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Abstract. Service-based approaches (such as Web Services and the
Open Grid Services Architecture) have gained considerable attention re-
cently for supporting distributed application development in e-business
and e-science. The emergence of a service-oriented view of hardware and
software resources raises the question as to how database management
systems and technologies can best be deployed or adapted for use in
such an environment. This paper explores one aspect of service-based
computing and data management, viz., how to integrate query process-
ing technology with a service-based Grid. The paper describes in detail
the design and implementation of a service-based distributed query pro-
cessor for the Grid. The query processor is service-based in two orthog-
onal senses: firstly, it supports querying over data storage and analysis
resources that are made available as services, and, secondly, its inter-
nal architecture factors out as services the functionalities related to the
construction of distributed query plans on the one hand, and to their
execution over the Grid on the other. The resulting system both pro-
vides a declarative approach to service orchestration in the Grid, and
demonstrates how query processing can benefit from dynamic access to
computational resources on the Grid.

1 Introduction

The Grid is an emerging infrastructure that supports the discovery, access and
use of distributed computational resources [7]. Its name comes by analogy with
the electrical power grid, in that the intention is that computational resources (by
analogy with power generators) should be able to be accessed on demand, with
the location and ownership of the resources being orthogonal to their manner of
use. Although the Grid was originally devised principally to support scientific
applications, the functionalities associated with middlewares, such as Globus
[www.globus.org] and Unicore [www.unicore.de], are potentially relevant to ap-
plications from many domains, in particular those with demanding, but un-
predictable, computational requirements. For the most part, Grid middlewares
abstract over platform or protocol-specific mechanisms for authentication, file
access, data movement, application invocation, etc., and allow dynamic deploy-
ment of applications on diverse hardware and software platforms.



In parallel with the development of Grid computing, Web Services (WSs) [9]
have gained widespread acceptance as a way of providing language and platform-
independent mechanisms for describing, discovering, invoking and orchestrating
collections of networked computational services. For the most part, WSs are
static, in that specific services are deployed, described and advertised with hu-
man intervention, and with fixed computational capabilities.

The principal strengths of Web and Grid services thus seem to be com-
plementary, with WSs focusing on platform-neutral description, discovery and
invocation, and Grid services focusing on the dynamic discovery and efficient
use of distributed computational resources. This complementarity of Web and
Grid Services has given rise to the proposed Open Grid Services Architecture
(OGSA) [6, 18], which makes the functionality of Grid Services (GSs) available
through WS interfaces. The Open Grid Services Infrastructure (OGSI) is the
base infrastructure underlying the OGSA. It allows the dynamic creation of ser-
vice instances on computational resources that are discovered and allocated as,
and when, they are needed. The OGSI is currently undergoing a standardisation
process through the Global Grid Forum [www.gridforum.org].

Although the initial emphasis in Grid computing was on file-based data stor-
age [15], the importance of structured data management to typical Grid appli-
cations is becoming widely recognised, and several proposals have been made for
the development of Grid-enabled database services (e.g., Spitfire [1], OGSA-DAI
[www.ogsa-dai.org.uk]). To simplify somewhat, a Grid-enabled database service
is a programmatic interface to a database that uses one or more GSs (e.g., for
authentication or data transport).

The provision of facilities that support application development is relevant
to both GSs and WSs. For example, in the Grid setting, applications can use
GSs through toolkits, or Grid-enabled versions of parallel programming libraries
such as MPI [5]. In the WS setting, tools exist to support the generation of client
stubs (e.g., AXIS [www.apache.org]), but, more ambitiously, XML-based work-
flow languages have been developed to orchestrate WSs, of which BPEL4WS
[www.ibm.com/developerworks/library/ws-bpel] is perhaps the most mature.
However, all of these approaches are essentially procedural in their nature, and
place significant responsibility on programmers to specify the most appropriate
order of execution for a collection of service requests and to obtain adequate
resources for the execution of computationally demanding applications. Further-
more, support for large-scale processing of structured data is minimal.

