
OGSA-DQP: A Service-Based Distributed Query Processor
for the Grid

M. Nedim Alpdemir1, Arijit Mukherjee2, Anastasios Gounaris1,
Norman W.Paton1, Paul Watson2, Alvaro A.A. Fernandes1, Jim Smith2

(1) Department of Computer Science
University of Manchester
Oxford Road, Manchester M13 9PL
United Kingdom
{alpdemim|norm|alvaro|gounaris}@cs.man.ac.uk

(2) School of Computing Science
University of Newcastle upon Tyne
Newcastle upon Tyne NE1 7RU
United Kingdom
{Arijit.Mukherjee|Paul.Watson|Jim.Smith}@ncl.ac.uk

Abstract

The Grid is an emerging infrastructure that supports
the discovery, access and use of distributed com-
putational resources. The emergence of a service-
oriented view of hardware and software resources on
the grid raises the question as to how database man-
agement systems and technologies can best be de-
ployed or adapted for use in such an environment.

We argue that distributed query processing (DQP)
can provide effective declarative support for ser-
vice orchestration, and we describe an approach to
service-based DQP (OGSA-DQP) on the Grid that
supports queries over Grid Data Services (GDS)s
provided by OGSA-DAI project, and over other ser-
vices available on the Grid, thereby combining data
access with analysis; uses the facilities of the OGSA
to dynamically obtain the resources necessary for ef-
ficient evaluation of a distributed query; adapts tech-
niques from parallel databases to provide implicit
parallelism for complex data-intensive requests; and
uses the emerging standard for GDSs to provide con-
sistent access to database metadata and to interact
with databases on the Grid.

The service-based Distributed Query Processor is
itself cast as a service referred to here as Grid Dis-
tributed Query Service (GDQS). In addition, OGSA-
DQP employs another service for query evaluation
referred to here as Grid Query Evaluation Service
(GQES). As such, OGSA-DQP implements a ser-
vice orchestration framework in two sense: both in
terms of the way its internal architecture handles the
construction and execution of distributed query plans
and in terms of being able to query over data and
analysis resources made available as services.

1 Introduction

Service-based approaches (such as Web Services and
the Open Grid Services Architecture) have gained
considerable attention recently for supporting dis-
tributed application development in e-business and e-
science. The service-based approach seems to many
a good solution to the problem of modelling a virtual
organisation as a distributed system.

The Open Grid Services Architecture (OGSA) [3,
8], build upon and extend the service-oriented ar-
chitecture and technologies first proposed for Web
Services (WSs) [4]. The OGSA proposes conven-
tions and interfaces for a Grid Service, a (poten-
tially transient) stateful service instance supporting
reliable and secure invocation, lifetime management
and notification. This allows the dynamic creation
of service instances on computational resources that
are discovered and allocated as, and when, they are
needed.

Although the initial emphasis in Grid computing
was on file-based data storage [6], the importance
of structured data management to typical Grid ap-
plications is becoming widely recognised, and sev-
eral proposals have been made for the development
of Grid-enabled database services (e.g. Spitfire [1],
OGSA-DAI [www.ogsa-dai.org.uk]). Ongoing work
in the Database Access and Integration Services
Working Group of the Global Grid Forum is develop-
ing a proposal for a standard service-based interface
to relational and XML databases in the OGSA set-
ting [www.gridforum.org/6 DATA/dais.htm]. This
specification uses the XML-based Web Services De-
scription Language (WSDL) to specify the interface
that should be supported by a Grid Database Service
(GDS).

The system presented here, namely OGSA-DQP,

1

is a proof of concept implementation of a service-
based distributed query processor on the grid, that
aims to exploit the service-oriented middleware pro-
vided by OGSA-DAI and OGSA reference imple-
mentation, Globus Toolkit 3 (GT3), by plugging into
the port types defined by the constituent services of
those frameworks.

OGSA-DQP supports the evaluation of queries ex-
pressed in a declarative language over one or more
existing services. These services are likely to in-
clude mainly database services, but may also in-
clude other computational services. As such, OGSA-
DQP supports service orchestration and can be seen
as complementary to other infrastructures for ser-
vice orchestration, such as workflow languages. In
principle, OGSA-DQP can be used in any Grid ap-
plication that aims to integrate and analyse struc-
tured data collections. OGSA-DQP uses the emerg-
ing standard for GDSs to provide consistent access
to database metadata and to interact with databases
on the Grid. Notably, it also adapts techniques from
parallel databases to provide implicit parallelism for
complex data-intensive requests.

