
Online load balancing in parallel database queries

with model predictive control

Christos A. Yfoulis #1, Anastasios Gounaris ∗2

Department of Automation, ATEI of Thessaloniki, Greece
1
cyfoulis@autom.teithe.gr

∗ Department of Informatics, Aristotle University of Thessaloniki, Greece
2
gounaria@csd.auth.gr

Abstract—This work deals with a commonly encountered
instantiation of the more generic problem of runtime load
balancing. More specifically, we study load balancing in the con-
text of query plans that include partitioned database operators
running on remote nodes with time-varying connection speeds
and loads. In such query plans, data is processed by similar
operator instances placed on different machines in parallel, e.g.,
using a cloud infrastructure. The goal is to adaptively distribute
the data to respond to changes in the environment, in such
a way that all machines finish at the same time. Dynamic
modifications in the data distribution policy are easily enforced,
but they result in non-negligible adaptation overheads due to
associated data movements. The emphasis of our approach is
on taking into account the inherent cost of adaptations with
a view to avoiding over-reacting, which may lead to serious
performance degradation. We follow a rigorously founded control
theoretical approach to this problem and we present a Model
Predictive Control (MPC) controller, which tolerates monitoring
inaccuracies and exhibits better performance under periodic
and random machine perturbations than other state-of-the-art
approaches, as shown by our experiments.

I. INTRODUCTION

Nowadays, more and more tasks are executed remotely

making use of cloud infrastructures with a view to attaining

scalability and benefitting from the elasticity of such infras-

tructures. A large portion of such data management tasks

are expressed as query plans that are capable of processing

both finite and infinite data streams. A practical mechanism to

speed-up the plan execution and cope with the vast volume of

data is through partitioned parallelism, which scales well with

the number of available machines [1]. The execution of a query

operator in a plan may benefit from partitioned parallelism

when this operator is instantiated several times across different

physical nodes with each instance processing a distinct data

partition.

Load balancing is a necessary complement to partitioned

parallelism. Informally, load balancing in wide area settings

is responsible for assigning work to machines in a way

that reflects their connection speed and capabilities. This is

challenging in most of the real distributed environments, which

are usually characterized by at least some of the following

characteristics: the machines may be located in arbitrary places

and are not dedicated to a single query processing task,

which implies that both their connection speed and their

load are time-varying because of the concurrent data transfers

and tasks, respectively; moreover, the time-varying load is

unpredictable. Also, remote infrastructures typically consist of

heterogeneous machines, the actual characteristics of which

are not necessarily known a-priori. For these reasons, it is not

efficient to divide a task consisting of a set of data tuples only

statically; instead, dynamic load balancing is required to revise

workload allocation decisions at runtime if necessary.

Dividing work into parts that are proportional to current

network and machine characteristics (e.g., data transmission

and processing rates) is trivial, when such characteristics can

be monitored in an accurate and timely manner. Nevertheless,

even if this becomes possible, it is not sufficient in common

query plans (e.g., those in business intelligence applications)

because of operators, such as joins and group-bys that build up

internal state (e.g., in the form of a hash table). Such operators

are called stateful. A modification in the distribution policy

corresponding to stateful operators should be accompanied

by movement of internal operator state from one machine to

another over the network; otherwise the result is not correct.

For example, a redistribution decision regarding a windowed

group-by involves the transmission of the partial state of the

reallocated groups to their new execution site. Given that the

operator state can grow quite large, it is evident that dynamic

balancing may incur high overheads that outweigh the benefits

of parallelism. Consequently, in wide-area distributed systems,

we need to take this overhead into account. To this end,

we propose a rigorously-founded self-optimizing solution that

adaptively decides on the repartitioning during the execution

of pipelined dataflows; note that data partitioning is typically

encapsulated by specific operators, such as exchanges, that are

placed before the operators to be balanced [2], [3].

