
ACID Sim Tools: A Simulation Framework for Distributed
Transaction Processing Architectures

Anakreon Mentis
Department of Informatics

Aristotle Un. of Thessaloniki
54124 Thessaloniki, Greece

tel. +30 2310 998236

anakreon@csd.auth.gr

Panagiotis Katsaros
Department of Informatics

Aristotle Un. of Thessaloniki
54124 Thessaloniki, Greece

tel. +30 2310 998532

katsaros@csd.auth.gr

Lefteris Angelis
Department of Informatics

Aristotle Un. of Thessaloniki
54124 Thessaloniki, Greece

tel. +30 2310 998230

lef@csd.auth.gr

ABSTRACT
Modern network centric information systems implement highly
distributed architectures that usually include multiple application
servers. Application design is mainly based on the fundamental
object-oriented principles and the adopted architecture matches
the logical decomposition of applications (into several tiers like
presentation, logic and data) to their software and hardware
structuring. The provided recovery solutions ensure an at-most-
once service request processing by an existing transaction
processing infrastructure. However, in published works
performance evaluation of transaction processing aspects is
focused on the computational model of database servers. Also,
there are no available tools which enable exploring the
performance and availability trade-offs that arise when applying
different combinations of concurrency control, atomic commit
and recovery protocols. This paper introduces ACID Sim Tools, a
publicly available tool and at the same time an open source
framework for interactive and batch-mode simulation of
transaction processing architectures that adopt the basic
assumptions of an object-based computational model.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies, Fault tolerance,
Reliability availability and serviceability. D.4.5 [Operating
Systems]: Reliability – Checkpoint/restart, Fault-tolerance.
D.2.12 [Software Engineering]: Interoperability – Distributed
Objects. H.2.4 [Database Management]: Systems – Transaction
Processing.

General Terms
Performance, Design, Experimentation, Measurement.

Keywords
Fault Tolerance, Performance Evaluation, Transaction Processing,
Simulation, Atomic Commit, Concurrency Control, Recovery

1. INTRODUCTION
Distributed transaction processing has advanced considerably as
an important research subject in the field of database systems.
Published performance evaluation results provide comparisons
between alternative concurrency control protocols ([1]) or
between different atomic commit and recovery protocols ([2]),
when applied in centralized or distributed database systems.

The development of ACID Sim Tools was motivated by the
following two facts:

• There is no simulation tool, which can provide insight
into the collective effects, the interaction effects and the
performance and availability trade-offs that arise when
applying different combinations of concurrency control,
atomic commit and recovery protocols (and protocol
parameters).

• The modern trend of partitioning applications into
several tiers (presentation, logic and data), the
multiplicity of the components and their
interdependencies create a new computational
environment ([3], [4]). This new environment is no
more related to the classic computational model of
database servers, where transaction processing is
studied in the frame of the so-called page model - that
refers to the way in which data pages are read or written
at the storage layer of a database system. As a response
to this need our toolset (and framework) adopts a
minimal set of assumptions that resemble an object-
based computational model like for example the so-
called OMG Core Object Model ([6]). The OMG OTS
standard ([5]) and the Enterprise Java Beans are two
well-known cases of transaction processing reference
architectures that are build on top of object-based
computational models.

ACID Sim Tools implements appropriate abstractions, which
allow one to reuse existing functionality for the development of
new protocols (beyond the ones that are already implemented). It
is also possible for the potential user to alter the basic model of
flat transactions (to implement e.g. nested transactions or
advanced transaction models [7], [8], [9] with different notions of
serializability) or to develop models of transactional replication
schemes (as for example the one described in [10]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS ’08, March 4-6, 2008, Marseille, France.
Copyright 2008 ACM ?-?????-???-?/??/????…$5.00.

The analyst debugs the modeled transaction processing
architecture by interactive simulation through some basic
animation functions (provided by the OMNeT++ based graphical
environment [11], [12]). Key events are monitored and the
accumulated data is used to calculate performance and availability
metrics. The obtained metrics can be used in suitable analyses,
which aim to evaluate architectural design options by quantifying
their collective effects, as well as their interaction effects in a
meaningful way. It is thus possible to compare alternative
transaction processing architectures with respect to a given set of
performance/availability goals. Similar performance design
methods have been already proposed for object replication based
fault tolerance architectures ([13]) and independent checkpointing
processes for application recovery ([14], [15]).

We provide simulation results for a sample transactional
processing architecture, under a given synthetic workload
scenario. The presented results reveal some of the most influential
performance and availability trade-offs to be taken into account,
when a transactional architecture has to fulfill a given set of
performance design goals.

Section 2 introduces basic definitions and presents the problem
statement. Section 3 provides a description of the framework
design. Section 4 introduces the considered synthetic workload
scenario and comments the obtained simulation results. The paper
concludes with a brief discussion regarding the tool’s utility and
its future development prospects.