This paper argues that distributed query processing (DQP) can provide ef-
fective declarative support for service orchestration, and describes an approach
to service-based DQP on the Grid that:

1. supports queries over Grid Database Service (GDSs) and over other services
available on the Grid, thereby combining data access with analysis;

2. uses the facilities of the OGSA to dynamically obtain the resources necessary
for efficient evaluation of a distributed query;

3. adapts techniques from parallel databases to provide implicit parallelism for
complex data-intensive requests; and



4. uses the emerging standard for GDSs to provide consistent access to database
metadata and to interact with databases on the Grid.

As well as using the emerging GDS standard, the Grid distributed query
processor described in this paper is itself a GDS, and thus can be discovered
and invoked in the same way as other GDSs. Thus, the Grid stands to benefit
from DQP, through the provision of facilities for declarative request formulation
that complement existing approaches to service orchestration. Furthermore, a
complementary claim is that DQP stands to benefit from GSs, since they facil-
itate dynamic discovery and allocation of computational resources, as required
to support computationally demanding database operations (such as joins), and
implicit parallelism for complex analyses.

The remainder of this paper is structured as follows. Section 2 describes
how GSs evolved from WSs. Section 3 motivates and describes current efforts to
provide high-level database access services in the Grid. Section 4 contains the
technical contributions of the paper, viz., a detailed description of how a DQP
engine can be realised that uses Grid services both as architectural components in
the design of the engine itself and as nodes in distributed query execution plans.
The engine described has been implemented for first public release in July 2003
and is referred to as OGSA-DQP. Section 5 draws contrasts with other work
on distributed query processing. Finally, Section 6 states some conclusions.

2 Grid Services
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Fig. 1. Internal Structure of a GS

Among the drivers for the evolution
to service-based architectures are
the networking infrastructure now
available, of course, and, more im-
portantly, the emergence, in both e-
business and e-science, of a cooper-
ation model referred to as a virtual

organisation [7]. The service-based
approach seems to many a good so-
lution to the problem of modelling a
virtual organisation as a distributed
system. GSs build upon and ex-
tend the service-oriented architec-
ture and technologies first proposed
for WSs [9]. Figure 1 shows the
structure of a GS instance. WSs can-
not be created dynamically and are stateless from the viewpoint of the requester.
The Grid community has sought to address these limitations, thereby respond-
ing to the needs of applications in the high performance distributed computing
area where dynamic allocation of highly shared, powerful resources is essential.
Thus, the OGSA [6, 18] proposes interfaces for GSs that, unlike WSs, can be
instantiated dynamically by a call to their factory and are stateful.



A GS must define a Grid Service port type, and may define optional port
types, such as Notification Sink (NSnk) and Notification Source (NSrc)
in Figure 1, as discussed below. Associated with a GS is a potentially dynamic set
of Service Data Elements (SDEs). An SDE is a named and typed XML element
that is used to represent information about GS instances, thereby opening the
way for the discovery and management of potentially dynamic GS instance state.

The OGSA specifies the following functionalities:

– Registration and Discovery – A standard interface is defined for regis-
tering information about GS instances with registry services. A GS that also
implements the Registry port type becomes a Grid Service Registry (GSR).
The findServiceData operation can be used to query registry metadata.

– Dynamic Service Creation – One of the most important characteristics of
the OGSA is its acknowledgement of the need to create and manage new GS
instances dynamically. A Factory port type is defined (with the expected
semantics) to achieve this. Once created, a GS instance is denotable by a
globally unique Grid Service Handle (GSH).

– Lifetime Management – Because GSs can be created dynamically, they
need to be disposed of. The GS port type defines operations for managing
the lifetime of a GS instance and for reclaiming services and state associated
with failed operations. The OGSA adopts soft-state protocols that enable
the host itself to discard a GS instance if the stream of keep-alive messages
that reaffirm the need for it to be retained dries up.

– Notification – Common abstractions and service interfaces for subscrip-
tion to, and delivery of, event notifications are supported through the no-
tification sink and source port types, so that dynamic, distributed GSs can
asynchronously notify each other of relevant changes to their state.

The provision of an infrastructure with the properties above is an important
step towards fulfilling the goal of supporting virtual organisations. Concretely,
this goal requires that, among other tasks, the access to, and management of,
Grid resources can be virtualised. By virtualised is meant, roughly, that the levels
of cohesion and coupling that obtain among application components are such as
to allow developers to express the needs of a virtual organisation for data and
computational resources at the grain of complete, possibly federated, databases,
and of complete, possibly orchestrated, applications. Initiatives to provide value-
adding services in specific settings are being pursued, e.g., security, or transport.
Of particular importance for the work presented in this paper, are the data
access and integration services discussed in Section 3.

