedings of the Fourth International Conference on Parallel and

Distributed Information Systems, December 18-20, 1996, Miami Beach,

Florida, USA, pages 208–219. IEEE Computer Society, 1996.

[AGM+90] S. F. Altschul, W. Gish, W. Miller, E.W Myers, and D. J. Lipman. Basic

local alignment search tool.Journal of Molecular Biology, 215:403–

410, 1990.

[AH99] Ron Avnur and Joseph M. Hellerstein. Continuous query optimiza-

tion. Technical Report CSD-99-1078, University of California, Berke-

ley, 1999.

189

BIBLIOGRAPHY 190

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive

query processing. In Weidong Chen, Jeffrey F. Naughton, and Philip A.

Bernstein, editors,Proceedings of the 2000 ACM SIGMOD Interna-

tional Conference on Management of Data, May 16-18, 2000, Dallas,

Texas, USA., pages 261–272. ACM, 2000.

[AMG+04] M. Nedim Alpdemir, Arijit Mukherjee, Anastasios Gounaris, Nor-

man W. Paton, Paul Watson, Alvaro A. A. Fernandes, and Desmond J.

Fitzgerald. OGSA-DQP: A service for distributed querying on the grid.

In Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis, Vas-

silis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena

Ferrari, editors,Advances in Database Technology - EDBT 2004, 9th

International Conference on Extending Database Technology, Herak-

lion, Crete, Greece, March 14-18, 2004, Proceedings, pages 858–861.

Springer, 2004.

[AMP+03] M. Nedim Alpdemir, A. Mukherjee, Norman W. Paton, Paul Watson,

Alvaro A. A. Fernandes, Anastasios Gounaris, and Jim Smith. Service-

based distributed querying on the grid. In Maria E. Orlowska, Sanjiva

Weerawarana, Mike P. Papazoglou, and Jian Yang, editors,Service-

Oriented Computing - ICSOC 2003, First International Conference,

Trento, Italy, December 15-18, 2003, Proceedings, pages 467–482.

Springer, 2003.

[ÅW95] Karl JohanÅström and Bj̈orn Wittenmark.Adaptive Control. Addison-

Wesley, Reading, MA, USA, 1995.

[BAGS02] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz

Stockinger. Economic models for resource management and schedul-

ing in grid computing. Concurrency and Computation: Practice and

Experience, 14(13-15):1507–1542, 2002.

[BB05] Shivnath Babu and Pedro Bizarro. Adaptive query processing in the

looking glass. InCIDR, pages 238–249, 2005.

[BBDM03] Brian Babcock, Shivnath Babu, Mayur Datar, and Rajeev Motwani.

Chain : Operator scheduling for memory minimization in data stream

BIBLIOGRAPHY 191

systems. In Alon Y. Halevy, Zachary G. Ives, and AnHai Doan, edi-

tors,Proceedings of the 2003 ACM SIGMOD International Conference

on Management of Data, San Diego, California, USA, June 9-12, 2003,

pages 253–264. ACM, 2003.

[BBH+02] W. H. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. McCance, and M. Si-

lander. Project Spitfire - Towards Grid Web Service Databases. In

Global Grid Forum 5, 2002.

[BC02] Nicolas Bruno and Surajit Chaudhuri. Exploiting statistics on query ex-

pressions for optimization. In Michael J. Franklin, Bongki Moon, and

Anastassia Ailamaki, editors,Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, Madison, Wiscon-

sin, June 3-6, 2002, pages 263–274. ACM, 2002.

[BDS03] Vincent Boudet, Frederic Desprez, and Fréd́eric Suter. One-step al-

gorithm for mixed data and task parallel scheduling without data

replication. In17th International Parallel and Distributed Process-

ing Symposium (IPDPS 2003), 22-26 April 2003, Nice, France, CD-

ROM/Abstracts Proceedings, page 41. IEEE Computer Society, 2003.

[BFK+00] Michael D. Beynon, Renato Ferreira, Tahsin M. Kurç, Alan Sussman,

and Joel H. Saltz. Datacutter: Middleware for filtering very large scien-

tific datasets on archival storage systems. InIEEE Symposium on Mass

Storage Systems, pages 119–134, 2000.

[BFMV00a] Luc Bouganim, Françoise Fabret, C. Mohan, and Patrick Valduriez.

A dynamic query processing architecture for data integration systems.

IEEE Data Eng. Bull., 23(2):42–48, 2000.

[BFMV00b] Luc Bouganim, Françoise Fabret, C. Mohan, and Patrick Valduriez. Dy-

namic query scheduling in data integration systems. InICDE, pages

425–434, 2000.

[BGW+81] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L.

Reeve, and James B. Rothnie Jr. Query processing in a system for dis-

tributed databases (sdd-1).ACM Trans. Database Syst., 6(4):602–625,

1981.

BIBLIOGRAPHY 192

[BKK +01] Reinhard Braumandl, Markus Keidl, Alfons Kemper, Donald Koss-

mann, Alexander Kreutz, Stefan Seltzsam, and Konrad Stocker. Object-

globe: Ubiquitous query processing on the internet.VLDB J., 10(1):48–

71, 2001.

[BKV98] Luc Bouganim, Olga Kapitskaia, and Patrick Valduriez. Memory-

adaptive scheduling for large query execution. In Georges Gardarin,

James C. French, Niki Pissinou, Kia Makki, and Luc Bouganim, edi-

tors,Proceedings of the 1998 ACM CIKM International Conference on

Information and Knowledge Management, Bethesda, Maryland, USA,

November 3-7, 1998, pages 105–115. ACM, 1998.

[BMM +04] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa,

and Jennifer Widom. Adaptive ordering of pipelined stream filters.

In Gerhard Weikum, Arnd Christian K̈onig, and Stefan Deßloch, ed-

itors, Proceedings of the ACM SIGMOD International Conference on

Management of Data, Paris, France, June 13-18, 2004, pages 407–418.

ACM, 2004.

[CB00] R. G. G. Cattell and D. K. Barry.The Object Database Standard:

ODMG 3.0. Morgan Kaufmann, 2000.

[CBB+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald

Carney, Ugur Çetintemel, Ying Xing, and Stanley B. Zdonik. Scalable

distributed stream processing. InCIDR, 2003.

[CcC+02] Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and

Stanley B. Zdonik. Monitoring streams - a new class of data manage-

ment applications. InVLDB, pages 215–226, 2002.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.

Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,

Samuel Madden, Vijayshankar Raman, Fred Reiss, and Mehul A. Shah.

Telegraphcq: Continuous dataflow processing for an uncertain world.

In CIDR, 2003.

[CDF+94] M. Carey, D.J. DeWitt, M. Franklin, N. Hall, M. McAuliffe,

J. Naughton, D. Schuh, M. Solomon, C. Tan, O. Tsatalos, S. White,

BIBLIOGRAPHY 193

and M. Zwilling. Shoring up persistent applications. In R. Snodgrass

and M. Winslett, editors,Proceedings of the 1994 ACM SIGMOD Inter-

national Conference on Management of Data, Minneapolis, Minnesota,

May 24-27, 1994, pages 383–394. ACM Press, 1994.

[CDN93] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The OO7

benchmark.SIGMOD Record (ACM Special Interest Group on Man-

agement of Data), 22(2):12–21, 1993.

[CF03] Sirish Chandrasekaran and Michael J. Franklin. Psoup: a system for

streaming queries over streaming data.VLDB J., 12(2):140–156, 2003.

[CFFK01] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid infor-

mation services for distributed resource sharing. In10th IEEE Symp.

On High Performance Distributed Computing, 2001.

[Cha98] Surajit Chaudhuri. An overview of query optimization in relational

systems. InProceedings of the Seventeenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, June 1-3, 1998,

Seattle, Washington, pages 34–43. ACM Press, 1998.