This paper aims to provide a user-oriented view
of OGSA-DQP, rather than delving into the details
of its design and implementation. Therefore, after
the following section which gives an overview of the
OGSA-DQP system, Section 3 provides a step-by-
step walk-through that illustrates the usage of the
system, via a GUI client.

2 Overview
OGSA-DQP is an example of a high level data in-
tegration framework. It is also an example of a ser-
vice orchestration framework in that it coordinates
the incorporation of external analysis services into
data retrieval. As shown in Figure 1, OGSA-DQP

OGSA-DAI

GT3 CORE

Distributed Query Processor

Application/Presentation Layer

Configuration

Logging

Auditing

Policy

Security

Versioning

Accounting

 OGSA High
Level Services

Figure 1: Layered Architecture of OGSA-DQP

has a layered architecture. It uses services provided
by the OGSA-DAI framework to access potentially
heterogeneous data sources. The OGSA-DAI frame-

work provides GDSs to give access to (potentially
heterogenous) stored collections of structured data
managed by database management systems imple-
menting standard data models. At a lower level, lies
GT3, the OGSA reference implementation which is
used both by OGSA-DQP and OGSA-DAI for ser-
vice instance creation, service state access, and life-
time management of the service instances.

OGSA-DQP provides two services to fulfil its
functions: The Grid Distributed Query Service
(GDQS) and the Grid Query Evaluation Service
(GQES). The implementation of the GDQS builds
on our previous work on the Polar* distributed query
processor for the Grid [7] by encapsulating its com-
pilation and optimisation functionality. The GDQS
provides the primary interaction interfaces for the
user and acts as a coordinator between the underly-
ing query compiler/optimiser engine and the GQES
instances. The GQES, on the other hand, is used to
evaluate (i.e. execute) a query sub-plan assigned to
it by the GDQS. The number of GQES instances and
their location on the grid is specified by the GDQS
based on the decisions made by the query optimiser
and represented as an execution schedule for query
partitions (i.e. sub-plans). GQES instances are cre-
ated and scheduled dynamically, and their interaction
is coordinated by the GDQS.

It is important to note that GDQS relies on OGSA-
DAI port types and extends those port types with
additional functionality (i.e. with an additional port
type). Consequently, much of the interaction patterns
supported by a standard GDS are also supported by
a GDQS. This brings about uniformity in the users’
perception of the GDQS as a data integration service.

The interaction of a client with the GDQS can
roughly be divided into two phases:

1. Set-up phase

2. Query evaluation and result delivery phase

The following sections provide an overview of the
operations that take place during each phase.

2.1 GDQS Set up
The GDQS implements an additional port type to en-
able the users to specify a set of data sources and
analysis services to be used for queries. The Grid
Distributed Query (GDQ) port type defines a single
operation, namely importSchema, for that pur-
pose. The importSchema operation is used to
prepare the GDQS for query submission. Prepar-
ing the GDQS for query submission involves iden-
tifying the data sources and the analysis services to
be used in the query. The data sources have to be

identified by the Grid Data Service Factory (GDSF)
handles that wrap those data sources. The analysis
services have to be identified by URLs which point
to the WSDL documents describing those services.
Both the GDSF handles and the WSDL URLs have
to be included in a list, inside an XML document,
which should then be supplied as the only parameter
to the importSchema operation.

importSchema(GDQResourceList)

N2

N3

Create()

findServiceData(databaseSchema)

DBSchema

GSH:GDS1

N1

G
Factory

GDSF

GGDQ GDQS1

GClient

�GS

GGDS GDS1

�GS

�GS

findServiceData(CompResourceMetadata)

availableResources

WebService(WSDL)

N4

getWSDL

2 3

4

5

Create

1

Figure 2: Interactions during the GDQS Set-up
Phase

Figure 2 illustrates interactions that take place
during a typical setup phase. The client first obtains
a list of available resources from the GDQS instance
by querying its Service Data Element (SDE) whose
name is CompResourceMetadata (interaction
1). This call uses the Grid Service (GS) port type
findServiceData operation to access the ser-
vice state. Then the client calls the importSchema
operation on the GDQ port type and provides a list
of resources (interaction 2). The GDQS then inter-
acts with the specified GDS Factories to obtain the
schemas of the databses they wrap, and with service
WSDL URLs to obtain the WSDL documents of the
analysis services (interactions 3 and 4). The GDQS
also creates GDS instances so that the query evalua-
tors can access data during query execution (interac-
tion 5).