3 Grid Database Services

While query processing technology is characterised by high levels of cohesion,
coupling it to applications has often required special attention. This need has
occurred at several granularities, from programs to distributed systems.



The service-based approach to data access and integration offers very low
levels of coupling (because of its high-level consistent interfaces) at a very coarse
granularity (e.g., that of a, possibly federated, database system). From this fact
stem challenges and opportunities as this and the remaining sections show.

The main objective of the OGSA-DAI initiative is to build upon the OGSA
infrastructure to deliver added-value, high-level data management functionality
for the Grid. OGSA-DAI components are either data access components or data

integration components. The former give access to stored collections of structured
data managed by database management systems implementing standard data
models. The latter provide facilities for combining or transforming data from
multiple data access components in order to present some integrated or derived
view of the data. The DQP system introduced in this paper is an example
of a data integration component providing combination facilities. OGSA-DAI
extends GSs with the following services and port types:

– A Grid Data Service Registry (GDSR) is a facility for the publication of
GDSs. Services are registered with a GDSR via a registerService opera-
tion. The data that is used to describe a service for registration is generally
a subset of the SDEs exposed by the GDS. Registered services (and their
capabilities) can be found using a findServiceData call. A GDSR is also
capable of reporting registered service changes to service instances that have
subscribed for this via a subscribe call.

– A Grid Data Service Factory (GDSF) is configurable to create GDS in-
stances tailored to specific requests. A createService operation is passed
configuration information for the requested GS instance, including database
management system location, database and query language.

– The Grid Data Service (GDS) port type is the core contribution of OGSA-
DAI. It accepts a request (as an XML document) which instructs the GDS
instance to interact with a database to create, retrieve, update or delete data.
The primary operation in the GDS port type is perform, through which a
request can be passed to the GDS (e.g., for an SQL query to be evaluated).

– The Grid Data Transport (GDT) port type enables data transport be-
tween GDSs and between client processes and GDSs. It is used by the GDS
to satisfy delivery requests and allows data to be pushed or pulled through
putData and getData calls, respectively. The GDT port type is crucial for
efficient and reliable data transport when large data volumes prevail.

Figure 2 illustrates the interaction of these services and port types in a typical
scenario. Circled numbers (written inside parentheses in running text) denote the
position of an interaction in a sequence. Solid arrows denote invocation. Dashed
ones, instantiation. (1) A GDSF registers itself with one or more registries (pos-
sibly a virtual organisation registry) as part of its initialisation procedure. (2) A
client discovers the GDSF by issuing a findServiceData request to the GDSR.
(3) The client uses the GDSF to create a GDS instance. (4) The client submits
queries using the perform call in the GDS port type. (5) The results of the query
are then delivered by the GDS instance to the consumer (assumed in Figure 2,
for illustration purposes, to be different from the client).
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Fig. 2. OGSA-DAI Service Interactions

The current OGSA-
DAI software (V
2.5) is layered on
top of the OGSI
reference implemen-
tation (initially known
as OGSI) released
as Globus Toolkit
3 (Beta) in June
2003. Both are avail-
able under open
source licenses, from [www.globus.org/ogsa] and [www.ogsa-dai.org.uk].

4 A Service-Based DQP Architecture

This section describes a query processing framework in which query compila-
tion, optimisation and evaluation are viewed (and implemented) as invocations
of OGSA-compliant GSs. Moreover, both the execution nodes and the data nodes
of the distributed query execution plans are OGSA-compliant GSs. Benefits in-
clude the following: (i) Grid services can be used to identify lightly loaded re-
sources that are suitable for query evaluation and to allocate query evaluators
on these nodes; (ii) Grid security supports single sign-on for remote resources,
simplifying authentication for distributed execution; (iii) since source databases
and intermediate evaluators support consistent interfaces for data delivery, the
design of the query processing framework is simplified; (iv) consistent resource
discovery and allocation mechanisms can be used for both data sources and
analysis tools accessed from a query.