The approach we follow is founded on applied control the-

ory. In principle, autonomic data management stands to benefit

from control theory techniques, which are well-established in

engineering fields and are typically accompanied by theoretical

investigations of properties such as stability, accuracy, and set-

tling time [4], [5]. A control-theoretical solution to the problem

of balancing the load of partitioned operators in queries across

multiple heterogeneous machines has appeared in [6], [7],

which describes an adaptive multiple-input, multiple-output

(MIMO), discrete-time, feedback linear quadratic regulation

(LQR) controller. In general, LQR controllers can encapsulate

the cost to enforce a workload redistribution decision (i.e., the

cost to move state from one machine to another) along with

the cost of deviations from the ideal state in a unified cost

function. However, there are certain limitations associated with

an LQR methodology. The most important ones are the loss

of controllability when the controller manages all the nodes

explicitly and the incapability to handle the load balancing

inequality and equality constraints that denote that all data

must be processed, no negative workload proportion values

are allowed and no duplicates should be produced. To deal

with these limitations, one physical node had to be excluded

from the design and the satisfaction of the constraints relied

on heuristics and careful selection of the Q,R weighting

matrices in the LQR cost function. These limitations can be

overcome by resorting to the MPC (model predictive control)

[8] strategy in this paper, which allows direct incorporation

of the constraints without the controllability assumption. We

propose a light MPC scheme and show that it is suitable

for the problem in question; our proposal may deemed as

a simplified version of the controller we designed in [9].

Moreover, we believe that our solution is of broader interest,

since it can be applied to other load balancing scenarios with

similar formulation apart from partitioned database queries.

The contributions of this work are summarized as follows:

(i) it introduces a novel MPC-based approach to load bal-

ancing in (stateful) parallel database queries and presents a

detailed methodology as to how such a controller mechanism

is designed; and (ii) it presents its behavior through examples

and evaluates its performance compared to the solutions in [7]

with the help of a detailed simulator. The evaluation results

are conducted in exactly the same setting as in [7] to allow

fair comparison.

Structure. In the next section, we briefly discuss related

work. Section III formally describes the load balancing prob-

lem. The presentation of our new MPC controller is in Section

IV. In Section V, we conduct detailed simulated experiments

and Section VI concludes the paper.

II. RELATED WORK

Typically, load balancing in queries is either addressed

just before execution or, for specific operators, at a single

point during execution (e.g., [10], [11], [12]). More adaptive

solutions fall into the area of adaptive query processing

[13], which deals with self-optimizing execution of queries.

However, most of the proposals in this area so far (i) do not

consider parallel or distributed execution, thus overlooking

runtime load balancing problems; and (ii) do not adhere to

any formal model that is amenable to theoretical analysis.

The proposal that is closest to our work is Flux [3]. Flux is

initially proposed for centralized settings, but can be applied

to wide area settings as well. It aims to equalize machine

utilization, but does not take into account the adaptation cost

during decisions. However, Flux tries to guarantee that the time

spent enforcing adaptivity decisions (i.e., moving state from

one machine to another as a result of a workload reallocation)

does not exceed the time of query processing. In [14], some

extensions to the Flux approach are described. Several other

dynamic flavors of the load balancing problem in database

queries have been examined as well. For example, in [15],

each node acts selfishly and autonomously based on bilateral

contracts, whereas in [16], load balancing is achieved through

the redistribution of operators rather than redistribution of data.

III. PROBLEM FORMULATION

We assume the execution of a dataflow pipeline, the most

expensive operators of which are partitioned. We address

load balancing for each partitioned operator individually. The

load balancing problem can be formalized as follows. Let

P be the degree of intra-operator parallelism of a stateful

operator o, e.g., a windowed group-by that processes streams

of data. M = {m1,m2, · · · ,mP } is the set of P nodes

participating in the execution of o. We assume that M does

not change during execution and that there exists a monitoring

mechanism, which provides updates of the computation and

communication characteristics at periodic intervals (steps).

The workload proportion that each of these nodes receives

at the kth adaptivity step is u1(k), u2(k), · · · , uP (k), with the

constraints
∑P

i=1 ui(k) = 1, ∀k and ui(k) ≥ 0, ∀k. Each node

possesses a certain amount of state. ci(k) denotes the cost

(overhead) to reach the new state required, as a result of a

change in ui(k).
y1(k), y2(k), . . . , yP (k) define the expected values for the

completion time of each of the participating nodes given the

workload allocation of the kth adaptivity step. In communica-

tion bounded-queries, this cost is dominated by the data trans-

mission cost. In general, it depends on both communication

and computation cost. If the query is continuous (e.g., over

data streams) the expected completion time refers to the time

to complete the evaluation of a fixed-sized workload. The role

of the load balancer is, at each step, to minimize the following

max(yi(k + 1) + ci(k + 1)), i = 1 . . . P (1)

and estimate ui(k + 1) values accordingly. In a balanced

execution, all nodes are expected to finish at the same time,

i.e., y1(k) = y2(k) = · · · = yP (k).
Essentially, the load balancing objective defined in Eq.