2. BASIC DEFINITIONS AND PROBLEM
STATEMENT
2.1 Transactional Objects
In our reference architecture clients send requests to application
servers that maintain a repository of encapsulated objects.
Application servers constitute the surrounding runtime system of
the invoked objects: they manage them by spawning execution
threads on behalf of client requests, monitoring executions,
managing communication connections, handling generic forms of
exceptions and so on. The implementation of the managed objects
may itself invoke methods on other objects and issue requests to
other servers.

We adopt the common simplification ([16]) that the object is both
the unit of operation as well as the unit of disk persistence. Thus,
each transactional object oi owns a persistent state: state data live
beyond request/reply boundaries and user sessions, for an
indefinite time period. The provided methods, io

lop , 1 ≤ l ≤
#(methods of o)i 1, is the only way to change an object’s state and
are invoked by synchronous messages: the object requiring the
execution of the invoked method (requester) stops executing and
waits for the invoked execution to terminate and the reply to
return. Upon reception of the reply, the sender resumes.

Each message msg is defined as a pair

(method, type), with type ∈ {read, write}

such that

1 #(methods of oi) denotes the number of methods for oi

method ∈ { }U
i

i
o
l olop i) of methods(#1 | ≤≤

and read, write indicate whether method is read-only or
respectively modifies the state of some oi.

A message sequence specification for io
lop , 1 ≤ l ≤ #(methods of

o) is defined as a total order relation ⇒ over the set i

MsgSq(io
lop)={msgs |1 ≤ s ≤ #(msgs in MsgSq(io

lop))}

of method invocations generated by . For every two msgio
lop s,

msgt ∈ MsgSeq(), msgio
lop s ⇒ msgt if and only if msgs is

executed before msgt.

A transaction is essentially a program execution that reads and/or
modifies one or more transactional objects, which are managed by
one or more application servers. A transaction comes with certain
system-guaranteed properties that simplify the development of
distributed applications in that the application programs
themselves can safely ignore the complexity of the overall system
regarding:

• All effects that may result from concurrent program
executions and especially transactional object accesses
(ACID Sim Tools currently implements only flat
transactions and does not provide support for nested
transactions that allow for concurrent atomic execution
of operations included in the same transaction).

• All effects that would result from program executions
being interrupted because of process or computer
failures.

All necessary steps to cope with concurrency and failures are
delegated to the runtime system of the underlying transactional
servers. Thus, a transaction takes the form of a set of operations

 that are triggered by a client request and are executed on
one or more servers, with the ACID properties (atomicity,
consistency, isolation, durability) guaranteed by the runtime
system of the involved servers. The invoked operations are
specified by their associated MsgSq() and incur specific
CPU and I/O resource consumption requirements. CPU resource
consumption is possible to be quantified by appropriate static
analysis tools like for example Heptane ([17]).

io
lop

io
lop

Having adopted that a transactional object is both the unit of
operation as well as the unit of disk persistence, we neglect
modeling the existence of a cache, which is usually used in
application servers with a large number of transactional objects.
This option would complicate the simulated recovery mechanism
and would burden the developed simulation models with
additional (system specific) buffer management parameters,
whose performance implications are not related to the aims of the
introduced toolset.

2.2 Concurrency Control and Recovery
Control

To assure the required ACID properties an application server
includes the following components:

• The concurrency control component that guarantees the
isolation properties of transactions, for both committed
and aborted transactions and

• The recovery component that guarantees the atomicity
and durability of transactions.

The concurrency control component uses an algorithm2 like for
example aggressive locking, two-phase locking (2PL), timestamp
ordering, serialization graph testing, tree locking or an optimistic
algorithm that essentially lets newly arriving method invocations
simply pass, but validates their output occasionally. The widely
used locking protocols require transactions to wait when
requested locks cannot be granted immediately. A set of
transactions, each holding some locks and requesting an
additional one, may end up being mutually blocked. Such cyclic
wait situations are commonly known as deadlocks. A protocol
may either prevent or allow deadlocks. In the second case
deadlock detection and resolution is performed either in a
continuous or in a periodic manner or alternatively, the system
employs the use of a timeout strategy. In the latter case, the
system maintains a timer that is activated upon initiation of each
transaction and when the timer expires the transaction is aborted.

The recovery component implements a distributed transaction
coordination protocol ([18]), like for example the (basic) two-
phase commit (2PC) or alternatively one of its optimized variants
or the non-blocking three-phase commit protocol (3PC). The
server that initiates the transaction is called coordinator and the
involved servers are called transaction participants (workers). We
note that the same server may be at the same time the coordinator
for the transactions issued by itself and a worker for the
transactions that involve it.