The query processing framework presented in this section extends the OGSA
and OGSA-DAI with two new services (and their corresponding factories):

– A Grid Distributed Query Service (GDQS) extends the GDS interface.
When a GDQS is set up, it interacts with the appropriate registries to ob-
tain the metadata and computational resource information that it needs to
compile, optimise, partition and schedule distributed query execution plans
over multiple execution nodes in the Grid. The implementation of the GDQS
builds on our previous work on the Polar* distributed query processor for the
Grid [17] by encapsulating its compilation and optimisation functionality.

– A Grid Query Evaluation Service (GQES) also extends the GDS inter-
face. Each GQES instance is an execution node in the distributed query
plans alluded to above. It is in charge of a partition of the query execution
plan assigned to it by a GDQS. It implements a physical algebra over GDSs
(encapsulated within which lie the actual data sources whose schemas were
imported during GDQS set-up).
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Fig. 3. GDQS Interactions: Set-Up and Querying

Figure 3 provides an
overview of the interac-
tions during the instan-
tiation and set-up of a
GDQS as well as those
that take place when a
query is received and
processed. Conventions
are as for Figure 2, with
dotted arrows labelled
by dark-background se-
quence numbers denot-
ing interactions that
take place in the set-up
phase, which occurs only once in the lifetime of the GDQS instance. Solid ar-
rows denote interactions that take place when a query is submitted. The 3-dot
sequence in Figure 3 can, as usual, be read as ‘and so on, up to’.

Note that since the GDQS is OGSA-DAI compliant, interactions (1) to (3)
are the same as those illustrated in Figure 2. The fourth interaction is specific to
a GDQS (and hence justifies the additional GDQ port type). It allows the GDQS
to import logical and physical schemas of the participating data sources as well
as information about computational resources into the metadata dictionary used
by the query compiler and optimiser.

After importing the schemas of the participating data source, the client can
submit queries (5) via the GDS port type using a perform call. This call is
compiled and optimised into a distributed query execution plan, the partitions
of which are scheduled for execution at different GQESs. The GDQS then uses
this information to create GQES instances on their designated execution nodes
(and these could be, potentially, anywhere in the Grid) and hands over to each
(6) the plan partition assigned to it (as described in more detail in Section 4.2).
This is what allows the DQP framework described in this paper to benefit from
(implicitly) parallel evaluation even as the uniform service-based interfaces hide
most of the low-level complexity necessary to achieve this. Finally, (some of the)
GQES instances interact (7) with other GDS instances to obtain data, after
which the results start to propagate (8) across GQES instances and, eventually,
back to the client via the GDT port type.

select p.proteinId, blast(p.sequence)
from p in protein, t in proteinTerm
where t.termId = ’GO:0008372’ and

p.proteinId = t.proteinId

Fig. 4. Example Query

In the remainder of the paper, the char-
acteristic query in Figure 4 is used to illus-
trate issues and challenges and to describe
the solutions to them that this paper con-
tributes. The setting is that of the ODMG [2]
data model and its associated query lan-
guage, OQL. This query returns, for each protein annotated with the GO
term ’GO:0008372’ (i.e., unknown cellular component), those proteins that
are similar to it. Assume that (as in [17]) the protein and proteinTerm ex-



tents are retrieved from two databases, respectively: the Genome Information
Management System (GIMS) [img.cs.man.ac.uk/gims] and the Gene Ontology
(GO) [www.geneontology.org], each running under (separate) MySQL relational
database management systems. The query also calls the BLAST sequence sim-
ilarity program [www.ncbi.nlm.nih.gov/BLAST/], which, given a protein se-
quence, returns a set of structures containing protein IDs and similarity scores.
Note that the query retrieves data from two relational databases, and invokes
an external application on the join results.

A service-based approach to processing this query over a distributed envi-
ronment allows the query optimiser to choose from multiple providers (in the
safe knowledge that most heterogeneities are encapsulated behind uniform in-
terfaces), and to spawn multiple copies of a query-algebraic operator to exploit
parallelism. In the example query, for instance, the optimiser could choose be-
tween different GO and GIMS databases, different BLAST services, and different
nodes for running GQES instances1. Moreover, a DQP engine built upon GSs
can offer better long-term assurances of efficiency because dynamic service dis-
covery, creation and configuration allow it to take advantage of a constantly
changing resource pool which would be troublesome for other approaches.

