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Abstract

Grid technologieshavebeendevelopedin responseto an
increasein demand for computing applicationsdesigned to
yield thebenefitsfromcollaboration, datasharingandso-
phisticated interaction of autonomous and geographically
dispersedresources. DistributedQueryProcessing(DQP)
is anappealing solutionfor expressingandefficiently eval-
uating requestsacrossGrid resources. In this paper: (i)
we identify parts of the Grid infrastructure that facilitate,
and opennew directions for, query processingover grid-
enabledheterogeneous andautonomousdatabases,stress-
ing theneedfor Adaptive QueryProcessing(AQP); (ii) we
discusssomebasicchallengesarising fromthenew oppor-
tunitiesandoutlinetheunsuitability for usein aGrid setting
and narrow specialisationof existing proposals for AQP;
and (iii) we suggest a generic adaptivity framework as a
promisingwayforward.

1. Novel Opportunities

Grid technologieshavebeendevelopedin responseto an
increase in demands for computing applications designed
to yield the benefitsfrom collaboration, datasharingand
sophisticatedinteractionof autonomousandgeographically
dispersedresources. Indeed,the Grid is an infrastructure
anda set of protocols that enablethe integrated,collabo-
rative useof high-end computers,networks,databases,and
scientificinstruments ownedandmanaged by multiple or-
ganizations,referredto virtual organisations [6]. Grid com-
puting, in contrastwith traditional distributedcomputing,
focuseson large-scaleresource sharing(i.e. not primar-
ily file exchangeason the web,but ratherdirectaccessto
computers,software,dataandotherresources)for innova-
tive applications andin somecases,high performance. As
such,it is notsupportedby today’s InternetandWebinfras-
tructures. Typical Grid applications include autonomous
bioinformaticslabsacrossthe world sharingtheir simula-
tion tools, experimentalresultsand databases,as well as
theuseof thedonatedsparecomputer time of thousands of

PCsconnectedto theInternet in order to identify molecules
which might inhibit the growth of various typesof cancer
cells.

Peer-to-peer, rather than being a competing paradigm
to Grid computing, can be deemed as an alternative and
complementaryapproach toward the organisation of dy-
namiccomputational communities,the interestsof which
“arelikely to grow closerto Grid computingovertime” [5].

Thebenefitsaccruingfrom thecombinationof database
and grid technologies have beenrecognised[20], and al-
though Grid middlewareplatforms andtoolkits do not yet
provide built-in support for databaseoperations, specific
initiativeshavebeentakento this end,e.g.,theOGSA-DAI
(http://www.ogsa-dai.org.uk/) project,whichhasdeveloped
dataaccesstechnology for Grid-enablingdatabasesystems,
andOGSA-DQP(http://www.ogsa-dai.org.uk/dqp/), which
hasdevelopeda service-basedqueryprocessorfor OGSA-
DAI wrappeddatabases[1]. Thesequerytechnologiescan
provideeffectivedeclarativesupport for combining dataac-
cesswith analysis,andareinherently well suitedfor inten-
siveapplications,asthey implicitly provide for parallelism.

Distributedqueryprocessing(DQP) is anappealingso-
lution for a broadrangeof Grid applications dueto its: (i)
declarative, asopposedto imperative, manner for express-
ing potentially complex computationsthat integrate inde-
pendent dataresourcesandanalysistools, which arecur-
rently eithernot feasible,or mustbecarriedout usingnon-
databasetechnologies;(ii) implicit provision of parallelism
that makes efficient task execution more likely; and (iii),
well-establishedself-scheduling mechanismsfor executing
thesubtasksof a query planafterthis hasbeenconstructed
andshippedfor evaluation. Existingnon-Grid-enableddis-
tributedand federateddatabasesolutionsallow datafrom
individual data repositories, with (e.g., [17]) or without
(e.g., [7]) somemeasure of centralcontrol, to becombined
for dataintegration purposes. Nevertheless,they lack the
parallel infrastructures that are required to perform com-
plex computationsonlargeamountsof data,despitethefact
thatparallelqueryprocessinghasbecomeamaturetechnol-
ogy. Queryprocessingon theGrid canovercomethis lim-
itation becauseof thefollowing key differencesfrom tradi-



tionalDQPover heterogeneousandpotentiallyautonomous
databases:

� The Grid provides for systematicaccessto remote
dataand computational resources addressingthe se-
curity, authentication and authorisation problems in-
volved [6], and,assuch,theGrid enablesremote data
sourcesto beusednotonly for dataretrieval tasks,but
alsofor computationalones aswell.

� The Grid providesmechanismsfor dynamic resource
discovery, allocationandmonitoring [3].