(1) includes a trade-off between (a) reaching the optimal

workload allocation, in which the expected completion times

are equalized across all participating nodes, and (b) the cost

for reaching such an allocation, which is due to the state

movements. To meet such an objective, we employ a state

space model, on top of which we implement a state feedback

controller, which is designed with the help of an MPC scheme.

IV. DESIGN OF THE MPC CONTROLLER

In control theory, system dynamics can be modeled either

through transfer functions or through state-space models [4].

In our setting, we have chosen to employ a state-space model,

which is scalable with regard to the number of inputs and

outputs. We assume the existence of a centralized controller

that receives feedback from each machine and controls the

workload distribution policy of the nodes that send data to

partitioned operators. The controller’s output vector y(k) is a

P × 1 vector with the values of the expected completion time

for each node. The input vector u(k) is a P × 1 vector of our

manipulated variables, which are the workload allocations at

the kth step.

According to the load balancing requirement, all outputs

yj , j = 1, . . . , P should be equalized to their optimal value,

which is their average y(k) = 1
P

∑P

i=1 yi(k). Hence we have

to design a tracking controller so that the outputs follow a

time-varying reference trajectory, defined by the current value

of y(k).
The limitations of LQR and the special characteristics of

the load balancing problem, suggest a natural way forward

toward the use of MPC ideas. Such schemes are very popular

nowadays for control problems [8], and possess a number

of desirable features, such as (i) direct incorporation of con-

straints mentioned in Sec. III into the design, which is not

possible in LQR (where constraints are considered indirectly

[7]); and (ii) the fact that the MPC cost function penalizes

changes in the input rather than exact input values (as in LQR);

this better reflects the transfer cost in our problem.

The Model Predictive control (MPC) approach is capable

of dealing with MIMO control problems in the presence

of several constraints in an optimal control context. It is

a sophisticated algorithm combining performance prediction,

optimization, constraint satisfaction, and feedback control. For

more details, the reader is referred to [8]. The basic idea of

an MPC controller is to optimize an appropriate cost function

defined over a time interval in the future, termed as prediction

horizon Hp. The cost function considers both the deviation

from the optimal value, as defined in the reference trajectory

(i.e., the error), and the cost to modify the input vector. The

controller employs a model of the system to predict its future

behavior over Hp sampling periods. The main objective of the

controller is to generate an input trajectory over Hu sampling

periods that does not aim to converge immediately to the

reference trajectory but instead to minimize the cost function

while satisfying all available constraints; Hu is the control

horizon. This is exactly the spirit of optimal control. The

complete design, which leverages the design in [9] is presented

below.

We define an appropriate reference trajectory and its asso-

ciated cost function, and an appropriate approximate model

under the load balancing constraints. Our cost function is in

the form:

J =

Hp∑

i=1

‖ y(k + i|k)− r(k + i|k) ‖2Q(i)

+

Hu−1∑

i=1

‖ ∆u(k + i|k) ‖2R(i) (2)

The variables y(k+ i|k), r(k+ i|k),u(k+ i|k) are the P × 1
output, reference input and input vectors at discrete time k+i,

respectively, under the assumption that their values at time

k are known. The quadratic norm used above is defined as

‖ x ‖2M = xT · M · x. As mentioned above, the reference

trajectory r(k) in our case is

r(k + i|k) =
1

P

P∑

j=1

yj(k + i|k) , i = 1, . . . , P (3)

We observe that the MPC cost function penalizes changes

in the input rather than input values, which reflects the transfer

cost in our load balancing problem more accurately. The

optimization consists of specifying the changes that should be

applied to our inputs, ∆u(k+ i|k), along the control horizon,

such that J is minimized while the inequality and equality

constraints of the load balancing problem are satisfied.