[CHS99] Francis Chu, Joseph Y. Halpern, and Praveen Seshadri. Least expected

cost query optimization: an exercise in utility. InProceedings of the

eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 138–147. ACM Press, 1999.

[CNR04] Surajit Chaudhuri, Vivek R. Narasayya, and Ravishankar Ramamurthy.

Estimating progress of long running SQL queries. In Gerhard Weikum,

Arnd Christian K̈onig, and Stefan Deßloch, editors,Proceedings of

the ACM SIGMOD International Conference on Management of Data,

Paris, France, June 13-18, 2004, pages 803–814. ACM, 2004.

[Cul03] David E. Culler. Planetlab: An open, community-driven infrastructure

for experimental planetary-scale services. InUSENIX Symposium on

Internet Technologies and Systems, 2003.

[CYW96] Ming-Syan Chen, Philip S. Yu, and Kun-Lung Wu. Optimization of par-

allel execution for multi-join queries.IEEE Trans. Knowl. Data Eng.,

8(3):416–428, 1996.

BIBLIOGRAPHY 194

[DAI] The database access and integration services (DAIS) standard,

www.gridforum.org/6data/dais.htm.

[DBC03] Holly Dail, Francine Berman, and Henri Casanova. A decoupled

scheduling approach for grid application development environments.J.

Parallel Distrib. Comput., 63(5):505–524, 2003.

[Des04] Amol Deshpande. An initial study of overheads of eddies.SIGMOD

Record, 33(1):44–49, 2004.

[DG92] David J. DeWitt and Jim Gray. Parallel database systems: The future

of high performance database systems.Commun. ACM, 35(6):85–98,

1992.

[DGG+86] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens,

Krishna B. Kumar, and M. Muralikrishna. Gamma - a high performance

dataflow database machine. In Wesley W. Chu, Georges Gardarin, Set-

suo Ohsuga, and Yahiko Kambayashi, editors,VLDB’86 Twelfth Inter-

national Conference on Very Large Data Bases, August 25-28, 1986,

Kyoto, Japan, Proceedings., pages 228–237. Morgan Kaufmann, 1986.

[DH04] Amol Deshpande and Joseph M. Hellerstein. Lifting the burden of

history from adaptive query processing. In Mario A. Nascimento,

M. TamerÖzsu, Donald Kossmann, Renée J. Miller, Jośe A. Blakeley,

and K. Bernhard Schiefer, editors,Proceedings of the Thirtieth Interna-

tional Conference on Very Large Data Bases, Toronto, Canada, August

31 - September 3 2004, pages 948–959. Morgan Kaufmann, 2004.

[DSB+03] H. Dail, O. Sievert, F. Berman, H. Casanova, A. YarKhan, S. Vadhiyar,

J. Dongarra, C. Liu, L. Yang, D. Angulo, and I. Foster. Scheduling

in the grid application development software project. In J. Nabrzyski,

J. Schopf, and J. Weglarz, editors,Grid resource management: state of

the art and future trends. Kluwer Academic Publishers Group, 2003.

[EDNO97] Cem Evrendilek, Asuman Dogac, Sena Nural, and Fatma Ozcan. Mul-

tidatabase query optimization.Distributed and Parallel Databases,

5(1):77–113, 1997.

BIBLIOGRAPHY 195

[EFGK03] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. The many faces of publish/subscribe.ACM Comput. Surv.,

35(2):114–131, 2003.

[ESW78] Robert S. Epstein, Michael Stonebraker, and Eugene Wong. Distributed

query processing in a relational data base system. In Eugene I. Lowen-

thal and Nell B. Dale, editors,Proceedings of the 1978 ACM SIGMOD

International Conference on Management of Data, Austin, Texas, May

31 - June 2, 1978, pages 169–180. ACM, 1978.

[Feg97] Leonidas Fegaras. An experimental optimizer for OQL. Technical Re-

port TR-CSE-97-007, University of Texas at Arlington, 1997.

[Feg98] Leonidas Fegaras. A new heuristic for optimizing large queries. In Ger-

ald Quirchmayr, Erich Schweighofer, and Trevor J. M. Bench-Capon,

editors,Database and Expert Systems Applications, 9th International

Conference, DEXA ’98, Vienna, Austria, August 24-28, 1998, Proceed-

ings, pages 726–735. Springer, 1998.

[FK99] Ian Foster and Carl Kesselman.The Grid: Blueprint for a New Com-

puting Infrastructure. Morgan Kaufmann Publishers Inc., 1999.

[FK03] Ian Foster and Carl Kesselman.The Grid: Blueprint for a New Comput-

ing Infrastructure. Morgan Kaufmann Publishers, San Francisco, CA,

USA, second edition, 2003.

[FKNT02] Ian Foster, Carl Kesselman, J. M. Nick, and Steve Tuecke. Grid Ser-

vices for Distributed System Integration.IEEE Computer, 35(6):37–46,

2002.

[FKT01] Ian Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the

Grid: Enabling Scalable Virtual Organizations.Int. J. Supercomputer

Applications, 15(3), 2001.

[FM00] Leonidas Fegaras and David Maier. Optimizing Object Queries Using

an Effective Calculus.ACM TODS, 24(4):457–516, 2000.

[FSRM00] Leonidas Fegaras, Chandrasekhar Srinivasan, Arvind Rajendran, and

David Maier. lambda-db: An ODMG-based object-oriented DBMS. In

Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors,

BIBLIOGRAPHY 196

Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, May 16-18, 2000, Dallas, Texas, USA., page 583.

ACM, 2000.

[FTL+01] James Frey, Todd Tannenbaum, Miron Livny, Ian T. Foster, and Steven

Tuecke. Condor-g: A computation management agent for multi-

institutional grids. In10th IEEE International Symposium on High Per-

formance Distributed Computing (HPDC-10 2001), 7-9 August 2001,

San Francisco, CA, USA, pages 55–66. IEEE Computer Society, 2001.

[GGF] Global Grid Forum (GGF), http://www.gridforum.org.

[GGKS02] K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web

Services Architecture.IBM Sys. Journal, 41(2):170–177, 2002.

[GHK92] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query opti-

mization for parallel execution. In Michael Stonebraker, editor,Pro-

ceedings of the 1992 ACM SIGMOD International Conference on Man-

agement of Data, San Diego, California, June 2-5, 1992., pages 9–18.

ACM Press, 1992.

[GI96] Minos N. Garofalakis and Yannis E. Ioannidis. Multi-dimensional re-

source scheduling for parallel queries. In H. V. Jagadish and Inder-

pal Singh Mumick, editors,Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, Montreal, Quebec,

Canada, June 4-6, 1996., pages 365–376. ACM Press, 1996.

[GI97] Minos N. Garofalakis and Yannis E. Ioannidis. Parallel query schedul-

ing and optimization with time- and space-shared resources. In Matthias

Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Per-

icles Loucopoulos, and Manfred A. Jeusfeld, editors,VLDB’97, Pro-

ceedings of 23rd International Conference on Very Large Data Bases,

August 25-29, 1997, Athens, Greece. Morgan Kaufmann, 1997.

[GLO] The Globus toolkit, http://www.globus.org.

[GMPQ+97] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand

Rajaraman, Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and

Jennifer Widom. The tsimmis approach to mediation: Data models and

languages.J. Intell. Inf. Syst., 8(2), 1997.

BIBLIOGRAPHY 197

[GMUW01] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer D. Widom.

Database Systems: The Complete Book. Prentice Hall, 2001.

[GÖ03] Lukasz Golab and M. Tamer̈Ozsu. Issues in data stream management.

SIGMOD Record, 32(2):5–14, 2003.