� The Grid provides mechanisms for monitoring net-
work connections[21], which is essentialfor a query
engineto efficiently executequeriesin wide-areaenvi-
ronments.

� The Grid conforms to (currently evolving) standards
(http://www.gridforum.org/6 DATA/dais.htm) and
there exist publicly available reference implemen-
tations (http://www.ogsa-dai.org.uk) for uniform
Grid-enabledaccessto commercial Object-Relational
andXML databases.

A significantsimilarity to traditional DQPhoweveris the
needfor adaptivity during queryexecution [11]: thesuccess
andenduranceof databasetechnology is partiallydueto the
optimisers’ ability to chooseefficient waysto evaluatethe
plan that correspondsto the declarative query providedby
theuser. Theoptimiser’s decisionsarebasedon dataprop-
erties,suchascardinalities andpredicateselectivities, and
on environmental conditions, suchas network speedand
machine load. In bothGrid-enabledandnon-Grid-enabled
DQP over heterogeneous and autonomoussources,infor-
mation about data properties is likely to be unavailable,
inaccurateor incomplete, sincethe environmentis highly
volatile and unpredictable. In fact, in the Grid, the exe-
cutionenvironment andthesetof participatingresourcesis
expectedto beconstructedon-the-fly eitherperqueryor per
session[1].

Theremainderof thepaperis structuredasfollows.Hav-
ing presentedthe aspectsof Grid computing that facilitate
DQP, Section2 discussesthe novel challengesmet in this
new environment, focusingon the adaptivity issues. Sec-
tion 3 suggestssomenew approachesto suchchallenges.
Section4 concludesthepaper.

2. Novel Challenges

2.1. Adaptivity at all levels

Without loss of generality, Figure 1 shows the typical
architectureof a DQP optimiser, which firstly constructsa
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Figure 1. The component s of a typical dis-
trib uted quer y processor follo wing the 2-
phase-optimisation appr oach.

centralisedquery plan,andthen,aparallelisedone, accord-
ing to the widely adopted2-phaseoptimisationapproach
[15]. Thecharacteristicsof theGrid environmentdiscussed
in the previous sectionhave an impacton all the compo-
nentsin Figure1, in contrastwith the casesaddressedby
existingadaptivetechniques[11, 9]. Thequalityof thedeci-
sionsof theoptimisercomponentsis basicallycontrolled by
thequalityof their input informationratherthanby thepol-
icy they implement, which in real casesaretypically well
establishedand validated. Examples of issuesarising in
Grid environments include:

� Logical Optimiser: Typical decisionsat this stageof
query compilation andoptimisationinclude the order
of thejoinsandtheshapeof thequeryplan.Suchdeci-
sionsareaffectedmostlyby thesizesof the input and
intermediate data. For the former, accurate statistics
about thedatastoresneedto beavailable,andfor the
latter, informationaboutthepredicateandthefilter se-
lectivities are required. Due to the expectedlack of
suchaccurateinformation,it is unlikely thattheinitial
decisionsby this componentwouldbenearoptimal.

� Physical Optimiser: Mapping a logical algebraic
query plan to a physical one involves the mapping
of onelogical operator to oneof its potentiallymany
physical implementations.For example, a logical join
can appearin a query execution plan as a (blocked)
nestedloop,a hashjoin, a sort-mergejoin, a pipelined
hash join, and so on. Knowing the specific, indi-
vidual physical characteristics of computational re-
sources,suchastheamount of theavailablememory,
andpropertiessuchasorderedattributes,is crucialfor
ensuring good performance.

� Partitioner: Thepartitionerandtheschedulerarecom-
monly usedin queryevaluatorsfor parallelarchitec-
tures,but sometimesare omitted in wide-area query
engines,which tendto perform all thecomputationat
acentralplace,usingremotemachinesonly to provide
dataover thenetwork. Thepartitioner’s responsibility
is to split the physical queryplan into subplans(i.e.,



subsetsof physicaloperators),whichcanbeevaluated
at different placesaccording to thecapabilitiesof the
availableresourcesin theexecution environment.

� Scheduler: The schedulerassignsa subplandefined
by the partitioner to at least one physical machine.
If theexecution mechanism doesnot provide implicit
mechanismsfor definingthe order of operator execu-
tion within a subplan(e.g., it doesnot follow the it-
eratorexecution model [10]), the schedulerneedsto
make theseadditional decisions as well. Its policies
arebasedmostlyon thepropertiesof thephysical re-
sources.