The recovery component performs transaction rollbacks in case
of transaction aborts and crash recovery in case of server failures.
A transaction is aborted upon detecting inconsistencies in an
object’s state (surprise aborts) that would arise from the current
transaction’s further execution. Also a transaction is aborted when
the server “kills” it for internal reasons (e.g. deadlock or overload
situations). In these cases, the server continues to operate and is
expected to restrict its recovery measures to the actually affected
transaction while processing other transactions as usual. The case
of server failures is discussed in more detail in the sequel.

Crash recovery, transactions atomicity and durability are assured
by the maintenance of a stable log in permanent storage3. The log
stores object state updates and bookkeeping records about the
system history and survives non-catastrophic server failures that
leave all data on secondary storage intact. It is an explicit
representation of the necessary actions for rolling back
uncommitted transactions by undoing each transaction’s prior
updates. We consider that application servers perform physical

2 As in all published performance evaluation studies, CPU resource

requirements for the mentioned concurrency control algorithms cannot
be easily quantified. Thus, we adopt the common approach of not
considering resource consumption for concurrency control.

3 The resource requirements for the applied atomic commit protocol
consist of the additional I/O costs for force-writing the required
transaction status log entries and the network latency costs when
application servers communicate over the network.

logging of after-images, which means that the log stores
snapshots of the state of transactional objects after having invoked
an operation. Thus, log I/Os depend on the object’s state size and
on the disk performance characteristics of the server.

We assume that failures are characterized by the fail-stop
property ([19]), in the sense that the server is indeed brought
down immediately after detecting an error. Although this
assumption is only an idealized behavior, as error detection will
not be perfect, it is sufficiently well approximated by intensive
self-checking.

While performing crash recovery for a server, the server and its
objects are unavailable to the clients. Therefore, minimizing the
recovery cost is an important performance goal. Over time, the
stable log collects a large number of log entries, some of which,
we can infer, are no longer relevant regardless of when and how
exactly the server crashes. All log entries that are no longer
needed, can be periodically removed from the stable log. A
periodically invoked log truncation along with saving all
uncommitted object updates to the stable log is known as a
checkpoint and incurs a substantial amount of additional workload
during normal operation. Checkpointing results in a new log file
through the following steps: (i) appends a mark to the used log
file (1 write operation), (ii) copies the after-images of all
transactional objects as they are recorded in the old log by the
latest committed transactions that affected them (2 read
operations and 1 write for each server object) and (iii) copies to
the new log file all data appended to the old log after the mark (1
read and 1 write for each log entry). When the checkpoint is
complete, the old log becomes obsolete and is then garbage
collected.

Rather than minimizing the recovery cost, a trade-off
performance goal is minimizing the additional resource
consumption that is required during normal operation of the
server to make crash recovery work when the server fails.
Checkpointing incurs additional I/O costs, but does not block
transaction processing that takes place in parallel. However, apart
from checkpointing costs, another major overhead arises from
forced and thus synchronous I/O on the stable log. If the overhead
caused by checkpointing and by forced logging transactional
object updates and protocol messages, becomes too high, then it
could adversely affect the performance of object method
invocations during normal operation. Architectural solutions often
adopt the attractive optimization of batching log I/Os. Trading
multiple short I/Os for a single long I/O yields a high benefit
because it avoids rotational delays and can therefore utilize the
disk bandwidth much better.

Lock contention is another source of resource contention with the
important feature of being susceptible to thrashing phenomena.
The reason for lock contention thrashing is that with increasing
concurrency, the probability of a lock request not being granted
and the duration for which a transaction needs to wait upon a lock
conflict increase superlinearly. When too many transactions run
concurrently, we may end up with a situation where most
transactions are blocked because of lock conflicts and only a few
transactions are still running. In this situation, frequent deadlocks
are an additive danger. To avoid performance disasters of the
above kind, transactional servers limit their multiprogramming
level (MPL) that represents the maximum number of transactions
that are allowed to run concurrently. When this limit is reached,

newly arriving transactions are held in a transaction admission
queue.

2.3 Performance – availability considerations
For the described computational setting typical performance
requirements are:

• To provide high throughput, that is, a satisfactory
number of successfully processed (committed)
transactions per time unit.

• To result in short response times, where each
transaction’s response time is defined as the time span
between issuing the transaction and its successful
completion as perceived by the client (commit).

Throughput and response times depend on many issues in the
implementation, configuration and tuning of application servers.
In addition to the high throughput, a trade-off goal is the
provision for high availability, which implies that recovery times
after failures are short.