4.1 Setting Up a Distributed Query Service

The GDQS service type (i.e., the collection of port types it supports) implements
two port types from the OGSA, viz., GS and NSnk, and two from OGSA-DAI, viz.,
GDS and GDT. To these, it adds a Grid Distributed Query (GDQ) port type
that allows source schemas to be imported. Note that this provides a context over
which global models can be specified (e.g., using views), but the query processor
itself makes no attempt at schema integration. Such capabilities could be pro-
vided by higher-level schema-integration services, potentially also implementing
GDS port types. The steps involved in identifying and accessing the participat-
ing data sources depend on the lifetime model applied to GDS instances that
wrap those data sources. We assume that the GDS instances are created per-
client and can handle multiple queries but are still relatively short-lived entities.
This model is also applicable to the lifetime of the GDQS instance. Note that
other approaches to lifetime management are possible, each having particular
advantages and disadvantages. For instance, the GDQS could be implemented
to serve multiple queries from multiple users for a long period of time.

In that case the cost of setting up the system would be minimal, at the
expense of somewhat increased complexity in handling query requests because
of the need to manage multiple simultaneous requests and the need to man-
age resource allocation for the corresponding interactions. On the other hand,
the GDQS instance could be designed to be a per-query, short-lived entity, in
which case, the cost of setting up the system would constitute a considerable
proportion of the total lifetime of the instance. The approach adopted for our

1 The first release of OGSA-DQP does not support this facility because of limited
functionality in the OGSI implementation it builds upon.



particular implementation (i.e. an instance per-user that is capable of respond-
ing to multiple requests), avoids the complexity of multi-user interactions while
ensuring that the cost of system set-up phase is not the dominating one. We
also assume that the client knows enough about the data sources to discover
the GDS factories for them, and to hand over their GSHs to the GDQS. The
GDQS can then request that those GDS instances be created (thereby obtain-
ing control over the lifetimes of the GDS instances), and imports their schemas.
This model balances the responsibilities of the client and those of the GDQS by
assigning instance creation and lifetime management to the latter, while leaving
identification and discovery of the data sources to the former. Figure 5 shows the
detailed interaction sequence before and during an importSchema call. Notation
is as in Figure 2.
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Fig. 5. Importing Service Metadata

(1) reflects the de-
fault behaviour for a
GDSF of registering it-
self upon activation. In
the figure, the client
starts by discovering
(2) a GDQS factory
and creating from it
(3) a GDQS instance
GDQS1. The client
then discovers (4) a
GDS Factory for a
particular data source,
obtains (5) a config-
uration document by
querying the GDSF),
and passes (6) the han-
dle GSH:GDSF of this
factory and the configuration document to GDQS1 via an importSchema call.
The GDQS instance creates (7) a GDS instance GDS1 using the factory han-
dle and the configuration document provided by the client, and obtains (8) the
database schema of the data source wrapped by that GDS.

It is also necessary to import metadata about external services (e.g., BLAST,
in the example query) that are required to participate in the queries the GDQS
supports. The participation of an external service occurs when the service is
called from within the OQL query. For instance, in the example query, the call
to the BLAST sequence similarity algorithm. As the service is described by a
WSDL document, importSchema obtains the latter and incorporates the data
types and operation definitions into the metadata collection.

It is also important for the GDQS to collect sufficient data about the avail-
able computational resources on the Grid to enable the optimiser to schedule the
distribution of the plan partitions as efficiently as possible. Although the cur-
rent OGSA reference implementation does not fully support this need, it does



provide a high-level Index Service, to enable collecting, caching and aggregat-
ing of computational resource metadata. Figure 6 illustrates the service-based
architecture that enables a GDQS to collect resource metadata from multiple
nodes on the Grid. Conventions are the same as in Figure 5. Similarly numbered
interactions potentially take place concurrently.
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In this experi-
mental set-up, an
index service col-
lects dynamic in-
formation on the
system it is de-
ployed in using back-
end information pro-
viders. Since index
services implement
the Registry port
type, any service
can be published
(1) using them. The
GDQS identifies a
central index ser-
vice as its server for caching and aggregating metadata, and causes (2) it to
subscribe to other distributed index services.

