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ABSTRACT 
Modern network centric information systems implement highly 
distributed architectures that usually include multiple application 
servers. Application design is mainly based on the fundamental 
object-oriented principles and the adopted architecture matches 
the logical decomposition of applications (into several tiers like 
presentation, logic and data) to their software and hardware 
structuring. The provided recovery solutions ensure an at-most-
once service request processing by an existing transaction 
processing infrastructure. However, in published works 
performance evaluation of transaction processing aspects is 
focused on the computational model of database servers. Also, 
there are no available tools which enable exploring the 
performance and availability trade-offs that arise when applying 
different combinations of concurrency control, atomic commit 
and recovery protocols. This paper introduces ACID Sim Tools, a 
publicly available tool and at the same time an open source 
framework for interactive and batch-mode simulation of 
transaction processing architectures that adopt the basic 
assumptions of an object-based computational model.   

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Design studies, Fault tolerance, 
Reliability availability and serviceability. D.4.5 [Operating 
Systems]: Reliability – Checkpoint/restart, Fault-tolerance. 
D.2.12 [Software Engineering]: Interoperability – Distributed 
Objects. H.2.4 [Database Management]: Systems – Transaction 
Processing.    

General Terms 
Performance, Design, Experimentation, Measurement. 

Keywords 
Fault Tolerance, Performance Evaluation, Transaction Processing, 
Simulation, Atomic Commit, Concurrency Control, Recovery 

1. INTRODUCTION 
Distributed transaction processing has advanced considerably as 
an important research subject in the field of database systems. 
Published performance evaluation results provide comparisons 
between alternative concurrency control protocols ([1]) or 
between different atomic commit and recovery protocols ([2]), 
when applied in centralized or distributed database systems. 

The development of ACID Sim Tools was motivated by the 
following two facts: 

• There is no simulation tool, which can provide insight 
into the collective effects, the interaction effects and the 
performance and availability trade-offs that arise when 
applying different combinations of concurrency control, 
atomic commit and recovery protocols (and protocol 
parameters). 

• The modern trend of partitioning applications into 
several tiers (presentation, logic and data), the 
multiplicity of the components and their 
interdependencies create a new computational 
environment ([3], [4]). This new environment is no 
more related to the classic computational model of 
database servers, where transaction processing is 
studied in the frame of the so-called page model - that 
refers to the way in which data pages are read or written 
at the storage layer of a database system. As a response 
to this need our toolset (and framework) adopts a 
minimal set of assumptions that resemble an object-
based computational model like for example the so-
called OMG Core Object Model ([6]). The OMG OTS 
standard ([5]) and the Enterprise Java Beans are two 
well-known cases of transaction processing reference 
architectures that are build on top of object-based 
computational models. 

ACID Sim Tools implements appropriate abstractions, which 
allow one to reuse existing functionality for the development of 
new protocols (beyond the ones that are already implemented). It 
is also possible for the potential user to alter the basic model of 
flat transactions (to implement e.g. nested transactions or 
advanced transaction models [7], [8], [9] with different notions of 
serializability) or to develop models of transactional replication 
schemes (as for example the one described in [10]). 
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The analyst debugs the modeled transaction processing 
architecture by interactive simulation through some basic 
animation functions (provided by the OMNeT++ based graphical 
environment [11], [12]). Key events are monitored and the 
accumulated data is used to calculate performance and availability 
metrics. The obtained metrics can be used in suitable analyses, 
which aim to evaluate architectural design options by quantifying 
their collective effects, as well as their interaction effects in a 
meaningful way. It is thus possible to compare alternative 
transaction processing architectures with respect to a given set of 
performance/availability goals. Similar performance design 
methods have been already proposed for object replication based 
fault tolerance architectures ([13]) and independent checkpointing 
processes for application recovery ([14], [15]). 

We provide simulation results for a sample transactional 
processing architecture, under a given synthetic workload 
scenario. The presented results reveal some of the most influential 
performance and availability trade-offs to be taken into account, 
when a transactional architecture has to fulfill a given set of 
performance design goals. 