We believe that there is a need for a performance engineering
perspective and the proposed versatile toolset can support suitable
methods that contribute to a systematic performance design
approach. More specifically we need to be able

• to provide insight and compare the collective effects,
the interaction effects and the performance and
availability trade-offs that arise when applying different
combinations of concurrency control, atomic commit
and recovery protocols and

• to estimate optimal values for multiprogramming levels,
transaction timeouts and checkpoint intervals for the
servers of a transactional architecture, with respect to a
set of given performance goals.

The first aim requires appropriate methods ([20]) that quantify the
significance and the relationships of the considered design factors
in synthetic workloads with different degrees of distribution
(localized to highly distributed transactions), different mixes of
read-only and update transactions and different conditions of
resource contention (I/O bound or CPU bound system
configurations). The second aim will allow tuning distributed
transaction processing, in order to maximize transactions
throughput up to the servers’ thrashing levels and in trading off
the resulted resource consumption during normal processing
against the achieved speed of recovery.

3. THE ACID SIM TOOLS DESIGN

3.1 A message passing based simulation
engine

ACID Sim Tools uses the Objective Modular Network Test-bed
(OMNeT++) simulation engine. OMNeT++ is an open-source,
component-based and modular framework written in C++. An
ACID Sim Tools model inherits the structure of an OMNeT++
simulation model, which in general is defined as a collection of
modules.

In an ACID Sim Tools model we include module instances of the
following four (4) module types:

• the Source module that generates transaction request
arrivals;

• the Atomic Commit Processing (Acp) module that
implements the employed distributed transaction
coordination protocol;

• the Lock Manager module that provides concurrency
control functionality;

• the Log Manager module that implements logging in
permanent storage.

A new protocol variant for e.g. atomic commit processing is
created, by extending the class hierarchy of an existing Acp
module instance. This extension results in a new Acp module
instance, which can be used in future ACID Sim Tools models.

Modules communicate by exchanging messages and for this
reason they are loosely coupled. In effect, the analyst can easily
substitute a module instance with a different instance of the same
type.

Each message may be a complex data structure. In the course of a
simulation run messages are scheduled to occur or they may be
exchanged or even canceled.

The ACID Sim Tools architecture:

• Allows the design of modular simulation models, which
can be combined and reused in a flexible way.

• Adopts the object-oriented design of OMNeT++ and
this allows flexible extension of the currently
implemented ACID Sim Tools modules.

• Provides an extensive simulation library that includes
support for statistics, data collection, graphical
presentation of simulation data, random number
generators and a range of data structures.

In ACID Sim Tools, model components are linked with the
simulation library, and one of the user interface libraries to form
an executable program. One user interface library is optimized for
command line and batch-oriented execution, while the other
employs a graphical user interface (GUI) that can be used to trace
and debug the simulation.

The OMNeT++ based graphical environment utilizes two main
windows (Figure 1). The left one provides an animated view of
the ongoing simulation experiment.

The right window displays the so-called inspection view with the
current timeline status and simulated time, as well as a tree view
of the model parameters and a scrolling log of past events. The
icons shown in the animated view represent the model’s modules
and the moving particles represent sent messages. Regarding the
events shown in the timeline of the inspection view, they
represent already scheduled messages.

In the shown animation snapshot icons acp1 and acp2 represent
two transactional servers, the lock icons represent the
corresponding lock manager module instances and icons log1
and log2 show the log manager module instances for the
considered architecture.

Figure 1. The ACID Sim Tools GUI and the interactive simulation and inspection functions

The source module instances represent the transaction request
arrival processes. The statistics module instance stat receives
messages from all other modules, when statistically important
events occur. The accumulated event-monitoring information is
stored in a file at the end of the simulation run, for further
simulation output analysis.
For a detailed description of the provided GUI functionality refer
to [11] and [12].
Module instances of a simulation model have a number of
parameters (e.g. transactions’ request interarrival rates, servers’
multiprogramming levels) that altogether are specified in an
appropriate initialization file. Furthermore, the model’s structure
is given in an input XML file that defines the distribution of the
transactional objects to the available servers, their methods
together with a read/write characterization and the specifications
of the considered transaction classes. A more thorough
description of the ACID Sim Tools model parameters is provided
in the case study introduced in Section 4.
Batch-mode simulation from the command prompt is used for
computing certain performance and availability metrics derived
from one or more simulation runs. Simulation output from
multiple runs is analyzed by employing the method of
independent replications, where the number of simulation runs is
determined dynamically, based on the targeted level of accuracy
(the confidence interval half width threshold defined as a
percentage of the computed metric).

3.2 Simulation modules for distributed
transaction processing

The provided Source module generates transaction requests that
obey the Poisson distribution for a given mean inter-arrival rate
that is passed as a module parameter. In an ACID Sim Tools
model we consider different classes of transaction requests
(corresponding to different message sequence specifications).
Each transaction class is generated by a given Source module
instance and the generated requests are delivered to the
transaction coordinator, which is represented by the Acp module
instance corresponding to the server of the first transactional
object invocation.