[GPFS02] Anastasios Gounaris, Norman W. Paton, Alvaro A. A. Fernandes, and

Rizos Sakellariou. Adaptive query processing: A survey. In Barry

Eaglestone, Siobhán North, and Alexandra Poulovassilis, editors,Ad-

vances in Databases, 19th British National Conference on Databases,

BNCOD 19, Sheffield, UK, July 17-19, 2002, Proceedings, pages 11–

25. Springer, 2002.

[GPFS03] Anastasios Gounaris, Norman W. Paton, Alvaro A. A. Fernandes, and

Rizos Sakellariou. Monitoring query execution plans. Technical report,

Dept. of Comp. Science, Univ. of Manchester, 2003.

[GPFS04] Anastasios Gounaris, Norman W. Paton, Alvaro A. A. Fernandes, and

Rizos Sakellariou. Self-monitoring query execution for adaptive query

processing.Data Knowl. Eng., 51(3):325–348, 2004.

[GPSF04] Anastasios Gounaris, Norman W. Paton, Rizos Sakellariou, and Alvaro

A. A. Fernandes. Adaptive query processing and the grid: Opportuni-

ties and challenges. In15th International Workshop on Database and

Expert Systems Applications (DEXA 2004), pages 506–510. IEEE Com-

puter Society, 2004.

[GPSG03] C.A. Goble, S. Pettifer, R. Stevens, and C. Greenhalgh. Knowledge

integration: In silico experiments in bioinformatics. In Ian Foster and

Carl Kesselman, editors,The Grid: Blueprint for a New Computing

Infrastructure”. Morgan Kaufmann Publishers, 2003.

[Gra90] Goetz Graefe. Encapsulation of parallelism in the volcano query

processing system. In Hector Garcia-Molina and H. V. Jagadish, edi-

tors,Proceedings of the 1990 ACM SIGMOD International Conference

on Management of Data, Atlantic City, NJ, May 23-25, 1990., pages

102–111. ACM Press, 1990.

[Gra93] Goetz Graefe. Query evaluation techniques for large databases.ACM

Comput. Surv., 25(2):73–170, 1993.

BIBLIOGRAPHY 198

[GSPF04] Anastasios Gounaris, Rizos Sakellariou, Norman W. Paton, and Alvaro

A. A. Fernandes. Resource scheduling for parallel query processing on

computational grids. In5th International Workshop on Grid Computing

(GRID 2004), 8 November 2004, Pittsburgh, PA, USA, Proceedings,

pages 396–401. IEEE Computer Society, 2004.

[GST96] Georges Gardarin, Fei Sha, and Zhao-Hui Tang. Calibrating the query

optimizer cost model of iro-db, an object-oriented federated database

system. In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and

Nandlal L. Sarda, editors,VLDB’96, Proceedings of 22th International

Conference on Very Large Data Bases, September 3-6, 1996, Mumbai

(Bombay), India, pages 378–389. Morgan Kaufmann, 1996.

[Has96] W. Hasan.Optimization of SQL Queries for Parallel Machines. PhD

thesis, Stanford Univeristy, 1996.

[HCY94] Hui-I Hsiao, Ming-Syan Chen, and Philip S. Yu. On parallel execution

of multiple pipelined hash joins. In Richard T. Snodgrass and Marianne

Winslett, editors,Proceedings of the 1994 ACM SIGMOD International

Conference on Management of Data, Minneapolis, Minnesota, May 24-

27, 1994., pages 185–196. ACM Press, 1994.

[HCY97] Hui-I Hsiao, Ming-Syan Chen, and Philip S. Yu. Parallel execution of

hash joins in parallel databases.IEEE Trans. Parallel Distrib. Syst.,

8(8):872–883, 1997.

[HFC+00] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran,

Amol Deshpande, Kris Hildrum, Samuel Madden, Vijayshankar Ra-

man, and Mehul A. Shah. Adaptive query processing: Technology in

evolution. IEEE Data Eng. Bull., 23(2):7–18, 2000.

[HH99] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online ag-

gregation. In Alex Delis, Christos Faloutsos, and Shahram Ghande-

harizadeh, editors,SIGMOD 1999, Proceedings ACM SIGMOD Inter-

national Conference on Management of Data, June 1-3, 1999, Philadel-

phia, Pennsylvania, USA., pages 287–298. ACM Press, 1999.

[HM95] Abdelkader Hameurlain and Franck Morvan. Scheduling and mapping

BIBLIOGRAPHY 199

for parallel execution of extended SQL queries. InCIKM ’95, Proceed-

ings of the 1995 International Conference on Information and Knowl-

edge Management, November 28 - December 2, 1995, Baltimore, Mary-

land, USA, pages 197–204. ACM, 1995.

[HM02] Abdelkader Hameurlain and Franck Morvan. CPU and incremental

memory allocation in dynamic parallelization of SQL queries.Parallel

Computing, 28(4):525–556, 2002.

[Hon92] Wei Hong. Exploiting inter-operation parallelism in XPRS. In Michael

Stonebraker, editor,Proceedings of the 1992 ACM SIGMOD Interna-

tional Conference on Management of Data, San Diego, California, June

2-5, 1992., pages 19–28. ACM Press, 1992.

[HS91] Wei Hong and Michael Stonebraker. Optimization of parallel query

execution plans in XPRS. InProceedings of the First International

Conference on Parallel and Distributed Information Systems (PDIS

1991), Fontainebleu Hilton Resort, Miami Beach, Florida, December

4-6, 1991, pages 218–225. IEEE Computer Society, 1991.

[Hsi92] David K. Hsiao. Federated databases and systems: Part I - a tutorial on

their data sharing.VLDB J., 1(1):127–179, 1992.

[IC91] Yannis E. Ioannidis and Stavros Christodoulakis. On the propagation of

errors in the size of join results. In James Clifford and Roger King, edi-

tors,Proceedings of the 1991 ACM SIGMOD International Conference

on Management of Data, Denver, Colorado, May 29-31, 1991., pages

268–277. ACM Press, 1991.

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy,

and Daniel S. Weld. An adaptive query execution system for data in-

tegration. In Alex Delis, Christos Faloutsos, and Shahram Ghande-

harizadeh, editors,SIGMOD 1999, Proceedings ACM SIGMOD Inter-

national Conference on Management of Data, June 1-3, 1999, Philadel-

phia, Pennsylvania, USA., pages 299–310. ACM Press, 1999.

[IHW02] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. An XML query

engine for network-bound data.VLDB J., 11(4):380–402, 2002.

BIBLIOGRAPHY 200

[IHW04] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Adapting to

source properties in processing data integration queries. In Gerhard

Weikum, Arnd Christian K̈onig, and Stefan Deßloch, editors,Proceed-

ings of the ACM SIGMOD International Conference on Management of

Data, Paris, France, June 13-18, 2004, pages 395–406. ACM, 2004.

[ILW +00] Zachary G. Ives, Alon Y. Levy, Daniel S. Weld, Daniela Florescu, and

Marc Friedman. Adaptive query processing for internet applications.

IEEE Data Eng. Bull., 23(2):19–26, 2000.

[Ioa96] Yannis E. Ioannidis. Query optimization. ACM Comput. Surv.,

28(1):121–123, 1996.

[Ive02] Z. Ives. Efficient Query Processing for Data Integration. PhD thesis,

University of Washington, 2002.

[JSHL02] Vanja Josifovski, Peter M. Schwarz, Laura M. Haas, and Eileen Lin.

Garlic: a new flavor of federated query processing for DB2. In

Michael J. Franklin, Bongki Moon, and Anastassia Ailamaki, editors,

Proceedings of the 2002 ACM SIGMOD International Conference on

Management of Data, Madison, Wisconsin, June 3-6, 2002, pages 524–

532. ACM, 2002.

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for

allocating directed task graphs to multiprocessors.ACM Comput. Surv.,

31(4):406–471, 1999.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic com-

puting. IEEE Computer, 36(1):41–50, 2003.