<GridNodeInfo
hostsDataSource="1" hostsService="0"
hasEvaluatorFactory="1">
<nodeID>mach1.cs.man.ac.uk</nodeID>
<CPUSpeedMHz>1400</CPUSpeedMHz>
<CPULoadPercentage>10</CPULoadPercentage>
<connectionSpeedMBperSec>1.0</connectionSpeedMBperSec>
<hostedDataSource

GDSFactoryHandle
="http://x.cs.man.ac.uk/ogsa/services/GDSFactory"

<evaluatorFactory>
http://x.cs.man.ac.uk/ogsa/services/EvaluatorFactory

</evaluatorFactory>
</GridNodeInfo> <GridNodeInfo

hostsDataSource="0" hostsService="1"
hasEvaluatorFactory="0">
<nodeID>mach1.ebi.co.uk</nodeID>
<CPUSpeedMHz>1000</CPUSpeedMHz>
<CPULoadPercentage>95</CPULoadPercentage>
<connectionSpeedMBperSec>2.0</connectionSpeedMBperSec>
<hostedService>

http://www.ebi.ac.uk/.../AxisServlet/urn:emblfetch
</hostedService>
<hostedService>

http://www.ebi.ac.uk/.../AxisServlet/urn:spoofblast
</hostedService>

</GridNodeInfo>

Fig. 7. Computational Resource Metadata

The remote index ser-
vices send (3) notification
messages at specified peri-
ods whose payload is re-
source metadata in a format
determined by the back-
end information provider.
The GDQS can use (4)
a findServiceData call to
obtain the aggregated infor-
mation as SDEs from its
server. Note that one would
expect the index service hi-
erarchy to have been set
up as part of a virtual or-
ganisation’s infrastructure,
since the identification of
Grid nodes that constitute
the organisation’s resource
pool is beyond the opera-
tional scope of the GDQS.



The GDQS captures computational resource metadata for all machines hosting
a schema it has imported.

<GridDataServiceRequest>
<Header>

<RequestName>Example 1</RequestName>
<Version>

<Config>config</Config>
<RequestEnvironment>

environment
</RequestEnvironment>

</Version>
<Originator>GSH of Originator</Originator>

</Header>
<Body>

<Statement name="xyz"
dataResource="MyDataResource">
select p.proteinId, blast(p.sequence)
from p in protein, t in proteinTerm
where t.termId=’GO:0008372’ and

p.proteinId=t.proteinId
</Statement>
<Delivery name="delivery">

<Mechanism type="bulk"/>
<Mode type="full"/>
<From>xyz</From>
<To>response</To>

</Delivery>
<Execute name="execute">xyz</Execute>

</Body>
</GridDataServiceRequest>

Fig. 8. Query as a GDS Request Document

The XML fragment in
Figure 7 shows the canon-
ical form in which compu-
tational resource metadata
is maintained within the
GDQS. Each GridNode-

Info element in the frag-
ment contains information
such as the CPU speed,
CPU load (as a percentage),
the network bandwidth, the
address of the GDSF (if
there exists one) that wraps
the data source hosted in
that particular node, and
the URLs of hosted services.
Once a GDQS is set up
as described, it is ready to
accept queries against the
schemas and resources that
it ranges over. The XML
fragment in Figure 8 shows, for the example query, the document that is passed
as the parameter of the perform() call. The query request document consists
of a header specifying the document name, the document version and the GSH
of the originator service; and a body conveying the OQL query and indicating
how results are to be delivered.
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Fig. 9. Distributed Query Plan

Due to lack of space, details
about the compilation and opti-
misation are omitted. They can
be found in [17]. Figure 9 depicts
the execution plan produced by
the compiler/optimiser. Three parti-
tions (i.e., the dashed regions) have
been decided upon whose intersec-
tions are marked by the exchange

operators used to bind them, as ex-
plained below. Note that the parti-
tion containing the potentially ex-
pensive the BLAST operation call

has been scheduled to run on two of the four nodes N1-N4 harnessed for ex-
ecuting the query.



4.2 Evaluating Distributed Plans

Evaluator functionality is exposed via GQES instances that implement the GS,
GDS and GDT port types from the OGSA and OGSA-DAI.

The GDQS creates as many GQESs instances as stipulated in the distributed
query plan constructed by the compiler (see Figure 9). The GDQS had already
obtained a handle on each GDS that contributes to the evaluation of a partition,
as illustrated in Figure 5.