Note that schema conflict resolution is not sup-
ported during schema import; the imported schemas
are simply accumulated and maintained locally.

2.2 Query Submission
The GDQS accepts query submissions in the form of
OQL [2] queries via the Grid Data Service (GDS)

port type defined by OGSA-DAI. The query is em-
bedded within an XML document called a GDS per-
form document [5]. The perform document can be
configured such that the results are delivered syn-
chronously to the client, or streamed and pulled
asynchronously by the client or pushed to another
service. These alternative interaction modes can be
specified by a set of activities embedded in the per-
form document. For a detailed explanation of how
these can be achieved see [5]. In this paper only
the synchronous mode of delivery is described, even
though asynchronous delivery is also exploited in the
implementation.

Figure 3 illustrates the interactions that take place
when a query is received and processed by a GDQS
instance. The client submits a query via GDS per-
form operation (interaction 1). The query conatined
in the perform document is compiled and optimised
into a distributed query execution plan, whose parti-
tions are scheduled for execution at different GQESs
(this is not explicitly shown in the figure). The
GDQS then uses this information to create GQES
instances on their designated execution nodes (in-
teraction 2). Next, the GDQS hands over to each
GQES the sub-plan assigned to it (interaction 3).
This initiates the query execution process whereby
some of the GQES instances interact with other GDS
instances to obtain data (interaction 4). Eventually,
the results start to propagate across GQES instances
and, ultimately, reach the client (interaction 5).

GGDS GQES�n

GDT

GDQS

GDS

GDT

GDQ
Client

GGDS ��GDS
Instances

GGDS GQES�1

GDT

.��
.��

.

5

1 4

5

�GS

�
�
���
��
�
�
	
�
�

�
	
�

��
�
�

���������	��
�
�������������������

3

3

5

�����F

�����F

2

2

������

������

Figure 3: An Overview of Interactions During Query
Execution

The next section illustrates how OGSA-DQP can
be used. For this purpose, an example query submis-
sion procedure is walked through in detail.

DATABASE:�goterms
TABLE�goterm (
 id varchar(32), type varchar(55),
 name varchar(255),
 PRIMARY KEY (id))

DATABASE:�proteinInteractions
TABLE�protein_interaction (
 ORF1 varchar(50), ORF2 varchar(50),
 baitProtein varchar(50), interactionType varchar(5),
 repeats int(11), experimenter varchar(100))

DATABASE:�yeastSequence
TABLE�protein_goterm (
 ORF varchar(55),GOTermIdentifier varchar(32),
 PRIMARY KEY (ORF,GOTermIdentifier))

TABLE�protein_property (
 ORF varchar(55),molecularWeight float,
 hydrophobicity float, PRIMARY KEY (ORF))

TABLE�protein_sequence (
 ORF varchar(50), sequence text,
 PRIMARY KEY (ORF))

EntropyAnalyser
ServiceN1,�Manchester

N2,�Manchester

N3,�Newcastle

N4,�ManchesterGDQSF

N0,�Manchester

GDSF

GQESF

GQESF

GDSF

GQESF

GDSF

GQESF

GQESF

Figure 4: An Example distributed Setting used for testing OGSA-DQP

3 Using OGSA-DQP

To illustrate the GDQS set-up and query submis-
sion phases introduced above we use the setting il-
lustrated in Figure 4. The experimental setting in-
volves five separate machines, four of which are lo-
cated on the same campus and one in a campus in
another city. Individual machines are identified by
node numbers and denoted by a shaded square. Note
that three of the nodes have GDS Factories installed
on them to wrap the three databases located on those
nodes. The databases are hosted by MySQL DBMS.
The table definitions comprising the schema of each
database are given below the shaded boxes.

An analysis service, namely EntropyAnaly-
serService is also deployed on one of the nodes,
and will be used to illustrate how OGSA-DQP can
combine data analysis with data retrieval.

The GDQS Factory is installed on a separate node,
although it is conceivable that it might have existed
on one of the other nodes alongside GDS Factories.
Note, also, that Grid Query Evaluator Factories are
installed on all of the nodes to enable the exploitation
of every machine available for the execution of the
query.