[KCC+03] Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol

Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong,

Samuel Madden, Fred Reiss, and Mehul A. Shah. Telegraphcq: An

architectural status report.IEEE Data Eng. Bull., 26(1):11–18, 2003.

[KD98] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization

of sub-optimal query execution plans. In Laura M. Haas and Ashutosh

Tiwary, editors,SIGMOD 1998, Proceedings ACM SIGMOD Interna-

tional Conference on Management of Data, June 2-4, 1998, Seattle,

Washington, USA, pages 106–117. ACM Press, 1998.

BIBLIOGRAPHY 201

[Ken03] K. Kennedy. Languages, compilers and run-time systems. In Ian Foster

and Carl Kesselman, editors,The Grid: Blueprint for a New Computing

Infrastructure”. Morgan Kaufmann Publishers, 2003.

[Kos00] Donald Kossmann. The state of the art in distributed query processing.

ACM Comput. Surv., 32(4):422–469, 2000.

[KS00] Donald Kossmann and Konrad Stocker. Iterative dynamic program-

ming: a new class of query optimization algorithms.ACM Trans. Data-

base Syst., 25(1):43–82, 2000.

[KTF02] Nicholas T. Karonis, Brian R. Toonen, and Ian T. Foster. Mpich-g2: A

grid-enabled implementation of the message passing interface.CoRR,

2002.

[LCRY93] Ming-Ling Lo, Ming-Syan Chen, Chinya V. Ravishankar, and Philip S.

Yu. On optimal processor allocation to support pipelined hash joins. In

Peter Buneman and Sushil Jajodia, editors,Proceedings of the 1993

ACM SIGMOD International Conference on Management of Data,

Washington, D.C., May 26-28, 1993., pages 69–78. ACM Press, 1993.

[LEHN02] Gang Luo, Curt Ellmann, Peter J. Haas, and Jeffrey F. Naughton. A

scalable hash ripple join algorithm. In Michael J. Franklin, Bongki

Moon, and Anastassia Ailamaki, editors,Proceedings of the 2002 ACM

SIGMOD International Conference on Management of Data, Madison,

Wisconsin, June 3-6, 2002, pages 252–262. ACM, 2002.

[LFP03] David T. Liu, Michael J. Franklin, and Devesh Parekh. Griddb: A data-

base interface to the grid. In Alon Y. Halevy, Zachary G. Ives, and

AnHai Doan, editors,Proceedings of the 2003 ACM SIGMOD Inter-

national Conference on Management of Data, San Diego, California,

USA, June 9-12, 2003, page 660. ACM, 2003.

[Liu97a] K. Liu. Performance evaluation of processor allocation algorithms for

parallel query execution. InProceedings of the 1997 ACM symposium

on Applied computing, pages 393–402. ACM Press, 1997.

[Liu97b] Kevin Hao Liu. Performance study on optimal processor assignment in

parallel relational databases. InInternational Conference on Supercom-

puting, pages 84–91, 1997.

BIBLIOGRAPHY 202

[LNEW04] Gang Luo, Jeffrey F. Naughton, Curt Ellmann, and Michael Watzke.

Toward a progress indicator for database queries. In Gerhard Weikum,

Arnd Christian K̈onig, and Stefan Deßloch, editors,Proceedings of

the ACM SIGMOD International Conference on Management of Data,

Paris, France, June 13-18, 2004, pages 791–802. ACM, 2004.

[LOG92] Hongjun Lu, Beng Chin Ooi, and Cheng Hian Goh. On global multi-

database query optimization.SIGMOD Record, 21(4):6–11, 1992.

[Man01] Ioana Manolescu.Optimization Techniques for querying heterogeneous

distributed data sources. PhD thesis, Universite de Versailles, France,

2001.

[MBGS03] Tobias Mayr, Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri.

Leveraging non-uniform resources for parallel query processing. In

3rd IEEE International Symposium on Cluster Computing and the Grid

(CCGrid 2003), 12-15 May 2003, Tokyo, Japan, pages 120–129. IEEE

Computer Society, 2003.

[MBM +99] R. W. Moore, C. Baru, R. Marciano, A. Rajasekar, and M. Wan. Data-

Intensive Computing. In I. Foster and C. Kesselman, editors,The Grid:

Blueprint for a New Computing Infrastrcuture, chapter 5, pages 105–

129. Morgan Kaufmann, 1999.

[ML86] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and

performance evaluation for distributed queries. In Wesley W. Chu,

Georges Gardarin, Setsuo Ohsuga, and Yahiko Kambayashi, editors,

VLDB’86 Twelfth International Conference on Very Large Data Bases,

August 25-28, 1986, Kyoto, Japan, Proceedings., pages 149–159. Mor-

gan Kaufmann, 1986.

[Mol93] D. Moldovan.Parallel Computing: From Applications to Systems. Mor-

gan Kaufmann Publishers Inc., 1993.

[MP03] Peter McBrien and Alexandra Poulovassilis. Data integration by bi-

directional schema transformation rules. In Umeshwar Dayal, Krithi

Ramamritham, and T. M. Vijayaraman, editors,Proceedings of the 19th

International Conference on Data Engineering, March 5-8, 2003, Ban-

galore, India, pages 227–238. IEEE Computer Society, 2003.

BIBLIOGRAPHY 203

[MRS+04] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M.

Lohman, and Hamid Pirahesh. Robust query processing through pro-

gressive optimization. In Gerhard Weikum, Arnd Christian König, and

Stefan Deßloch, editors,Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, Paris, France, June 13-18,

2004, pages 659–670. ACM, 2004.

[MSBT03] Tanu Malik, Alexander S. Szalay, Tamas Budavari, and Ani Thakar.

Skyquery: A web service approach to federate databases. InCIDR,

2003.

[MSHR02] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vi-

jayshankar Raman. Continuously adaptive continuous queries over

streams. In Michael J. Franklin, Bongki Moon, and Anastassia Ail-

amaki, editors,Proceedings of the 2002 ACM SIGMOD International

Conference on Management of Data, Madison, Wisconsin, June 3-6,

2002, pages 49–60. ACM, 2002.

[MWA +03] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shiv-

nath Babu, Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin

Rosenstein, and Rohit Varma. Query processing, approximation, and

resource management in a data stream management system. InCIDR,

2003.

[MWK98] Stefan Manegold, Florian Waas, and Martin L. Kersten. On optimal

pipeline processing in parallel query execution. Technical Report INS-

R9805, Centrum voor Wiskunde en Informatica (CWI), 1998.

[NCK+03] Sivaramakrishnan Narayanan, Umit V. Catalyrek, Tahsin M. Kurc,

Xi Zhang, and Joel H. Saltz. Applying database support for large scale

data driven science in distributed environemnts. InProc. of the 4th

Workshop on Grid Computing, GRID’03, 2003.

[NSGS+05] Maŕıa A. Nieto-Santisteban, Jim Gray, Alexander S. Szalay, James An-

nis, Aniruddha R. Thakar, and William O’Mullane. When database

systems meet the grid. InCIDR, pages 154–161, 2005.

[NWM98] K. Ng, Z. Wang, and R. Muntz. Dynamic reconfiguration of sub-optimal

BIBLIOGRAPHY 204

parallel query execution plans. Technical Report CSD-980033, UCLA,

1998.

[NWMN99] Kenneth W. Ng, Zhenghao Wang, Richard R. Muntz, and Silvia Nittel.

Dynamic query re-optimization. InSSDBM, pages 264–273, 1999.