Section 2 introduces basic definitions and presents the problem 
statement. Section 3 provides a description of the framework 
design. Section 4 introduces the considered synthetic workload 
scenario and comments the obtained simulation results. The paper 
concludes with a brief discussion regarding the tool’s utility and 
its future development prospects. 

2. BASIC DEFINITIONS AND PROBLEM 
STATEMENT 
2.1 Transactional Objects 
In our reference architecture clients send requests to application 
servers that maintain a repository of encapsulated objects. 
Application servers constitute the surrounding runtime system of 
the invoked objects: they manage them by spawning execution 
threads on behalf of client requests, monitoring executions, 
managing communication connections, handling generic forms of 
exceptions and so on. The implementation of the managed objects 
may itself invoke methods on other objects and issue requests to 
other servers. 

We adopt the common simplification ([16]) that the object is both 
the unit of operation as well as the unit of disk persistence. Thus, 
each transactional object oi owns a persistent state: state data live 
beyond request/reply boundaries and user sessions, for an 
indefinite time period. The provided methods, io

lop , 1 ≤ l ≤ 
#(methods of o )i 1, is the only way to change an object’s state and 
are invoked by synchronous messages: the object requiring the 
execution of the invoked method (requester) stops executing and 
waits for the invoked execution to terminate and the reply to 
return. Upon reception of the reply, the sender resumes. 

Each message msg is defined as a pair 

(method, type), with type ∈ {read, write} 

such that 

                                                                 
1 #( methods of oi) denotes the number of methods for oi  

method ∈ { }U
i

i
o
l olop i ) of methods(#1 | ≤≤  

and read, write indicate whether method is read-only or 
respectively modifies the state of some oi. 

A message sequence specification for io
lop , 1 ≤ l ≤ #(methods of 

o ) is defined as a total order relation ⇒ over the set i

MsgSq( io
lop )={msgs |1 ≤ s ≤ #(msgs in MsgSq( io

lop ))}
 

of method invocations generated by . For every two msgio
lop s, 

msgt ∈ MsgSeq( ), msgio
lop s ⇒ msgt if and only if msgs is 

executed before msgt. 

A transaction is essentially a program execution that reads and/or 
modifies one or more transactional objects, which are managed by 
one or more application servers. A transaction comes with certain 
system-guaranteed properties that simplify the development of 
distributed applications in that the application programs 
themselves can safely ignore the complexity of the overall system 
regarding: 

• All effects that may result from concurrent program 
executions and especially transactional object accesses 
(ACID Sim Tools currently implements only flat 
transactions and does not provide support for nested 
transactions that allow for concurrent atomic execution 
of operations included in the same transaction). 

• All effects that would result from program executions 
being interrupted because of process or computer 
failures. 

All necessary steps to cope with concurrency and failures are 
delegated to the runtime system of the underlying transactional 
servers. Thus, a transaction takes the form of a set of operations 

 that are triggered by a client request and are executed on 
one or more servers, with the ACID properties (atomicity, 
consistency, isolation, durability) guaranteed by the runtime 
system of the involved servers. The invoked operations are 
specified by their associated MsgSq( ) and incur specific 
CPU and I/O resource consumption requirements. CPU resource 
consumption is possible to be quantified by appropriate static 
analysis tools like for example Heptane ([17]). 

io
lop

io
lop

Having adopted that a transactional object is both the unit of 
operation as well as the unit of disk persistence, we neglect 
modeling the existence of a cache, which is usually used in 
application servers with a large number of transactional objects. 
This option would complicate the simulated recovery mechanism 
and would burden the developed simulation models with 
additional (system specific) buffer management parameters, 
whose performance implications are not related to the aims of the 
introduced toolset. 

2.2 Concurrency Control and Recovery 
Control 

To assure the required ACID properties an application server 
includes the following components: 



• The concurrency control component that guarantees the 
isolation properties of transactions, for both committed 
and aborted transactions and 

• The recovery component that guarantees the atomicity 
and durability of transactions. 