The following subsections walk the reader through
the steps required to submit and execute queries in
the setting explained above.

3.1 Service Discovery and Instance Cre-
ation

3.1.1 Locating the Factory

As implied by the service oriented architectures, the
initial step to any client-service interaction is the dis-
covery of desired services in a public registry. Note,
however, that here the discovered entity is not the
service itself but a factory that can be used to cre-
ate the actual service instance. OGSA-DAI defines
the notion of a Grid Data Service Registry (GDSR),
which is based on the OGSA Service Group Registry
concept [8]. A GDSF registers itself with at least
one, but potentially multiple, registries when it is ini-
tialised. Those registries are specified as part of the
GDSF configuration process. The GDQSF, obeys the
same pattern and registers itself to the GDSRs spec-
ified in its configuration. Figure 5 illustrates this.
Typically the registry would range over a Virtual Or-
ganisation (VO) known to the user, and would be
identified by a Grid Service Handle (GSH). The GUI
Client implemented for OGSA-DQP provides a dia-
log where it is possible to enter the GSH of a registry
and inspect its content (i.e., obtain the list of regis-
tered services). Figure 6 illustrates the screen shot
of the dialog. Note that the handle of the GDQSF
is highlighted to indicate that GDQS Factory was lo-
cated.

GFactory GDQSF

G

Registry

�GS
GDSR

GClient

RegisterService

findServiceData

CreateService

1

113

2

G

GDS GDQS
Instance

GDT

GDQ

Create

Figure 5: Discovering the GDQS Factory and In-
stance Creation

Figure 6: Discovering the GDQS Factory and In-
stance Creation

3.1.2 Creating a GDQS Instance

As the OGSA adopts a model where interactions
with services follow a stateful instance approach,
once the factory is located, the next step is to cre-
ate an instance. Using the OGSA-DQP GUI Client
this can be done by pressing the appropriate button,
shown in Figure 6. When a GDQS instance is cre-
ated, several initialisation steps take place:

• The GDQSF passes configuration information
to the instance it creates. Some information,
such as the credentials of the user, OGSA-
DAI activity types supported by the instance,
is inherited from the standard GDSF behaviour.
Other information, such as the set of XSL trans-
formations required for transforming externally
obtained documents into a form understandable
by the query optimiser and the location of the
query optimiser engine is specific to GDQS.

• An XML document that contains information
about the computational characteristics of the
nodes being made available for processing is

loaded by the GDQS instance. This information
will be obtained dynamically in future versions,
but currently it is statically loaded.

• Some of the Service Data Elements (SDEs) are
initialised with the data collected during the ini-
tialisation.

Once the instance is created it is then ready for
setting it up to acquire resources required for the
queries, which is explained in the next section.

It is worth noting that GDQS instances are cre-
ated per-client and can handle multiple queries but
are still relatively short-lived entities. This model is
also applicable to the lifetime of the GDS instances
created and managed by the GDQS.

Clearly, other approaches to lifetime management
are possible, each having particular advantages and
disadvantages. For instance, the GDQS could be im-
plemented to serve multiple queries from multiple
users for a long period of time. In that case the cost
of setting up the service would be reduced, at the ex-
pense of somewhat increased complexity due to the
need to manage multiple coexistent query requests
and the resources allocated for their executions. On
the other hand, the GDQS instance could be designed
to be a per-query, short-lived entity, in which case
the cost of setting up the service might come to con-
stitute a considerable proportion of the total cost of
the service provided by the instance. The approach
adopted for our particular implementation (i.e., an in-
stance per-user that is capable of responding to mul-
tiple requests by that user), avoids the complexity of
multi-user interactions while ensuring that the set-up
cost is unlikely to be the dominating one.