[OB04] Mourad Ouzzani and Athman Bouguettaya. Query processing and op-

timization on the web.Distributed and Parallel Databases, 15(3):187–

218, 2004.

[OD] The OGSA-DAI project, http://www.ogsadai.org.uk.

[ONK+96] Fatma Ozcan, Sena Nural, Pinar Koksal, Cem Evrendilek, and Asuman

Dogac. Dynamic query optimization on a distributed object manage-

ment platform. InCIKM ’96, Proceedings of the Fifth International

Conference on Information and Knowledge Management, November 12

- 16, 1996, Rockville, Maryland, USA, pages 117–124. ACM, 1996.

[ONK+97] Fatma Ozcan, Sena Nural, Pinar Koksal, Cem Evrendilek, and Asuman

Dogac. Dynamic query optimization in multidatabases.IEEE Data

Eng. Bull., 20(3):38–45, 1997.

[Ora01] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technolo-

gies. O’Reilly, 2001.

[OV99] M.T. Ozsu and P. Valduriez, editors.Principles of Distributed Database

Systems (Second Edition). Prentice-Hall, 1999.

[PBD+01] Antoine Petitet, Susan Blackford, Jack Dongarra, Brett Ellis, Graham

Fagg, Kenneth Roche, and Sathish Vadhiyar. Numerical libraries and

the grid. International Journal of High Performance Applications and

Supercomputing, 15(4):359–374, 2001.

[PCL93a] HweeHwa Pang, Michael J. Carey, and Miron Livny. Memory-adaptive

external sorting. In Rakesh Agrawal, Seán Baker, and David A. Bell, ed-

itors,19th International Conference on Very Large Data Bases, August

24-27, 1993, Dublin, Ireland, Proceedings., pages 618–629. Morgan

Kaufmann, 1993.

BIBLIOGRAPHY 205

[PCL93b] HweeHwa Pang, Michael J. Carey, and Miron Livny. Partially preemp-

tive hash joins. In Peter Buneman and Sushil Jajodia, editors,Proceed-

ings of the 1993 ACM SIGMOD International Conference on Manage-

ment of Data, Washington, D.C., May 26-28, 1993., pages 59–68. ACM

Press, 1993.

[PLP02] Henrique Paques, Ling Liu, and Calton Pu. Ginga: a self-adaptive

query processing system. InProceedings of the 2002 ACM CIKM In-

ternational Conference on Information and Knowledge Management,

McLean, VA, USA, November 4-9, 2002, pages 655–658. ACM, 2002.

[POL] The polar* project, www.ncl.ac.uk/polarstar.

[PS00] Beth Plale and Karsten Schwan. dquob: Managing large data flows

using dynamic embedded queries. InHPDC, pages 263–270, 2000.

[PS01] Beth Plale and Karsten Schwan. Optimizations enabled by relational

data model view to querying data streams. InProceedings of the 15th

International Parallel & Distributed Processing Symposium (IPDPS-

01), San Francisco, CA, April 23-27, 2001, page 20. IEEE Computer

Society, 2001.

[RDH03] Vijayshankar Raman, Amol Deshpande, and Joseph M. Hellerstein. Us-

ing state modules for adaptive query processing. In Umeshwar Dayal,

Krithi Ramamritham, and T. M. Vijayaraman, editors,Proceedings of

the 19th International Conference on Data Engineering, March 5-8,

2003, Bangalore, India, pages 353–364. IEEE Computer Society, 2003.

[RH02] Vijayshankar Raman and Joseph M. Hellerstein. Partial results for on-

line query processing. In Michael J. Franklin, Bongki Moon, and Anas-

tassia Ailamaki, editors,Proceedings of the 2002 ACM SIGMOD In-

ternational Conference on Management of Data, Madison, Wisconsin,

June 3-6, 2002, pages 275–286. ACM, 2002.

[RM95] Erhard Rahm and Robert Marek. Dynamic multi-resource load bal-

ancing in parallel database systems. In Umeshwar Dayal, Peter M. D.

Gray, and Shojiro Nishio, editors,VLDB’95, Proceedings of 21th In-

ternational Conference on Very Large Data Bases, September 11-15,

1995, Zurich, Switzerland., pages 395–406. Morgan Kaufmann, 1995.

BIBLIOGRAPHY 206

[RNvGJ01] Andrei Radulescu, Cristina Nicolescu, Arjan J. C. van Gemund, and

Pieter Jonker. Cpr: Mixed task and data parallel scheduling for distrib-

uted systems. InProceedings of the 15th International Parallel & Dis-

tributed Processing Symposium (IPDPS-01), San Francisco, CA, April

23-27, 2001, page 39. IEEE Computer Society, 2001.

[ROH99] Mary Tork Roth, Fatma Ozcan, and Laura M. Haas. Cost models do

matter: Providing cost information for diverse data sources in a feder-

ated system. In Malcolm P. Atkinson, Maria E. Orlowska, Patrick Val-

duriez, Stanley B. Zdonik, and Michael L. Brodie, editors,VLDB’99,

Proceedings of 25th International Conference on Very Large Data

Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 599–

610. Morgan Kaufmann, 1999.

[RRH99] Vijayshankar Raman, Bhaskaran Raman, and Joseph M. Hellerstein.

Online dynamic reordering for interactive data processing. In Mal-

colm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B.

Zdonik, and Michael L. Brodie, editors,VLDB’99, Proceedings of 25th

International Conference on Very Large Data Bases, September 7-10,

1999, Edinburgh, Scotland, UK, pages 709–720. Morgan Kaufmann,

1999.

[RRH00] Vijayshankar Raman, Bhaskaran Raman, and Joseph M. Hellerstein.

Online dynamic reordering.VLDB J., 9(3):247–260, 2000.

[RvG01] Andrei Radulescu and Arjan J. C. van Gemund. A low-cost approach

towards mixed task and data parallel scheduling. In Lionel M. Ni and

Mateo Valero, editors,Proceedings of the 2001 International Confer-

ence on Parallel Processing, ICPP 2002, 3-7 September 2001, Valencia,

Spain, pages 69–76. IEEE Computer Society, 2001.

[RZL02] Amira Rahal, Qiang Zhu, and Per-Åke Larson. Developing evolution-

ary cost models for query optimization in a dynamic multidatabase en-

vironment. In Robert Meersman and Zahir Tari, editors,On the Move to

Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002 Con-

federated International Conferences DOA, CoopIS and ODBASE 2002

Irvine, California, USA, October 30 - November 1, 2002, Proceedings,

pages 1–18. Springer, 2002.

BIBLIOGRAPHY 207

[RZL04] Amira Rahal, Qiang Zhu, and Per-Åke Larson. Evolutionary techniques

for updating query cost models in a dynamic multidatabase environ-

ment.VLDB J., 13(2):162–176, 2004.

[SA02] Etzard Stolte and Gustavo Alonso. Optimizing scientific databases for

client side data processing. In Christian S. Jensen, Keith G. Jeffery,

Jaroslav Pokorńy, Simonas Saltenis, Elisa Bertino, Klemens Böhm,

and Matthias Jarke, editors,Advances in Database Technology - EDBT

2002, 8th International Conference on Extending Database Technology,

Prague, Czech Republic, March 25-27, Proceedings, pages 390–408.

Springer, 2002.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-

mond A. Lorie, and Thomas G. Price. Access path selection in a re-

lational database management system. In Philip A. Bernstein, editor,

Proceedings of the 1979 ACM SIGMOD International Conference on

Management of Data, Boston, Massachusetts, May 30 - June 1, pages

23–34. ACM, 1979.

[SAL+96] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam

Sah, Jeff Sidell, Carl Staelin, and Andrew Yu. Mariposa: A wide-area

distributed database system.VLDB J., 5(1):48–63, 1996.