Each partition, along with the GDS handles it needs, is mapped to XML and
sent to be evaluated by the GQES instance it is assigned to.

For the example query, this gives rise to the GS interaction diagram in Fig-
ure 10. Conventions are as in previous figures. The GQESs that scan stores,
viz., N1 and N2, are instantiated in different hosts. Conditions at N2 (e.g., avail-
able memory) are such as to justify the GDQS having decided on using, say,
a hash join, assigning it to N2. For the BLAST operation call, the GDQS saw
benefits in parallelising it over two GQESs N3 and N4.

The GDQS receives the request (1) and compiles it into a distributed query
plan, each partition of which is assigned to one or more execution nodes. Each
execution node corresponds to a GQES instance which is created by the GDQS
(2). The GDQS then dispatches (3), as an XML document, each plan partition
to its designated GQES instance. Upon receiving its plan partitions, each GQES
instance initiates its evaluation.
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Fig. 10. GQES Instances and Query Partitions

The overall behaviour
of a GQES instance
is as follows. Execution
is a data flow com-
putation using an iter-
ator model [10], with
each operator imple-
menting an {open(),
next(), close()} in-
terface. Each GQES
starts executing its par-
tition independently by
calling open() on the
topmost operator, so
introducing parallelism
between partitions. Ev-
ery GQES instance that
has an exchange leaf2 is
fed data by the GQES
instance executing the
partition whose root is

2 An exchange operator [10] encapsulates control flow, data distribution and inter-
process communication



the corresponding exchange. Data flows from the GQES instances that execute
partitions containing operators whose semantics requires access to stores.

Within each GQES instance, the initialisation procedure starts when an
open() call reaches the topmost operator. This call propagates down the op-
erator tree from parent to children at every level until it reaches the leaf op-
erators. Then, interaction with other GDSs occurs. The handle for each such
GDS will have been planted by the GDQS in the XML document passed to each
GQES instance that needs it. For example, in node N2 (in Figure 10, but see
also Figure 9), when this stream of open() calls reaches a, say, scan operator
(see Figure 9), it causes the N2 GQES to interact with the GDS instance on N2,
whereby data becomes ready to flow upwards from the protein extent in the
GDS through which the GIMS database is accessed. Following the open(), a
stream of next() calls again propagates from the topmost operator down to the
leaf operators. When a next() call reaches a leaf, the standing-by GDS begins
responding with tuples, and data flows upward.

Taking as example, again, node N2 in Figure 10, its topmost operator is an
exchange, which, as alluded to, encapsulates inter-evaluator interaction seman-
tics. Its effect is to cause tuples to flow (4) across this GQES instance’s boundary
and along the inter-GQES channels. When an eof is received in response to a
next(), the flow is over and a close() is called, leading to clean up and dynamic
resource de-allocation Eventually, all operators have been closed, at which point
that GQES instance has fulfilled its purpose. Across all GQES instances, results
propagate up the tree, and exchanges ship (4) them to their destination.

5 Related Work

The distributed nature of Grid applications means that services to support co-
ordinated use of Grid resources are important, and considerable attention has
been given to functionalities for managing data derivation (e.g., [8]) and replica-
tion (e.g., [3]). However, such higher-level Grid data management functionalities
are still targeted principally at file-based data, and the only previous work on
distributed query processing in a Grid setting is the Polar* proposal from the
authors [17]. Polar* differs from the approach presented in this paper in that it
is not service-based; in Polar*, Grid middleware is accessed using a Grid-enabled
version of MPI [5]. The absence of the service-based context in Polar* means
that connection to external databases and computational services is much less
seamless than in the OGSA setting.