3.2 Preparing the GDQS for Query Ex-
ecution

As pointed out in Section 2.1, preparing a GDQS
for query submission involves identifying the data
sources and the analysis services to be used in the
query. The GDQS instance helps the user in identify-
ing the available resources by exposing the compu-
tational resource metadata loaded during its initial-
isation as an SDE. The client can query the Com-
pResourceMetadata SDE to see the available
resources. The user can then compile a list of the data
resources (identified by GDSF handles) and the anal-
ysis resources (identified by WSDL URLs) required
for a particular query session, and hand them to the
GDQS using the importSchema operation. For
the example setting described in Section 3 and illus-
trated in Figure 4, the input to the importSchema
operation would be the following XML document:

<GDQDataSourceList>
<importedDataSource>

<GDSFactoryHandle>
http://machine1.cs.man.ac.uk:8080
/ogsa/services/ogsadai
/GridDataServiceFactory

</GDSFactoryHandle>
<GDSFactoryHandle>

http://machine2.cs.man.ac.uk:8080
/ogsa/services/ogsadai
/GridDataServiceFactory

</GDSFactoryHandle>
<GDSFactoryHandle>

http://machine1.nclac.uk:8080
/ogsa/services/ogsadai
/GridDataServiceFactory

</GDSFactoryHandle>
</importedDataSource>
<importedService>

<wsdlURL>
http://machine3.cs.man.ac.uk:9090/
axis/services
/EntropyAnalyserService?WSDL

</wsdlURL>
</importedService>

</GDQDataSourceList>

Once the list is submitted, the GDQS instance con-
tacts the GDSFs provided in the list to extract the
database schema of the data sources by querying the
databaseSchema SDE exposed by those GDSFs.
It also processes the WSDL documents pointed out
by the provided WSDL URLs. Figure 7 is a snap

Figure 7: The GDQS Setup Dialog

shot the GUI client screen with data sources and
analysis service selected and ready for schema im-
port. Initially only the top list is displayed and user

is expected to select items from the list to add to the
selected data source list. Similarly, the user can enter
WSDL URLs to the provided edit box and add them
to the selected services list.

Note that it is conceivable to take different ap-
proaches to GDQS setup, in regard with the extent
of required interaction. The following are possible:

1. Generic GDQS. As described above a GDQS
can start as an empty box, in which case the user
needs to provide the full list required resources
for a particular query session.

2. Partially configured GDQS. It might be de-
sirable to configure the GDQS factory so that
the instance, when created, starts with an ini-
tial set of resources already acquired to enable
the users start querying immediately. In the
case that the query session requires the addition
of more resources, the user can add those re-
source using the importSchema operation as
described above.

3. Fully Configured GDQS. For well-defined
query requirements it might make sense to have
fully configured GDQS factories (i.e., a special
case of item 2), for frequent use within an or-
ganisation. Such GDQS Factories can be ad-
vertised in the VO registry with different names
and additional metadata to indicate their capa-
bilities in terms of the resources they can inte-
grate.

Although only item 1 is supported in the current
OGSA-DQP implementation, it is fairly easy to ex-
tend GDQSF to support items 2 and 3 since the fac-
tory configuration schemes in OGSA-DAI are ca-
pable of incorporating such extensions in a well-
defined way.

3.3 Submitting Query Requests
Before writing the query the user may wish to have
access to the schemas of the data sources. To accom-
modate this need, GDQS exposes the metadata about
the imported resources as an SDE, so the user can ex-
amine the database schema of the imported databases
by querying the importedSchemas SDE.

As pointed out in Section 2.2, submitting the
query requires the user to embed the OQL query into
a query request document, defined by the GDS spec-
ification. In the case of the OGSA-DQP GUI Client
the query is simply entered as an OQL text and the
request document is constructed on the fly. The fol-
lowing query is used as an example to illustrate the
query submission procedure.

print select p.ORF, go.id,
calculateEntropy(p.sequence)

from p in protein_sequences,
go in goterms,
pg in protein_goterms

where
go.id=pg.GOTermIdentifier and
p.ORF=pg.ORF and
p.ORF like "YBL06%" and
go.id like "GO:0000%";

The query contains two separate join operations
each joining two extents (or tables in relational
databases terms) from different databases (on dif-
ferent servers) and applies entropy analysis on se-
quences obtained from one of the extents using a
web service. The calculateEntropy method
is an operation defined by the EntropyAnaly-
serService. Note that the parameter to this
method is a column from protein sequences extent.
The query is embedded in the following GDS per-
from document:

<gridDataServicePerform>
<documentation>
This request submits an OQL query to
GDQS to retrieve data from distributed
data sources.

</documentation>

<oqlQueryStatement name="statement">
<expression>
print select p.ORF, go.id,
calculateEntropy(p.sequence)
from p in protein_sequences,

go in goterms,
pg in protein_goterms

where
go.id=pg.GOTermIdentifier and
p.ORF=pg.ORF and
p.ORF like "YBL06%" and
go.id like "GO:0000%";

</expression>
<webRowSetStream name="stOutput"/>

</oqlQueryStatement>

</gridDataServicePerform>

Figure 8 shows the query execution pane of the
GUI Client, with the results displayed in the lower
pane and schema information displayed as an XML
document in the top pane.