In order to develop the state-space model, we assume

that the outputs coincide with the states, i.e. y(k) = x(k).
In general, the expected completion times depend on the

workload allocated and can be described by a first order

difference equation:

x(k + 1) = A(k)x(k) +B(k)u(k) , y(k) = x(k) (4)

In this work, we consider a simplified approximate adaptive

model, in which A is ignored to denote the fact that the

expected completion time for each machine depends only on

the current capacity captured by B, and the current amount of

allocated workload captured by u (i.e., no transient dynamics

are considered). Since the expected completion time of one

machine does not depend on the processing speed of another,

we can safely assume that B is diagonal. B(k) is updated

at every step when new feedback measurements become

available. Its diagonal elements correspond to the inverse

of the throughput of the machines1. In this way, B(k) can

capture both changes in the communication and computational

capacity, e.g., due to load change. To comply with Eq. (2),

through simple manipulations, we transform the approximate

model in an incremental form, where ∆u(k) is used:

x(k + 1) = x(k) + B(k)∆u(k) (5)

To deal with the uncertainties and disturbances in our

environment, care is required to ensure the presence of integral

action and unbiased predictions. Note that, in our setting,

disturbance rejection corresponds to tolerating monitoring

inaccuracies. The simplest approach is to use a disturbance

observer d(k) on the basis of the constant output disturbance

assumption (DMC scheme) [8], i.e. in the form

x(k + 1) = x(k) + B(k)∆u(k) + d(k) (6)

Assuming similarly a constant matrix B(k) along the predic-

tion horizon, this simple model lends itself to a natural MPC

implementation with the following prediction equations for the

future states, denoted by x̂:

x̂(k+ i|k) = x(k) + B(k)

Hp−1
∑

i=0

∆u(k+ i|k) + d̂(k+ i|k)

(7)

1In this work, throughput is defined as the inverse of the aggregate time
needed to send and remotely process data.

where d̂(k + i|k) = d̂(k|k) = y(k) − x̂(k|k − 1), i.e.

it is estimated by comparing the measured output with the

predicted one. To compute the tracking error term in Eq. (2)

we first need to express the predictions in the form

Y (k) = Ψx(k) + Θ∆U(k) + Γ d̂(k) (8)

where Y (k),∆U(k) are vectors collecting the variables along

the whole horizon, i.e.

Y (k) =






x̂(k + 1|k)
...

x̂(k +Hp|k)




 , (9)

∆U(k) =






∆u(k + 1|k)
...

∆u(k +Hu − 1|k)




 (10)

with the matrices Ψ,Θ,Γ defined as follows:

Ψ =






IPXP

...

IPXP






︸ ︷︷ ︸

PHp×Hp

, Γ =






IPXP

...

IPXP






︸ ︷︷ ︸

PHp×Hp

, (11)

Θ =













B 0

B B . . . 0
...

. . .
. . .

...

B B . . . B
...

. . .
. . .

...

B B . . . B













︸ ︷︷ ︸

PHp×PHu

(12)

We define a P ×1 vector t(k+ i|k) = (
∑P

i=1 yj(k+ i|k)) ·

[1 . . . 1]T to form

T (k) =
1

P






t(k + 1|k)
...

t(k +Hp|k)




 (13)

Now we are in the position to express the error term in our

cost function as

E(k) = Y (k)−T (k) = W ·Y (k) , W =
1

P
·diag{Sp} (14)

where W is a block diagonal PHp × PHp matrix consisting

of blocks Sp : P × P with

Sp(i, j) = −1, i 6= j , Sp(i, i) = 1 , ∀i, j = 1, . . . , P

Combining (8) and (14) yields

E(k) = Ψ̃x(k) + Θ̃∆U(k) + Γ̃ d̂(k) (15)

where Ψ̃ = W ·Ψ , Θ̃ = W ·Θ , Γ̃ = W · Γ.

Next, the constraints of the load balancing problem have

to be added, which are in the form of linear inequalities

(allocation bounds) and linear equalities (load balancing re-

quirements)

0 ≤ uj(k + i|k) ≤ 1 ,

P∑

j=1

∆uj(k + i|k) = 0 (16)

with j = 1, . . . , P , i = 1, . . . , Hu. After some manipula-

tions, they can be cast into the MPC optimization as follows:

Ω1 ·∆U(k) ≤ ω1 − ω2 · u(k − 1) , Ω2 ·∆U(k) = 0 (17)

Ω1 =

















1 0 . . . 0
1 1 . . . 0
...