In the Web Services setting, structured data representations, at least in the
form of XML Schemas, have been much more prominent from the start. In
addition, vendors have been quick to integrate Web Service and data manage-
ment products (e.g. [13, 16]). However, we know of only one previous proposal
for querying over collections of Web Services, viz. that of SkyQuery [14], which
applies the classical wrapper-mediator architecture in a service-based setting.
SkyQuery deploys WSs at each database store for handling metadata, perform-
ing queries, and cross matching partial results. However, the SkyQuery proposal



is less ambitious than that presented here, in a number of respects: (i) the only
services that contribute to query evaluation are the data sources – there is no
dynamic discovery and allocation of evaluators, for example, to support eval-
uation of large joins; (ii) the execution plan generated by the optimiser is a
straightforward pipeline – there is no partitioned parallelism; and (iii) the query
language supported is specialised for use with astronomical queries, and seems to
assume that database nodes contain horizontal partitions of the overall database
– there seem not to be generic facilities for joining data from multiple nodes, for
example. Thus SkyQuery is an important early demonstration of the viability of
Web Services for supporting distributed query processing, but it lacks dynamic
allocation of resources to match the needs of specific requests. This latter feature
is central to the ethos of the Grid, in which computational resources are made
shareable, and thus can be deployed flexibly to support changing user needs and
system loads.

How does the work presented here compare with other work on DQP, as sur-
veyed in [12]? The principal differences derive from the context in which queries
are executed. The aim of the current proposal is essentially the same as that
of the developers of systems such as Garlic [11] and Kleisli [4], i.e., to support
declarative query formulation over distributed data stores and analysis tools.
However, the development of service-based Grids provides certain opportunities
for the developers of DQP systems that were more elusive before. For exam-
ple, Web Services promise to make available comprehensive discovery and access
facilities for distributed resources that ease their integration into federated ar-
chitectures. We note that no custom-built wrappers were developed to support
the bioinformatics application illustrated in this paper – generic Grid Database
Services were used to access the databases, and existing BLAST Web Services
were used to perform sequence comparisons. This contrasts with both Garlic and
Kleisli, where custom wrappers are constructed for interfacing the query engine
to the external resources. Furthermore, we observe that the resources used to
evaluate the example query were obtained dynamically, based on the anticipated
needs of the request. Had the request required substantially greater resources to
run efficiently, these would have been allocated from those available on the Grid.
This contrasts with both Garlic and Kleisli, where query evaluation is shared
between the central query evaluator and the source wrappers, with no dynamic
resource discovery. Thus, although many characteristics of existing DQP sys-
tems carry over largely unchanged to the service-based setting, various features
of relevance to DQP deployment and development are significantly affected by
service-based architectures.

6 Conclusions

Web Services, in particular in conjunction with the resource access and manage-
ment facilities of Grid computing, show considerable promise as an infrastructure
over which distributed applications in e-business and e-science can be developed.
However, to date, the emphasis has been on the development of core middleware



functionalities, such as for service description, discovery and access. Extensions
to support the coordinated use of such services, for example using distributed
transactions or workflow languages are still under development. This paper seeks
to contribute to the corpus of work on higher-level services by demonstrating how
techniques from distributed query processing can be deployed in a service-based
Grid. The proposal is service-based in two respects:

– Queries are written with respect to and evaluated over distributed resources
discovered and accessed using emerging Web Services and Grid Services stan-
dards. This is important because it is as yet far from clear how best to orches-
trate collections of Web and Grid Services. Although it is likely that workflow
languages will have a prominent role, DQP offers system-supported optimi-
sation of declarative requests with implicit parallelism, a combination that
should yield significant programmer productivity and performance benefits
for large-scale, data intensive applications. As such, we believe that service-
based architectures stand to benefit significantly from DQP. The proposal
made in this paper is much the most comprehensive to date for a distributed
query processor that acts over services.

– The query processor has been designed and implemented as a collection of
cooperating services, using the facilities of the OGSA to dynamically dis-
cover, access and use computational resources to support query compilation
and evaluation. This is important because although the OGSA has found
widespread support within the academic and industrial Grid community,
there are as yet few examples of higher-level services developed over the
OGSA. This proposal can be seen to provide important validation of OGSA
facilities for developing higher-level services. Furthermore, it has been shown
how the combination of dynamic computational resource discovery and al-
location can be used to match the requirements of a distributed query to
the resources available in a heterogeneous distributed environment. As such,
we believe that DQP stands to benefit significantly from the availability of
service based grids. The proposal made in this paper is much the most com-
prehensive to date for a distributed query processor that uses grid services
in its implementation.

The proposal described in this paper has been prototyped. The resulting soft-
ware, referred to as OGSA-DQP, is scheduled for public release from [www.ogsa-
dai.org.uk] in July 2003.
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