User defined Source module variants may focus on the
implementation of alternative request arrival distributions or even

on the delivery of request arrival traces obtained from a real
transactional server.

In a given transaction class, a particular Acp module instance
plays either the role of the coordinator or the role of a worker. We
currently provide implementations of three variants of the two-
phase commit (2PC) protocol: (i) the basic 2PC, also called 2PC
PResume Nothing (PRN), (ii) the 2PC PResume Commit variant
(PRC) and (iii) the 2PC PResume Abort variant (PRA). Figure 2
shows the class hierarchy of the currently implemented Acp
module type. PRC and PRA module instances differ from a PRN
instance in the way they handle the transaction commit or the
transaction abort case. Our experience in extending the Acp
module hierarchy suggests that the effort required to implement a
new 2PC variant is negligible.

Acp

PresumeAbort PresumeCommit

Figure 2. The Acp module class hierarchy

The Log Manager module type simulates storage of forced and
non-forced log entries, applies the simulated checkpointing policy
and gathers the information required in transaction rollbacks and
server crash recovery. In effect, a Log Manager module generates
read and write service requests for an I/O queue resource. Service
demands are calculated based on the type of the simulated
operation (forced or non-forced log entry, checkpointing, read
request etc.) and the I/O costs assumed for the primitive read and
write operations. Due to the differences in the information
expected during recovery in the implemented 2PC variants, we
provide an appropriate module instance for each particular 2PC
variant (Figure 3).

The LockManager module type is responsible for handling
requests for lock acquisition and release. Current module
implementation simulates the behavior of the basic two-phase
locking (2PL) scheme, but ACID Sim Tools users can always
replace it with an alternative concurrency control locking-based
module variant.

Figure 3. The LogManager module class hierarchy

3.3 Communicated messages for Concurrency
Control and Recovery

Table 1 summarizes the messages exchanged between the ACID
Sim Tools module types in the course of a simulation run. When a

message assumes specific roles for the sender and/or receiver
module instances we denote with Acp C the Acp module instance
that corresponds to the coordinator of the concerned transaction
class and with Acp W an Acp module instance that corresponds to
some worker. Scheduled events correspond to messages sent by a
module instance to itself.

The described messages are used in transaction processing
protocol implementations within new ACID Sim Tools module
instances. Figure 4 introduces the ACID Sim Tools message
exchange implementing the transaction commit processing in
PRN. However, due to space limitations we omit the transaction
abort message sequences for PRN, PRC and PRA.

 Table 1: Messages exchanged between ACID Sim Tools modules

Message Sender Receiver Description
2PC Initiation
CLIENT_SEND_TRANS Source Acp C Transaction request arrival
Sc TIMEOUT Acp C Acp C Schedule a timeout event
LOG_INIT_TR Acp C LogManager Write an “INIT” log entry. Used in PRN, PRA.
INIT_LOGGED LogManager Acp C An “INIT” log entry was written. Used in PRN, PRA.
Method invocation (Job) Processing
NEXT_JOB Acp C Acp W Transaction worker is requested to execute some job
WORKER_JOB_FINISHED Acp W Acp C Coordinator is notified for having finished with a job
LOCK_OBJ Acp LockManager Acquire the locks needed for the ongoing transaction
RELOCK Acp LockManager Acquire the locks needed (like LOCK_OBJ) after the

occurrence of a server crash recovery
OBJ_LOCKED LockManager Acp A lock was acquired
Sc JOB_ENDED Acp Acp Schedule the execution of an object method invocation

(job)
Prepare
PREPARE Acp C Acp W Asks the worker to prepare for the voting phase
Voting Phase
LOG_VOTE Acp W LogManager Log the server’s intent to vote
LOG_VOTED LogManager Acp W Log entry VOTE stored
Sc ASK_OUTCOME Acp W Acp W Schedule a query to the coordinator for the transaction

outcome
VOTE Acp W Acp C Send the vote to the coordinator
Commit Phase
COMMIT_TRANSACTION Acp C Acp W Send commit decision to the transaction worker
COMMIT_LOG Acp C LogManager Log in simulated stable storage the commit event. Used in

PRN, PRA.
LOG_COMMITED LogManager Acp C Commit log entry stored. Used in PRN, PRA.
ACKOWLEDGE_COMMIT Acp W Acp C A worker acknowledges the commit decision. Used in