Existingsolutionsfor adaptive queryprocessing(AQP)
canaddressonly partially theabove issues.They cancom-
pensatefor inaccurateor unavailable dataproperties(e.g.,
[2, 14]), bursty data retrieval ratesfrom remotesources
(e.g., [12]), andprovision of prioritisedresultsasearly as
possible(e.g., [18]) but they alsosuffer from thefollowing
majorlimitations,whichprohibit theirwidespreadusage:

� They aretoo specificin termsof theproblem they ad-
dressandaredesigned in isolation[13]. As such,they
cannot easilybe combined to meetthe broader adap-
tivity demandsof queryprocessingon theGrid.

� They focus on centralised,single-nodequery process-
ing and do not yet provide robust mechanisms for
responding to changes in the pool of available re-
sources, even when the data are initially storedre-
motely, whereas theGrid providesnovel opportunities
to benefitfrom themultiple formsof parallelism(i.e.,
independent, pipelined, andintra-operator) over many
resources.

Efficient queryprocessingon theGrid needsnot only to
be adaptive, but alsoto address,in a unifying framework,
the casesmentionedabove, i.e., both for single-node and
multi-nodequery processing.

2.2. Harnessing the available power

It is perhaps worth mentioning that the selectionand
scheduling of the resources that will participate in query
evaluationfrom anunlimited andheterogeneous pool is an
open issue,evenin its staticform. GenericGrid schedulers,
like Condor[19], support DAGs that can represent query
plansbut they do not provide for pipelinedor partitioned
parallelism. Existingscheduling algorithms for distributed
databaseseithersupport limitedpartitionedparallelismif all
theparticipating machineshave thesamecapabilities (e.g.,
[4]), or no partitioned parallelismat all (e.g., [16]). Thus,
they areinappropriatefor intensive query applicationsand
unableto harvestthebenefitsof thetypically heterogeneous
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Figure 2. The monitoring, assessment and re-
sponse phases of AQP.

resourcesthata Grid makesavailableto its users(note also
thata distributeddatabaseis not necessarilyheterogeneous
andautonomous).

3. A Roadmapfor an Adaptivity framework

3.1. Databasearchitecture in a service-basedworld

Section2underlinedtheneedfor aunifyingandcompre-
hensive adaptivity framework. Beforeelaborating on this
issue,it is important to answerthe questionasto whatar-
chitectural modifications are neededfor queryprocessing
over Grid resources. The prominenceof Web and Grid
servicesas a promising architectural paradigm for wide-
areacomputing hasan impacton DQP. Service-basedap-
plications arecharacterisedby well-definedinterfacesand
mechanismsfor registering theirpropertiesandcapabilities,
for querying suchregistriesandfor binding to remoteser-
vices. [1] describesanarchitecture for service-basedDQP,
in whichnotonly thedatabasesmanifestthemselvesasser-
vices,but thewholesystemis itself a serviceandis acces-
sible in thesameway asany otherservice.Thebenefitsof
suchanapproachincludethecapabilityto dynamically dis-
cover relevantdatastoresandcomputationalresourcesthat
arecapableof evaluating thequery.

3.2. Divide-and-Conquer

It hasalready beenreported that, so far, efforts in AQP
have resultedin a collection of isolatedtechniquesrather
thanin a generic framework, ascomprehensive asin other
areasof databaseresearch[13]. A query processingsystem



is definedin [11] to be adaptive if it receives information
from its environment anddeterminesits behaviour accord-
ing to thatinformationin aniterativemanner, i.e.,if thereis
afeedbackloopbetweentheenvironmentandthebehaviour
of thequery processingsystem.Although sucha feedback
loopmayonly becompletedbetweenqueryexecutions,the
mostchallenging caseis wherethefeedbackloopproduces
effects during the execution of the query. A slightly finer-
grained analysisof this loop leadsto the identificationof
threesemanticallydistinct phases,namely monitoring, as-
sessmentandresponse. Theexecution of aplanandtheexe-
cutionenvironment itself aremonitored,thenanassessment
is maderelatingto theprogressof theexecution,depending
onwhicharesponsemaybecarriedout thataffectsthecon-
tinuing evaluation of the query. The responsemaybe fine
grained (e.g., directingthe next tuple to a particular node)
or coarsegrained(e.g., rerunning the optimiser over some
or all of thequery).

In existing AQP proposals,the monitoring, assessment
andresponsephasesarenot normally addressedasstand-
alonetopics. Rather, individual techniquestend to group
togetheranapproachto monitoring,ameansof assessment,
anda form of response. Consequently, to dateno general
framework hasbeenconstructedfor identifying or compos-
ing generic andreusabletechniquesfor monitoring, assess-
mentor response. For example, onecouldenvisage a par-
ticular approach to monitoring being usedwith different
forms of assessmentandresponse,or differentcategories
of responsebeingmadein thelight of a singleapproachto
monitoring andassessment.In [8] it is discussedhow dy-
namically gatheredexecution information about the actual
selectivity of anoperatorcanbeusedeitherto re-route tu-
plesthrough joins,or to reconstruct a queryexecutionplan
for the remainder of the query, or to build more accurate
predictions of the query completion time. By decoupling
the generation of selectivity information and its usage,it
becomespossibleto useasinglemonitoring mechanismfor
all the above techniques. This is true for assessmentand
response,as well. A form of responsecan be decoupled
from theproblemit triesto tackle.For example, reoptimis-
ing thequeryplanmaybeusedfor variousreasons,includ-
ing theunavailability of accuratestatisticsat compile time,
non-responding remotedatasourcesandunexpectedmem-
ory shortage.