...
. . .

...

1 1 . . . 1
−1 0 . . . 0
−1 −1 . . . 0

...
...

. . .
...

−1 −1 . . . −1

















︸ ︷︷ ︸

2PHu×PHu

, ω1 =















1
1
...

1
0
...

0















︸ ︷︷ ︸

2PHu×1

, ω2 =















1
1
...

1
−1

...

−1















︸ ︷︷ ︸

2PHu×1

(18)

Ω2 =








1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0

...
. . .

...

0 . . . 0 . . . 1 . . . 1








︸ ︷︷ ︸

Hu×PHu

(19)

Finally, it is straightforward to transform our MPC formulation

to a standard constrained least squares or quadratic program-

ming formulation (details are omitted due to lack of space). In

our simulator, the controller is implemented using either lsqlin

or quadprog solver in Matlab. Their computational complexity

is polynomial to the product of the number of machines, and

the control and the prediction horizons, hence we expect a

negligible overhead at least for medium-sized problems.

We present an example to illustrate the behavior of the MPC

controller. Fig. 1 shows simulation results for 3 machines that

are all subject to periodic Poisson loads. In this experiment we

set Hu = 5, Hp = 10 and Q(i) = Ip , R(i) = 10 · Ip, where

Ip is the P × P unity matrix. The periodic (cyclic) Poisson

loads are generated by using periodic (sinus) load profiles

corrupted by random job arrivals according to the Poisson dis-

tribution. The results show good performance in the sense that

the controller manages to keep the expected completion time

of both perturbed and non-perturbed machines roughly equal

(see right figure); i.e., the controller appears to be capable of

dealing with the load balancing problem in the presence of

variable and noisy loads, uncertainties and disturbances.

Compared to the controller design in [9], the design in this

paper follows a simplified approach and does not consider

transient dynamics, does not perform online identification and

does not employ an augmented state-model, which enhances

disturbance rejection; we leave the full implementation and

evaluation of the controller in [9] in the context of parallel

queries for future work.

5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6
machine load

time steps
5 10 15 20 25 30 35 40 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tuple distribution

time steps
5 10 15 20 25 30 35 40 45

0

1

2

3

4

5

6
expected completion times

time steps

Fig. 1. Example with three machines under periodic Poisson load. Left: the machine load; middle: the tuple allocation; right: the expected completion times.

V. EVALUATION

This section compares the performance of the MPC con-

troller described in Section IV with the LQR controller in [6],

[7], where the LQR controller has been thoroughly evaluated

and showed improved performance when compared against

state-of-the-art load balancers, such as those inspired by Flux

[3]. In this paper, due to space limitations, we present only a

few representative experiments, in exactly the same experiment

setting as in [6], [7]. The simulation model is explained

in detail in [14]. The simulator monitors the output rate of

operators, which is determined by how rapidly the operator

itself can process data and the rate at which its children can

supply data. Based on the machine contention, which depends

on both the external jobs and query execution, B is produced

at each step (or iteration).

To allow direct comparison with the results in [7], the

example operator to be balanced throughout the experiments is

a parallel hash join, although windowed group-by’s seem more

appropriate for our case [3]. For the same reason, the query to

be examined is a key/foreign-key join over the Order (1.5M

tuples) and LineItem (6M tuples) tables of TPC-H database

after having projected out 25% of the columns; this query

will be referred to as Q1. During the build phase, the hash

join is created. Adaptations occur during the pipelined probe

phase. When workload allocation changes, then buckets from

the hash table move from one machine to another to ensure

result correctness. However, the load balancer presented in this

work is independent of any particular operator implementation,

and we believe that the results apply to any setting in which

movements of operator state must follow such on-the-fly

changes in partitioned parallelism.