PRN, PRA.
Abort Phase
ABORT_TRANSACTION Acp C Acp W Send abort decision to the transaction worker
LOG_ABORT Acp LogManager Log in simulated stable storage the transaction abort
RECOVER_STATE Acp LogManager Recover the object states of the last committed transaction
LOCK_STOP Acp LockManager Ask the lock manager to stop acquiring locks
LOG_ABORTED LogManager Acp Abort log entry stored
LOG_OBJ_RECOVERED LogManager Acp Object states recovered
ACKNOWLEDGE_ABORT Acp W Acp C A worker acknowledges the abort decision. Used in PRN,

PRC.
Auxiliary messages
OUTCOME_ASKED Acp W Acp C The worker asks for a transaction outcome
LOG_END Acp C LogManager Place a transaction end mark in the log
UNLOC_OBJ Acp LockManager Release the locks acquired for a transaction
Checkpointng related messages
Sc CHECKPOINT_MSG Acp Acp Schedule the occurrence of a checkpoint
LOG_START_CHECKPOINT Acp LogManager Initiate a checkpoint
LOG_FINISHED_CHECKPOINT LogManager Acp Checkpoint accomplished
Other messages related to the simulated LogManager function
Sc CHECKPOINT_CONTINUE LogManager LogManager Create a new log read request for an ongoing checkpoint
CLEAR_LOG Acp LogManager A server crash failure has occurred. Clear the I/O queue

and stop all I/O operations.
INFO_READ LogManager Acp Information needed for crash recovery was gathered.
LOG_APPEND_ABORT Acp LogManager Log in simulated stable storage the transaction abort (as the

LOG_ABORT message), without replying with a
LOG_ABORTED message.

LOG_PREPARE Acp LogManager Store log entry PREPARE
READ_INFO Acp LogManager Start gathering information for server recovery
Sc RECOVER_PHASE LogManager LogManager Create a new log read request, in order to recover the state

after the last committed transaction.
Sc I/O LogManager LogManager Schedule an I/O event for the first request (read/write) in

the simulated I/O queue.

Figure 4. Transaction commit processing in PRN

4. ACID SIM TOOLS RESULTS FOR A
SYNTHETIC WORKLOAD SCENARIO

Current section provides sample results from a simulated
synthetic workload scenario. We comment on the results obtained
for the tested architecture parameters, but we do not present a
complete systematic experiment and the subsequent tradeoff
analyses, since the basic aim of this article is to present the
toolset.

The considered transactional objects are distributed over the two
servers of the modeled transaction processing architecture as
shown in Table 2.

Table 2: Transactional objects

Server Object State Size (Kb)
- exp. -

Method Name CPU Resource Con-
sumption (sec) - exp. -

READ/WRITE

acp1 obj1 5 meth11 0.01 READ ONLY
 meth12 0.05 READ ONLY
 obj2 5 meth21 0.01 WRITE
 meth22 0.01 READ ONLY
 meth23 0.01 READ ONLY
 obj3 5 meth31 0.04 WRITE
 meth32 0.01 READ ONLY
 obj4 5 meth41 0.01 WRITE
 meth42 0.01 READ ONLY
 meth43 0.01 READ ONLY
 obj5 5 meth51 0.01 WRITE
 meth52 0.01 READ ONLY
 meth53 0.01 READ ONLY
acp2 obj6 5 meth61 0.05 WRITE
 meth62 0.05 READ ONLY
 obj7 5 meth71 0.05 WRITE
 meth72 0.01 READ ONLY
 obj8 5 meth81 0.01 READ ONLY
 meth82 0.01 READ ONLY
 obj9 5 meth91 0.05 WRITE
 meth92 0.05 READ ONLY
 obj10 5 metha1 0.05 WRITE
 metha2 0.05 READ ONLY
 obj11 5 methb1 0.01 READ ONLY
 methb2 0.01 READ ONLY
 obj12 5 methc1 0.05 WRITE
 methc2 0.05 READ ONLY
 obj13 5 methd1 0.05 WRITE
 methd2 0.05 READ ONLY

The assumed transaction classes and their associated parameters
are introduced in Table 3 and the employed system parameters are
summarized in Table 4. We considered fail-stop server failures
with mean interarrival time 21600 sec.

Concurrency control adheres to the widely used 2PL scheme.
Regarding the atomic commit processing, in our experiments we
employed the PRN and PRC protocols. We assume exponentially
distributed parameters and we provide the corresponding means
for all object state sizes, for the CPU resource demands and for
the used transaction interrarival time that utilizes the studied
architecture in a considerable degree.

We conducted simulation experiments for two different
transaction timeout cases and three different checkpoint interval
parameters, where the latter were the same for both servers.

The obtained results are summarized in Figures 5 and 6. They
depict how model parameters affect the ratio of committed
distributed transactions, as well as their mean response times.

Figure 5 shows that by reducing the checkpoint interval below a
certain level - in order to minimize recovery costs - the incurred
overhead results in worse ratio of committed distributed
transactions without reducing the corresponding mean response
time (Figure 6).