Figure 2 shows a diagramof what we envisage as a
generic framework for adaptive query processing, i.e., a
basisfor constructing, explaining andcomparing adaptive
techniques. The execution enginegeneratesinformation
about the state,quality and progressof the evaluation of
a query plan. Also, the resource repository provides up-
to-date information about the registered resources. Based
on suchmonitoring information,eventsaregenerated.The
assessmentphaseevaluates theseevents in orderto verify

whetherthey denote changesin the valuesof interesting
propertiesandwhethersuchchanges are an issuefor the
current execution, in thesenseof somethingthatmaycom-
promise its optimality. Oncean issuehasbeenidentified,
the systemtries to identify potential ways to respond. If
suchwaysare found, the execution engineis notified ac-
cordingly andits behaviour changesasaresult.

The above modelof AQP is simple, yet powerful and
comprehensive, asit candescribeandcombineexistingpro-
posals. Other key benefits that have not beenpreviously
mentionedor implied include:

� Conformance to the service-based computing
paradigm: the framework proposeddoesnot depend
on, but conforms to, a service-orientedarchitecture
as it can be implementedby individual components
for eachdistinctphasethatarenot necessarilytightly
coupled with othercomponents, canbeenhancedand
modified separately, only expose an interface, and
communicateprimarily by exchanging messages.

� Suitability for multi-node executions: thereis no re-
striction on the number of instancesand the locality
of eachof the componentscomprising an AQP sys-
tem. For instance,monitoring componentscanreside
with evaluators, or beplacedcentrally, or form a hier-
archyof monitors. As Figure2 imposesnorestrictions
on the casessupported, the framework is suitablefor
multi-nodequeryevaluationandadaptivity control.

� Comprehensiveness: it can cover many approaches
with respectto

– architecture: AQPcanbeachievedby theevalua-
tor calling backthestaticqueryoptimiser, or the
evaluator calling a different centralmechanism,
or the evaluator beingself-adaptive. Still, in all
thesecasesthereis aneedfor monitoring,assess-
ment,andresponse,andthus,theframework can
beapplied.

– plan annotations: AQP may, but neednot, de-
pend on annotations of queryplanswith perfor-
mance expectations in orderto operate,thereby
enabling it to coverabroaderrangeof cases,and
not to require any modificationsto thestaticop-
timiserwith respectto thisparticularissue.

– proactive vs reactiveadaptivity techniques: the
framework, in general,canrealiseandimplement
any existingproposalsasit is orthogonal to them.
It doesnot defineany specificpurposesfor plan
alteration, kinds of monitoring information,etc.

Implementing the framework: Below, we briefly
presentsomeinsightsfor implementing theframework.



� Monitoring: creatingmonitoring informationabout the
executionof aquery plancanbeachieved(i) by thein-
corporationof new componentsin theevaluator, (ii) by
incorporation of dedicatedoperators in the plan, and
(iii) by plantingspecificprobesin theoperators,which
yieldsgood results[8].

� Assessment:without lossof generality mostof theex-
isting approachescanbeexpressed,andevaluated,as
Event-Condition-Action(ECA) rules.

� Response:definingresponsemessageson thebasisof
theimpactof adaptationonthecurrentexecution(e.g.,
operatorreordering, operatorreplacement,etc),rather
than on the basisof its purposeand the problems it
addresses(e.g., memory limitations, fluctuatingdata
arrival rate, etc) can lead to a small, concreteset of
responsemessagetypes.

4. Conclusions

Grid technologiesopennew directions for DQP, asthey
provide solutionsfor problemssuchassecurity, authorisa-
tion, authentication, resource discovery, etc. However, the
volatility, multiple ownership andheterogeneityof the en-
vironmentnecessitatethedevelopment of a comprehensive
framework that cancover, generalise,combine andextend
adaptive proposalsto date. To this end,threephaseshave
beenidentifiedin AQP, viz., monitoring,assessmentandre-
sponse,whichformthefoundationsof ourproposalfor such
anadaptivity framework. Studying thesephasesseparately
yieldsgenerality, substitutability, andreusabilityacrossdif-
ferent techniques.
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