Table 1 gives an indication of the response times
for various operations performed during the whole
exercise. The top two rows in the table show the size
of the three extents involved in the query in terms of
the number of rows they contain. The bottom row
provides the elapsed time during the main operations
such as the service set-up (i.e. importing resource
schemas), the query compilation and optimisation,
query post processing and query execution. Note that
the figures in the table are meant to provide a rough

Figure 8: The GUI Client Query Submission Dialog

Table 1: Response Times for Different Phases

protein protein
extent names goterms goterms sequences
extent sizes 16803 11369 6303

(in rows)
execution times

Query Query Post Query
GDQS Setup Optimisation Processing Execution

1.3 sec 107 milisec 715 milisec 13 sec

idea about the response times and should not be inter-
preted as the result of a thorough performance anal-
ysis.

4 Conclusion
There has not been much on service orchestration on
the Grid; the system described here provides one ap-
proach to declarative support for service orchestra-
tion via dynamic resource discovery and allocation.
OGSA-DQP provides an example of a high level
Grid Service Framework that is capable of combin-
ing data analysis with data integration. In fact, to our
knowledge, it is the first service-based distributed
query processor that demonstrates how a DQP can
combine data access with data analysis.

From a user point of view, OGSA-DQP exempli-
fies the patterns of interaction with dynamically cre-

ated, stateful services, which involves the discovery
of service factories using registries, explicit creation
of service instances via factories, and accessing the
instance state via Service Data Elements.

As pointed out in Section 3.1.2, the instance
lifetime model adopted for GDQS and GDSs aims
to balance the cost of system set up with implied
complexity in the system. Furthermore, the cost of
GDQS set up can be compensated for by moving to-
wards using partially or fully configured GDQS fac-
tories.

Although Section 3.3 provides response times of
various operations during the GDQS setup and query
execution, a detailed performance analysis needs to
be done to closely examine the behaviour of the sys-
tem and identify the bottlenecks in the infrastructure.
This is a prioritized item in our future work list. It is,
however, reasonable to expect that as replicated data
sources and analysis services become readily avail-
able, the relative response time is likely to be even
better since OGSA-DQP design is geared towards
exploiting available grid resources to implement par-
allel execution.

Acknowledgements — The work reported in this
paper has been supported by the UK e-Science
Core Programme through the OGSA-DAI project
and the myGrid project, and by the UK EPSRC grant
GR/R51797/01. We are grateful for that support.

References
[1] W. H. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. Mc-

Cance, and M. Silander. Project Spitfire - Towards
Grid Web Service Databases. In Global Grid Forum
5, 2002.

[2] R. G. G. Cattell and D. K. Barry. The Object Database
Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[3] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
Grid Services for Distributed System Integration.
IEEE Computer, 35(6):37–46, 2002.

[4] K. Gottschalk, S. Graham, H. Kreger, and J. Snell. In-
troduction to Web Services Architecture. IBM Sys.
Journal, 41(2):170–177, 2002.

[5] A. Krause, T. Sugden, and A. Borley. Grid Data
Service. Technical report, OGSA-DAI, 2003. Doc-
ument Identifier: OGSA-DAI-USER-UG-GDS-v4.1,
July, 2003.

[6] R. W. Moore, C. Baru, R. Marciano, A. Rajasekar, and
M. Wan. Data-Intensive Computing. In I. Foster and
C. Kesselman, editors, The Grid: Blueprint for a New
Computing Infrastrcuture, chapter 5, pages 105–129.
Morgan Kaufmann, 1999.

[7] J. Smith, A. Gounaris, P. Watson, N. W. Paton,
A. A. A. Fernandes, and R. Sakellariou. Distributed

Query Processing on the Grid. In Proc. Grid Com-
puting 2002, pages 279–290. Springer, LNCS 2536,
2002.

[8] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, C. Kesselman, T. Maquire, T. Sandholm,
D. Snelling, and P. Vanderbilt. Open Grid Services
Infrastructure (OGSI), Version 1.0. Technical report,
Open Grid Service Infrastructure WG, Global Grid
Forum, 2003. June 27, 2003.