[SCS+04] Sameer Shivle, Ralph H. Castain, Howard Jay Siegel, Anthony A.

Maciejewski, Tarun Banka, Kiran Chindam, Steve Dussinger, Prakash

Pichumani, Praveen Satyasekaran, William Saylor, David Sendek,

J. Sousa, Jayashree Sridharan, Prasanna Sugavanam, and Jose Velazco.

Static mapping of subtasks in a heterogeneous ad hoc grid environment.

In 18th International Parallel and Distributed Processing Symposium

(IPDPS 2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004,

Santa Fe, New Mexico, USA. IEEE Computer Society, 2004.

[SGW+02] Jim Smith, Anastasios Gounaris, Paul Watson, Norman W. Paton, Al-

varo A. A. Fernandes, and Rizos Sakellariou. Distributed query process-

ing on the grid. In Manish Parashar, editor,Grid Computing - GRID

2002, Third International Workshop, Baltimore, MD, USA, November

18, 2002, Proceedings, pages 279–290. Springer, 2002.

BIBLIOGRAPHY 208

[SGW+03] Jim Smith, Anastasios Gounaris, Paul Watson, Norman. W. Paton,

Alvaro. A. A. Fernandes, and Rizos Sakellariou. Distributed query

processing on the grid.International Journal of High Performance

Computing Applications, 17(4):353–367, 2003.

[SHCF03] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chandrasekaran, and

Michael J. Franklin. Flux: An adaptive partitioning operator for con-

tinuous query systems. In Umeshwar Dayal, Krithi Ramamritham, and

T. M. Vijayaraman, editors,Proceedings of the 19th International Con-

ference on Data Engineering, March 5-8, 2003, Bangalore, India, pages

25–36. IEEE Computer Society, 2003.

[SLMK01] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil.

LEO - DB2’s learning optimizer. In Peter M. G. Apers, Paolo

Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao,

and Richard T. Snodgrass, editors,VLDB 2001, Proceedings of 27th

International Conference on Very Large Data Bases, September 11-14,

2001, Roma, Italy, pages 19–28. Morgan Kaufmann, 2001.

[SOHL+98] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.MPI

- The Complete Reference. The MIT Press, Cambridge, Massachusetts,

1998. ISBN: 0-262-69215-5.

[SPSW02] Sandra Sampaio, Norman W. Paton, Jim Smith, and Paul Watson. Val-

idated cost models for parallel oql query processing. In Zohra Bellah-

sene, Dilip Patel, and Colette Rolland, editors,Object-Oriented Infor-

mation Systems, 8th International Conference, OOIS 2002, Montpel-

lier, France, September 2-5, 2002, Proceedings, pages 60–75. Springer,

2002.

[SPWS99] Sandra Sampaio, Norman W. Paton, Paul Watson, and Jim Smith. A

parallel algebra for object databases. InDEXA Workshop, pages 56–60,

1999.

[SSW04] Balasubramanian Seshasayee, Karsten Schwan, and Patrick Widener.

Soap-binq: High-performance soap with continuous quality manage-

ment. InICDCS, pages 158–165, 2004.

BIBLIOGRAPHY 209

[SSWP04] Jim Smith, Sandra Sampaio, Paul Watson, and Norman W. Paton. The

design, implementation and evaluation of an odmg compliant, parallel

object database server.Distributed and Parallel Databases, 16(3):275–

319, 2004.

[Sto86] M. Stonebraker. The case for shared nothing.IEEE Data Engineering

Bulletin, 9(1):4–9, 1986.

[SW04] Jim Smith and Paul Watson. Applying low-overhead rollback-recovery

to wide area distributed query processing. Technical Report CS-TR-

861, The University of Newcastle upon Tyne, School of Computing,

2004.

[SWKH76] Michael Stonebraker, Eugene Wong, Peter Kreps, and Gerald Held.

The design and implementation of ingres.ACM Trans. Database Syst.,

1(3):189–222, 1976.

[SZ04] Rizos Sakellariou and Henan Zhao. A hybrid heuristic for DAG

scheduling on heterogeneous systems. In18th International Parallel

and Distributed Processing Symposium (IPDPS 2004), CD-ROM / Ab-

stracts Proceedings, 26-30 April 2004, Santa Fe, New Mexico, USA.

IEEE Computer Society, 2004.

[TB02] Wee Hyong Tok and Stéphane Bressan. Efficient and adaptive process-

ing of multiple continuous queries. In Christian S. Jensen, Keith G.

Jeffery, Jaroslav Pokorný, Simonas Saltenis, Elisa Bertino, Klemens

Böhm, and Matthias Jarke, editors,Advances in Database Technol-

ogy - EDBT 2002, 8th International Conference on Extending Database

Technology, Prague, Czech Republic, March 25-27, Proceedings, pages

215–232. Springer, 2002.

[TCF+02] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kessel-

man. Grid Service Specification. Technical report, Open Grid Service

Infrastructure WG, Global Grid Forum, 2002. Draft 5, November 5,

2002.

[TD03] Feng Tian and David J. DeWitt. Tuple routing strategies for distributed

eddies. InVLDB, pages 333–344, 2003.

BIBLIOGRAPHY 210

[TTC+90] Gomer Thomas, Glenn R. Thompson, Chin-Wan Chung, Edward Bark-

meyer, Fred Carter, Marjorie Templeton, Stephen Fox, and Berl Hart-

man. Heterogeneous distributed database systems for production use.

ACM Comput. Surv., 22(3):237–266, 1990.

[TTL03] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the

grid. In Fran Berman, Geoffrey Fox, and Tony Hey, editors,Grid Com-

puting: Making the Global Infrastructure a Reality. John Wiley & Sons

Inc., 2003.

[TWML02] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Con-

dor – a distributed job scheduler. In Thomas Sterling, editor,Beowulf

Cluster Computing with Linux. MIT Press, 2002.

[UF00] Tolga Urhan and Michael J. Franklin. Xjoin: A reactively-scheduled

pipelined join operator.IEEE Data Eng. Bull., 23(2):27–33, 2000.

[UF01] Tolga Urhan and Michael J. Franklin. Dynamic pipeline scheduling

for improving interactive query performance. In Peter M. G. Apers,

Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamoha-

narao, and Richard T. Snodgrass, editors,VLDB 2001, Proceedings of

27th International Conference on Very Large Data Bases, September

11-14, 2001, Roma, Italy, pages 501–510. Morgan Kaufmann, 2001.

[UFA98] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost based

query scrambling for initial delays. In Laura M. Haas and Ashutosh

Tiwary, editors,SIGMOD 1998, Proceedings ACM SIGMOD Interna-

tional Conference on Management of Data, June 2-4, 1998, Seattle,

Washington, USA., pages 130–141. ACM Press, 1998.

[Wat03] Paul Watson. Databases and the grid. In Fran Berman, Geoffrey Fox,

and Tony Hey, editors,Grid Computing: Making The Global Infrastruc-

ture a Reality. John Wiley & Sons Inc., 2003.

[WC96] Chihping Wang and Ming-Syan Chen. On the complexity of distrib-

uted query optimization.IEEE Trans. Knowl. Data Eng., 8(4):650–662,

1996.

BIBLIOGRAPHY 211

[WCwHK04] Jun Wu, Jian-Jia Chen, Chih wen Hsueh, and Tei-Wei Kuo. Scheduling

of query execution plans in symmetric multiprocessor database systems.

In 18th International Parallel and Distributed Processing Symposium

(IPDPS 2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004,

Santa Fe, New Mexico, USA. IEEE Computer Society, 2004.

[WFA92] Annita N. Wilschut, Jan Flokstra, and Peter M. G. Apers. Parallelism in

a main-memory dbms: The performance of prisma/db. In Li-Yan Yuan,

editor,18th International Conference on Very Large Data Bases, August

23-27, 1992, Vancouver, pages 521–532. Morgan Kaufmann, 1992.