As expected, the PRC protocol improves the mean response times
of all distributed transactions. Local transactions are not shown,
because their performance is not affected significantly by the
changes to the studied model parameters. Finally, the smaller
timeout parameter improved the observed mean response time,
but at the same time increased the number of aborted transactions
resulting in a lower ratio of committed distributed transactions.

5. CONCLUSION
This article presented a publicly available interactive and batch-
mode simulation tool (and framework) that provides insight into
the most influential performance and availability tradeoffs that
arise in distributed transaction processing architectures. Detailed
documentation for the basic simulation algorithm and source code
is available in the ACID Sim Tools web site [21].

We believe that the proposed toolset could support suitable
analyses that will contribute to a systematic performance design
approach for distributed transaction processing architectures.

Table 3: Transaction classes

Transaction
Class

Methods invoked Mean interarrival
times (sec) - exp. -

Timeouts (sec)
(experiment 1)

Timeouts (sec)
(experiment 2)

tr1 meth11, meth22, meth32 0.6 0.9 0.7
tr2 meth11, meth72, meth12 0.6 0.9 0.7
tr3 meth12, meth61, meth21 0.6 0.9 0.7
tr4 meth92, metha2, meth82 0.6 0.9 0.7
tr5 meth92, meth42, meth92 0.6 0.9 0.7
tr6 meth92, meth41, metha1 0.6 0.9 0.7
tr7 methb2, methc2, methd2 0.6 0.9 0.7
tr8 methb2, meth52, methb2 0.6 0.9 0.7
tr9 methb2, meth51, methc1 0.6 0.9 0.7

Table 4: System parameters

Network Latency / message: 0.06 sec
Server Disk Read

Latency
Disk Write Latency Multiprogramming

Level (MPL)
Checkpoint intervals (sec)

Periodic
acp1 4.271e-5 sec/Kb 51.252e-5 sec/kb 2, 3, 4 500 sec, 1300 sec, 2100 sec
acp2 4.271e-5 sec/Kb 51.252e-5 sec/kb 2, 3, 4 500 sec, 1300 sec, 2100 sec

Distributed Transactions
(Mean interrarival time: 0,6 - Timeout: 0,9)

0,73

0,75

0,77

0,79
0,81

0,83

0,85

0,87

0,89

0,91

500 1300 2100

Checkpoint Interval

Fr
ac

tio
n

of
 C

om
m

itt
ed

PRC - 2 threads
PRC - 3 threads

ra
ns

ac
tio

ns

PRC - 4 threads
PRN - 2 threads

T PRN - 3 threads
PRN - 4 threads

(Mean interrarival time: 0,6 - Timeout: 0,7)

0,73

0,75

0,77

0,79
0,81

0,83

0,85

0,87

0,89

0,91

500 1300 2100

Checkpoint Interval

Fr
ac

tio
n

of
 C

om
m

itt
ed

Tr

an
sa

ct
io

ns

PRC - 2 threads
PRC - 3 threads
PRC - 4 threads
PRN - 2 threads
PRN - 3 threads
PRN - 4 threads

Figure 5. Ratio of distributed transactions that commit

Distributed Transactions
(Mean interrarival time: 0,6 - Timeout: 0,9)

0,4
0,42
0,44
0,46
0,48
0,5

0,52
0,54
0,56
0,58
0,6

500 1300 2100

Checkpoint Interval

M
ea

n
re

sp
on

se
 ti

m
e

fo
r

co
m

m
itt

ed
 tr

an
sa

ct
io

ns PRC - 2 threads
PRC - 3 threads
PRC - 4 threads
PRN - 2 threads
PRN - 3 threads
PRN - 4 threads

R
at

io

(Mean interrarival time: 0,6 - Timeout: 0,7)

0,4
0,42
0,44
0,46
0,48
0,5

0,52
0,54
0,56
0,58
0,6

500 1300 2100

Checkpoint Interval

M
ea

n
re

sp
on

se
 ti

m
e

fo
r

co
m

m
itt

ed
 tr

an
sa

ct
io

ns PRC - 2 threads
PRC - 3 threads
PRC - 4 threads
PRN - 2 threads
PRN - 3 threads
PRN - 4 threads

R
at

io

Figure 6. Mean response times for committed dist.
transactions

6. REFERENCES
[1] Agrawal, R., Carey, M., and Livny, M. 1987. Concurrency

control performance modeling: Alternatives and implica-
tions. ACM Trans. on Database Systems 12, 4, 609-654.

[2] Chrysanthis, P. K., Samaras, G. and Al-Houmaily, Y. J.
1998. Recovery and performance of atomic commit
processing in distributed database systems. In Recovery
Mechanisms in Database Systems, V. Kumar and M. Hsu,
Ed. Prentice-Hall. 370-416.