To artificially create random imbalances, we consider two

types of random external job arrival: Poisson, where the rate

of job arrival to (some of) the machines evaluating the join

in each iteration follows a Poisson distribution, and Poisson

cyclic, where the average arrival rate of external jobs follows

a Poisson distribution multiplied by a sinusoidal function with

a period of 5 secs. As such, the latter type can capture

more realistically situations where the external workload is

lighter on average but fluctuates periodically. In both cases,

the duration of external jobs is 1sec. The randomness of the

external load, and the inner complexities of query processing

(which are also simulated) result in more realistic, albeit more

complex non-smooth load profiles even for the non-perturbed

machines, thus posing a significant challenge to load balancing

controllers (corresponding figures are presented in [7]).

The performance metric is the overall query response time,

which captures the impact of imbalanced execution that is

experienced by the user. Each time step, i.e. each controller

cycle, is equal to 0.1 secs. In the experiment, the techniques

were checked under 10 different random imbalances, and the

mean performance values were obtained.

Adaptations of workload distribution are enforced only if

the allocation is modified by 5% or more at least on one

machine with a view to avoiding overreacting. Due to the

rapidly changing imbalances, it might be the case that the load

change on a machine between two consecutive steps is higher

than a threshold (set to 5%), which implies that the load has

not temporarily converged; in that case, no effort to adapt is

made to avoid performance degradation. Also, the controllers

start enforcing adaptations only after an initial settling period,

to avoid oscillations in the starting phase. It is an issue for

future work to investigate the exact impact of these heuristics

on the performance and the stability of the dynamic load

balancing techniques.

Experiments. In the first experiment, the degree of intra-

operator join parallelism is 3, and we compare the improve-

ments of the LQR and MPC-based approaches over the non-

adaptive case for varying average numbers of external jobs

arriving at only one of the machines per second (from 1 to 6).

In this scenario, only a single machine is perturbed. The tuning

parameters of LQR are those that lead to the best performance

in [6]. For the MPC controller, we set Hu = 5, Hp = 10 and

Q(i) = Ip, R(i) = 5Ip , where Ip is the P ×P unity matrix.

The average response times of ten random imbalances for

the non-adaptive, LQR and MPC cases are shown in Fig.

2(left-middle). From the figure, it can be shown that both

LQR and MPC perform much better compared to the case

where, although there is load imbalance, no adaptations are

performed. MPC performs slightly better for both types of

load, but the improvements are more evident in the case of

Poisson cyclic imbalances. For Poisson loads, the average

improvement of MPC over LQR is 5%, whereas it is 10% for

Poisson cyclic loads, and reaches 26% when 6 external jobs

arrive at the perturbed machine per second. Another interesting

observation is that the MPC controller is significantly less

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

average number of external jobs of duration 1sec starting per second

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

no−adapt

LQR

MPC

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

average number of external jobs of duration 1sec starting per second

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

no−adapt

LQR

MPC

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Number of machines receiving variable external load

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

no−adapt

LQR

MPC

Fig. 2. The average response times for a random Poisson (left) and Poisson cyclic (middle) imbalance for a partitioned execution on three machines, of
which one is perturbed. Right: the response times for a random Poisson imbalance when six machines are used and all of them may be perturbed.

sensitive to its parameters. We have experimented with several

horizons (Hu = {5, 10, 20, 50}, Hp = {10, 20, 50}), with

no significant impact on the behavior, apart of course, from

the increased optimization cost. The application of a moving

average filter and changes in the entries of R seemed not

to have a significant impact either. For all these, no detailed

figures and results are presented.

In the second experiment, the degree of join parallelism

is set to 6, the average number of external jobs arriving

at the perturbed machines is set to 3, and the number of

perturbed machines varies from 1 to 6. When more machines

are perturbed, the benefits of dynamic load balancing decrease

significantly. As shown in Fig. 2(right), LQR may even fail

to perform better than when no adaptations are performed.

The MPC controller does not suffer from this limitation. Also,

for this experiment, the configuration of LQR proved quite

difficult (see [7] for details); however, for MPC, the standard

configurations mentioned above were sufficiently efficient and

there was no need for fine-tuning.