[WFA95] Annita N. Wilschut, Jan Flokstra, and Peter M. G. Apers. Parallel

evaluation of multi-join queries. In Michael J. Carey and Donovan A.

Schneider, editors,Proceedings of the 1995 ACM SIGMOD Interna-

tional Conference on Management of Data, San Jose, California, May

22-25, 1995, pages 115–126. ACM Press, 1995.

[WHW+04] Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and

Jeffrey O. Kephart. An architectural approach to autonomic computing.

In 1st International Conference on Autonomic Computing (ICAC 2004),

17-19 May 2004, New York, NY, USA, pages 2–9. IEEE Computer So-

ciety, 2004.

[WSH99] Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather ser-

vice: a distributed resource performance forecasting service for meta-

computing. Future Generation Computer Systems, 15(5–6):757–768,

1999.

[YD02] Asim YarKhan and Jack Dongarra. Experiments with scheduling using

simulated annealing in a grid environment. In Manish Parashar, edi-

tor, Grid Computing - GRID 2002, Third International Workshop, Bal-

timore, MD, USA, November 18, 2002, Proceedings, pages 232–242.

Springer, 2002.

[YS97] Min J. Yu and Phillip C.-Y. Sheu. Adaptive join algorithms in dynamic

distributed databases.Distributed and Parallel Databases, 5(1):5–30,

1997.

BIBLIOGRAPHY 212

[Zho03] Yongluan Zhou. Adaptive distributed query processing. In Marc H.

Scholl and Torsten Grust, editors,Proceedings of the VLDB 2003 PhD

Workshop. Co-located with the 29th International Conference on Very

Large Data Bases (VLDB 2003). Berlin, September 12-13, 2003. Tech-

nical University of Aachen (RWTH), 2003.

[ZL97] Weiye Zhang and Per-Åke Larson. Dynamic memory adjustment for

external mergesort. In Matthias Jarke, Michael J. Carey, Klaus R. Dit-

trich, Frederick H. Lochovsky, Pericles Loucopoulos, and Manfred A.

Jeusfeld, editors,VLDB’97, Proceedings of 23rd International Confer-

ence on Very Large Data Bases, August 25-29, 1997, Athens, Greece,

pages 376–385. Morgan Kaufmann, 1997.

[ZMS03] Qiang Zhu, Satyanarayana Motheramgari, and Yu Sun. Cost estimation

for queries experiencing multiple contention states in dynamic multi-

database environments.Knowl. Inf. Syst., 5(1):26–49, 2003.

[ZOTT05] Yongluan Zhou, Beng Chin Ooi, Kian-Lee Tan, and Wee Hyong Tok.

An adaptable distributed query processing architecture.Data Knowl.

Eng., To appear, 2005.

[ZRH04] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic

plan migration for continuous queries over data streams. In Gerhard

Weikum, Arnd Christian K̈onig, and Stefan Deßloch, editors,Proceed-

ings of the ACM SIGMOD International Conference on Management of

Data, Paris, France, June 13-18, 2004, pages 431–442. ACM, 2004.

[ZSM00] Qiang Zhu, Yu Sun, and Satyanarayana Motheramgari. Developing cost

models with qualitative variables for dynamic multidatabase environ-

ments. InICDE, pages 413–424, 2000.

Appendix A

A Simplified Cost Model

The cost model in [SPSW02], which is a detailed and validated one developed for

parallel object database systems [SSWP04], has been simplified and adapted to operate

in a distributed and autonomous environment and has been incorporated in the Polar*

query engine. This model estimates the query completion time, by estimating the cost

of each operator instance separately in time units. This cost is further decomposed

into (i) computation cost, (ii) disk I/O cost, and (iii) communication cost. Here, only

the operators employed in the evaluation queries in Section 3.3 will be examined, i.e.,

scan, hash joinandexchange, as providing formulas for a more complete set of query

operators is out of the scope of the work of this thesis.

A.1 Cost of Scan

The scan operator is used to retrieve the data from a store. Its time cost,Tscan, accord-

ing to [SPSW02], is

Tscan = tseek + trot latency + ttransfer · npages + tmap ·N + (1 +
ncond − 1

2
) · teval ·N

The meaning of the variables is presented in Table A.1. If the scan is implemented

as asequential scanoperator, it accesses disk pages sequentially, in order to retrieve

all the objects of an extent, which is the equivalent of a database table in the ODMG

model. The predicate (if it exists) is applied afterwards. If the scan is implemented

as anindexed scanand there exists a predicate, the number of pages accessed can be

reduced dramatically.

213

APPENDIX A. A SIMPLIFIED COST MODEL 214

Variable Description
npages number of pages retrieved
S size of tuples retrieved (in bytes)
N number of tuples retrieved
ncond number of conditions in the predicate
tseek seek time of disk (in time units)
trot latency rotational latency of disk (in time units)
ttransfer transfer time of disk (in time units)
tmap time to map an object to tuple format, which depends on the number

of attributes in the object and their type (in time units)
teval time to evaluate a condition of the predicate (in time units)
I/O speed rate of reading data from store (in time units per byte)

Table A.1: The parameters for estimating the time cost of a sequential scan.

The disk timingstseek, trot latency, and ttransfer are several orders of magnitude

larger than the CPU - dependent timingstmap andteval. Polar experiments show that

in relatively slow machines, the mapping and predicate evaluation time can be of the

same order with disk read time. However, in the Grid, it is expected that the machines

used powerful. Hence it can be assumed that the total cost of scans is dominated by

the cost to read the data from the disk:

Tscan ≈ ttransfer · npages ≈ I/O speed · S

The size of tuples retrieved is the size of the whole database if a sequential scan

is used to retrieve data from a remote database. If that database evaluates the operator

using an index-based scan, the size of the tuples retrieved is approximately the size of

the tuples that are produced by the scan operator after applying the predicate.

A.2 Cost of Hash Join

The hash joinconsumes the left input and hashes all its tuples on the join attribute,

to populate the hash table. After consuming all the left input, for each tuple in the

right one, it hashes that tuple on the join attribute, concatenates it with the tuples in the

corresponding bucket in the hash table, and applies the predicate.

APPENDIX A. A SIMPLIFIED COST MODEL 215

Variable Description
Nleft number of tuples in the left input
Nright number of tuples in the right input
nbuckets number of buckets in the hash table
ncond number of conditions in the predicate
thash time to hash a tuple (in time units)
tconc time to concatenate a tuple with another tuple (in time units)
teval time to evaluate a condition in the predicate (in time units)

Table A.2: The parameters for estimating the time cost of a hash join.

The total cost is (according to [SPSW02]):

Thashjoin = thash · (Nleft + Nright) + tconc · Nleft

nbuckets

·Nright +

(1 +
ncond − 1

2
) · teval · Nleft

nbuckets

·Nright

The meaning of the variables is presented in Table A.2.

All the variables depend on the CPU power and memory access costs. As the

inputs are expected not to be very small, andthash, tconc,andteval are expected to be of

the same order,Nleft + Nright becomes significantly smaller thanNleft

nbuckets
·Nright. As

such, the cost can be approximated to:

Thashjoin = tconc · Nleft

nbuckets

·Nright + (1 +
ncond − 1

2
) · teval · Nleft

nbuckets

·Nright

= thashjoin · Nleft

nbuckets

·Nright

wherethashjoin is a variable dependent on the CPU power:

thashjoin = tconc + (1 +
ncond − 1

2
) · teval

The number of buckets is traditionally the number of distinct values of the join

attribute in the left input.