[3] Wheater, S. M. and Shrivastava, S. K. 1997. A framework
for configurable distributed transactions, In Proc. 7th High
Performance Transaction Systems Workshop (California,
USA, 1997).

[4] Weikum, G. and Vossen, G. 2002. Transactional Information
Systems. Morgan Kaufmann Publishers. San Francisco.

[5] Object Management Group. 2003. Transaction Service
Specification, version 1.3. OMG Technical Committee
Document ptc/2003-03-08.

[6] Object Management Group. 1995. Object Management
Architecture Guide, revision 3.0, OMG Technical
Committee Document ab/97-05-05.

[7] Elmagarmid, A. K. Ed.1990. Database Transaction Models
For Advanced Applications. Morgan Kaufmann. California.

[8] Gallina, B., Guelfi, N. and Romanovsky, A. 2007.
Coordinated Atomic Actions for dependable distributed
systems: the current state in concepts, semantics and
verification means. In Proc. 18th IEEE Int. Symposium on
Software Reliability (Trollhattan, Sweden, 2007). 29-38.

[9] Georgiadis, C. K. and Pimenidis, E. 2007. Proposing an
evaluation framework for B2B web services-based
transactions. In Proc. IASK Int. Conf. on e-activity and
leading technologies (Porto, Portugal). 164-171.

[10] Wu, H., Kemme, B. and Maverick V. 2004. Eager replication
for stateful J2EE servers. In: On the Move to Meaningful
Internet Systems 2004: CoopIS, DOA, and ODBASE
(Cyprus, 2004). LNCS 3291 Springer-Verlag. 1376-1394.

[11] Varga, A. 2001. The OMNeT++ Discrete Event Simulation
Environment. In Proc. European Simulation Multiconference
(Prague, Czech Republic, 2001). Society for Computer
Simulation. 319-325.

[12] OMNeT++ Community Site, http://www.omnetpp.org/ (last
access: 29th of November 2006)

[13] Katsaros, P., Iakovidou, N., and Soldatos, T. 2006.
Evaluation of composite object replication schemes for
dependable server applications. Information and Software
Technology 48, 9. Elsevier. 795-806.

[14] Katsaros, P., and Lazos, C. 2004. Optimal object state
transfer - recovery policies for fault tolerant distributed
systems. In Proc. IEEE/IFIP Int. Conference on Dependable
Systems and Networks (Florence, Italy, 2004). 762-771.

[15] Katsaros, P. Angelis, L. and Lazos, C. 2007. Performance
and effectiveness trade-off for checkpointing in fault tolerant
distributed systems. Concurrency and Computation: Practice
and Experience 19, 1. John Wiley & Sons, 37-63.

[16] Martin, C. P. and Ramamritham, K. 1997. Toward
formalizing recovery of (advanced) transactions. In
Advanced Transaction Models and Architectures, S. Jajodia
and L. Kerschberg Ed. Kluwer, Boston.

[17] Heptane Site, http://www.irisa.fr/aces/work/heptane-
demo/heptane.html (last access: 4th of December 2007)

[18] Thanisch, P. 2000. Atomic commit in concurrent computing.
IEEE Concurrency (October – December 2000). 34-41.

[19] Schlichting, R. D. and Schneider, F. B. 1983. Fail-stop
processors: An approach to designing fault-tolerant
computing systems, ACM Transactions on Computer
Systems 1, 3. 222-238.

[20] Katsaros, P., Angelis, E. and Lazos, C. 2001. Applied
multiresponse metamodeling for queuing network simulation
experiments: problems and perspectives, In Proc. EUROSIM
2001 Congress (Delfts, The Netherlands, 2001).

[21] ACID Sim Tools Site, http://mathind.csd.auth.gr/
acid/html/index.html (last access: 11th of December 2007)

http://www.omnetpp.org/
http://www.irisa.fr/aces/work/heptane-demo/heptane.html
http://www.irisa.fr/aces/work/heptane-demo/heptane.html
http://mathind.csd.auth.gr/%20acid/html/index.html
http://mathind.csd.auth.gr/%20acid/html/index.html

	1. INTRODUCTION
	2. BASIC DEFINITIONS AND PROBLEM STATEMENT
	2.1 Transactional Objects
	2.2 Concurrency Control and Recovery Control
	2.3 Performance – availability considerations

	3. THE ACID SIM TOOLS DESIGN
	3.1 A message passing based simulation engine
	3.2 Simulation modules for distributed transaction processing
	3.3 Communicated messages for Concurrency Control and Recovery

	4. ACID SIM TOOLS RESULTS FOR A SYNTHETIC WORKLOAD SCENARIO
	5. CONCLUSION
	6. REFERENCES