VI. CONCLUSIONS

This work presents a novel approach to balancing paral-

lel query execution over machines with unpredictably time-

varying behavior and its comparison with current state-of-

the-art approaches. The main challenge in this problem is to

perform workload adaptations judiciously, because adaptations

incur non negligible costs that, if not considered, may lead to

performance degradation. Our solution has rigorous theoretical

foundation and employs an MPC controller. It improves on

a recently proposed LQR-based technique, which was also

control theoretical, but suffered from significant limitations

in the way the load balancing problem was modeled. Our

dynamic balancing technique is characterized by improved

performance and effectiveness and less sensitivity to config-

uration parameters. Our technique is lightweight and can be

easily inserted in complete systems, on the grounds that it

affects only the distribution policy across partitioned operators.

The monitoring information required is the throughput (or the

output rate) of partitioned instances, which can be obtained in

a straightforward manner (to a certain level of accuracy and

freshness). Our ongoing work includes the development of a

real prototype in order to evaluate the proposed solution in a

real environment considering also additional stateful operators,

continuous queries and larger datasets.

Acknowledgements: We would like to thank N. W. Paton from the

University of Manchester, for providing the detailed query simulator

that we used in our experiments. C. Yfoulis has been supported by

the ATEI grant titled “Advanced control of computing systems”.

REFERENCES

[1] D. J. DeWitt and J. Gray, “Parallel database systems: The future of
high performance database systems.” Commun. ACM, vol. 35, no. 6, pp.
85–98, 1992.

[2] G. Graefe, “Encapsulation of Parallelism in the Volcano Query Process-
ing System.” in SIGMOD Conference, 1990, pp. 102–111.

[3] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin,
“Flux: An adaptive partitioning operator for continuous query systems.”
in Proc. of ICDE, 2003, pp. 25–36.

[4] J. Hellerstein, D. Tilbury, Y. Diao, and S. Parekh, Feedback Control of

Computing Systems. Wiley, 2004.
[5] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, and

K. Shin, “What does control theory bring to systems research?” SIGOPS

Oper. Syst. Rev., vol. 43, no. 1, pp. 62–69, 2009.
[6] A. Gounaris, C. A. Yfoulis, and N. W. Paton, “An efficient load

balancing LQR controller in parallel databases queries under random
perturbations,” in 3rd IEEE Multi-conference on Systems and Control

(MSC 2009), 2009.
[7] A. Gounaris, C. A. Yfoulis, R. Sakellariou, and N. W. Paton, “Efficient

load balancing in partitioned queries under random perturbations,” ACM

Transactions on Autonomous and Adaptive Systems, to appear.
[8] J. M. Maciejowski, Predictive Control with Constraints. Harlow,

England: Prentice Hall, 2002.
[9] C. Yfoulis, A. Gounaris, and D. Tzolas, “Minimization of the response

time in parallel database queries: An adaptive cost-aware mpc-based
solution,” in 19th Mediterranean Conference on Control Automation
(MED), 2011, pp. 813 –818.

[10] E. Rahm and R. Marek, “Dynamic multi-resource load balancing in
parallel database systems.” in Proc. of 21th Int. Conf. on Very Large

Data Bases VLDB., 1995, pp. 395–406.
[11] M. Mehta and D. J. DeWitt, “Managing intra-operator parallelism in

parallel database systems.” in Proc. of 21th Int. Conf. on Very Large

Data Bases VLDB., 1995, pp. 382–394.
[12] H. Lu and K.-L. Tan, “Dynamic and load-balanced task-oriented

database query processing in parallel systems.” in 3rd Int. Conf. on

Extending Database Technology EDBT. Springer, 1992, pp. 357–372.
[13] A. Deshpande, Z. G. Ives, and V. Raman, “Adaptive query processing.”

Foundations and Trends in Databases, vol. 1, no. 1, pp. 1–140, 2007.
[14] N. W. Paton, J. B. Chávez, M. Chen, V. Raman, G. Swart, I. Narang,

D. M. Yellin, and A. A. A. Fernandes, “Autonomic query parallelization
using non-dedicated computers: an evaluation of adaptivity options,”
VLDB J., vol. 18, no. 1, pp. 119–140, 2009.

[15] M. Balazinska, H. Balakrishnan, and M. Stonebraker, “Contract-based
load management in federated distributed systems,” in NSDI, 2004, pp.
197–210.

[16] Y. Xing, S. B. Zdonik, and J.-H. Hwang, “Dynamic load distribution in
the borealis stream processor,” in ICDE, 2005, pp. 791–802.