APPENDIX A. A SIMPLIFIED COST MODEL 216

A.3 Cost of Exchange

The cost of the exchange operator consists of the cost to pack tuples into buffers, to

unpack them, and to send buffers to consumers. There are two cases: (i) the exchange

sends data also to itself, or (ii) the exchange sends data exclusively to remote con-

sumers.

In the first case, the cost of exchange is

Texchange = ((tpack + tunpack) ·N +
S + overhead · S

spacket−overhead

ConSpeed
) · (1− 1

nconsumers

)

and in the second

Texchange = ((tpack + tunpack) ·N +
S + overhead · S

spacket−overhead

ConSpeed

Table A.3 explains the parameters. The difference in the two formulas reflects the

fact that if an exchange sends data also to itself, then a fragment of the data need not

be transmitted over the network, as it remains on the same node.

Variable Description
N number of tuples in the input
S size of the input (in bytes)
ConSpeed connections speed (in bytes per time unit)
overhead size of network overhead per packet (in bytes)
spacket size of network packet (in bytes)
nconsumers number of consumer nodes
tpack time to pack a tuple, which depends on the number and types of its

attributes (in time units)
tunpack time to unpack a tuple, depends on the number and types of its at-

tributes (in time units)

Table A.3: The parameters for estimating the time cost of exchange.

Assuming that the communication cost prevails, the CPU cost is not significant,

and the overhead is not large, the two formulas become

Texchange = (
S

ConSpeed
) · (1− 1

nconsumers

)

APPENDIX A. A SIMPLIFIED COST MODEL 217

and

Texchange =
S

ConSpeed

A.4 Estimating the cost of plan partitions

The cost model accounts for independent, pipelined (or inter-operator), and partitioned

(or intra-operator) parallelism in the same way as in [SPSW02]. In summary, the cost

of a query plan is the sum of the costs of all plan partitions unless two or more plan

partitions are executed independently (e.g., two subtrees rooted from the same node);

in the latter case the larger cost among all such partitions suffices. The cost of a plan

partition is the sum of the costs of the operators belonging to that partition. If a plan

partition is evaluated on many nodes, the most costly subplan instance determines the

cost of the plan partition.

Appendix B

Summary of AQP proposals

Technique Monitoring Assessment Response Architecture

Focus Freq-

uency

Issue Response Form Impact Data

Local.

QP

Local.

Adapt.

Local.

sorting

[PCL93a]

resource mem-

ory

intra-

operator

insufficient/idle

memory

operator recon-

figuration

operator in-

stance

N/A central operator

PPHJ

[PCL93b]

resource mem-

ory

intra-

operator

insufficient/idle

memory

operator recon-

figuration

operator in-

stance

N/A any operator

ripple

[HH99]

user input intra-

operator

user require-

ments

operator recon-

figuration

operator in-

stance

N/A central operator

XJoin

[UF00]

resource con-

nections

intra-

operator

idle CPU operator

rescheduling

operator in-

stance

remote central operator

juggle

[RRH00]

user input intra-

operator

user require-

ments

operator recon-

figuration.

operator in-

stance

N/A central operator

mergesort

[ZL97]

resource mem-

ory

intra-

operator

insufficient/idle

memory

operator recon-

fguration

operator in-

stance

N/A central central

pipeline

scheduler

[UF01]

user input, data

volume, opera-

tor cost

intra-

operator

suboptimal op-

erator schedul-

ing, user reqs

operator

rescheduling

partition

instance

N/A central central

mid-query

reoptimisa-

tion [KD98]

data volume,

operator cost

inter-

operator

subopt. phys-

ical plan, perf.

expectations

operator re-

conf., plan

reoptimisation

query plan local central central

progressive

optimisation

[MRS+04]

data volume,

operator cost

inter-

operator

subopt. phys-

ical plan, perf.

expectations

operator re-

conf., plan

reoptimisation

query plan local central central

ingres

[SWKH76]

data cardinality intra-

operator

subopt. oper.

scheduling

operator

rescheduling

query plan local central central

eddies

[AH00]

data cardinality,

oper. cost

intra-

operator

subopt. oper.

scheduling

operator

rescheduling

query plan any central central

218

APPENDIX B. SUMMARY OF AQP PROPOSALS 219

Technique Monitoring Assessment Response Architecture

Focus Freq-

uency

Issue Response Form Impact Data

Local.

QP

Local.

Adapt.

Local.

stems

[RDH03]

data cardinality,

oper. cost

intra-

operator

subopt. physi-

cal plan, opera-

tor scheduling

operator

rescheduling,

replacement

query plan any central central

juggle-eddy

[RH02]

data cardinality,

operator cost,

user input

intra-

operator

subopt. oper.

scheduling,

user reqs

operator

rescheduling

query plan any central central

query

scrambling

[UFA98]

resource con-

nections

inter-

operator

idle CPU operator

resched., plan

reoptimisation

query plan remote central central

Bouganim

[BFMV00b]

resource con-

nections,

memory

inter-

operator

idle CPU, insuf-

ficient memory

operator

resched., plan

reoptimisation

query plan remote central central

Tukwila

[IFF+99,

ILW+00,

Ive02,

IHW04]

resource con-

nections,

memory, pool,

data volume,

operator cost

inter-

operator

idle CPU, insuf-

ficient memory,

subopt. phys-

ical plan, perf.

expectations

operator

rescheduling,

reconfigura-

tion, replace-

ment, plan

reoptim.

query plan remote central central

bindjoins

[Man01]

operator cost inter-

operator

suboptimal re-

source selection

operator recon-

figuration

query plan remote central central

CACQ

[MSHR02],

psoup

[CF03]

data cardinality,

operator cost

intra-

operator

suboptimal op-

erator schedul-

ing

operator

rescheduling

query plan stream central central

dQUOB

[PS01]

data character-

istics

intra-

operator

subopt. oper.

scheduling

operator

rescheduling

query plan stream central central

chain

[BBDM03]

data cardinality intra-

operator

subopt. oper.

scheduling

operator

rescheduling

query plan stream central central

stream

[MWA +03,

BMM+04]

data cardinality,

resource mem-

ory

intra-

operator

subopt. oper.

scheduling, in-

suf. memory

operator

rescheduling,

reconfig.

query plan stream central central

river

[ADAT +99]

resource perfor-

mance

intra-

operator

workload

imbalance

operator recon-

figuration

operator local central central

flux

[SHCF03]

resource perfor-

mance

intra-

operator

workload

imbalance

operator recon-

figuration

operator local central central

parad

[HM02]

data cardinality,

resource pool,

memory

inter-

operator

insufficient

memory

machine

rescheduling

query plan local central central

mind

[ONK+97]

data cardinality inter-

operator

subopt. re-

source selection

machine

rescheduling

partition remote non-

central

central

APPENDIX B. SUMMARY OF AQP PROPOSALS 220

Technique Monitoring Assessment Response Architecture

Focus Freq-

uency

Issue Response Form Impact Data

Local.

QP

Local.

Adapt.

Local.

adaptive

SDD-1

[YS97]

data cardinality inter-

operator

subopt. opera-

tor schedul., re-

source selection

operator

resched., ma-

chine resched.

partition remote non-

central

central

aurora*

[CBB+03]

data cardinality intra-

operator

resource short-

age

machine

rescheduling

operator stream non-

central

distributed

conquest

[NWM98,

NWMN99]

resources, data

volume

inter-

operator

suboptimal

physical plan,

resource selec-

tion, imbalance

plan reop-

timisation,

machine

rescheduling

query plan remote non-

central

central

SwAP

[ZOTT05]

data cardinality intra-

operator

subopt. oper.

scheduling

operator

rescheduling

query plan any non-

central

distributed

Table B.1:Summarising table of AQP proposals according to the classifications of Section
4.3.