The concurrency control component uses an algorithm2  like for 
example aggressive locking, two-phase locking (2PL), timestamp 
ordering, serialization graph testing, tree locking or an optimistic 
algorithm that essentially lets newly arriving method invocations 
simply pass, but validates their output occasionally. The widely 
used locking protocols require transactions to wait when 
requested locks cannot be granted immediately. A set of 
transactions, each holding some locks and requesting an 
additional one, may end up being mutually blocked. Such cyclic 
wait situations are commonly known as deadlocks. A protocol 
may either prevent or allow deadlocks. In the second case 
deadlock detection and resolution is performed either in a 
continuous or in a periodic manner or alternatively, the system 
employs the use of a timeout strategy. In the latter case, the 
system maintains a timer that is activated upon initiation of each 
transaction and when the timer expires the transaction is aborted. 

The recovery component implements a distributed transaction 
coordination protocol ([18]), like for example the (basic) two-
phase commit (2PC) or alternatively one of its optimized variants 
or the non-blocking three-phase commit protocol (3PC). The 
server that initiates the transaction is called coordinator and the 
involved servers are called transaction participants (workers). We 
note that the same server may be at the same time the coordinator 
for the transactions issued by itself and a worker for the 
transactions that involve it. 

The recovery component performs transaction rollbacks in case 
of transaction aborts and crash recovery in case of server failures. 
A transaction is aborted upon detecting inconsistencies in an 
object’s state (surprise aborts) that would arise from the current 
transaction’s further execution. Also a transaction is aborted when 
the server “kills” it for internal reasons (e.g. deadlock or overload 
situations). In these cases, the server continues to operate and is 
expected to restrict its recovery measures to the actually affected 
transaction while processing other transactions as usual. The case 
of server failures is discussed in more detail in the sequel. 

Crash recovery, transactions atomicity and durability are assured 
by the maintenance of a stable log in permanent storage3. The log 
stores object state updates and bookkeeping records about the 
system history and survives non-catastrophic server failures that 
leave all data on secondary storage intact. It is an explicit 
representation of the necessary actions for rolling back 
uncommitted transactions by undoing each transaction’s prior 
updates. We consider that application servers perform physical 

                                                                 
2 As in all published performance evaluation studies, CPU resource 

requirements for the mentioned concurrency control algorithms cannot 
be easily quantified. Thus, we adopt the common approach of not 
considering resource consumption for concurrency control. 

3 The resource requirements for the applied atomic commit protocol 
consist of the additional I/O costs for force-writing the required 
transaction status log entries and the network latency costs when 
application servers communicate over the network. 

logging of after-images, which means that the log stores 
snapshots of the state of transactional objects after having invoked 
an operation. Thus, log I/Os depend on the object’s state size and 
on the disk performance characteristics of the server. 

We assume that failures are characterized by the fail-stop 
property ([19]), in the sense that the server is indeed brought 
down immediately after detecting an error. Although this 
assumption is only an idealized behavior, as error detection will 
not be perfect, it is sufficiently well approximated by intensive 
self-checking. 

While performing crash recovery for a server, the server and its 
objects are unavailable to the clients. Therefore, minimizing the 
recovery cost is an important performance goal. Over time, the 
stable log collects a large number of log entries, some of which, 
we can infer, are no longer relevant regardless of when and how 
exactly the server crashes. All log entries that are no longer 
needed, can be periodically removed from the stable log. A 
periodically invoked log truncation along with saving all 
uncommitted object updates to the stable log is known as a 
checkpoint and incurs a substantial amount of additional workload 
during normal operation. Checkpointing results in a new log file 
through the following steps: (i) appends a mark to the used log 
file (1 write operation), (ii) copies the after-images of all 
transactional objects as they are recorded in the old log by the 
latest committed transactions that affected them (2 read 
operations and 1 write for each server object) and (iii) copies to 
the new log file all data appended to the old log after the mark (1 
read and 1 write for each log entry). When the checkpoint is 
complete, the old log becomes obsolete and is then garbage 
collected. 

Rather than minimizing the recovery cost, a trade-off 
performance goal is minimizing the additional resource 
consumption that is required during normal operation of the 
server to make crash recovery work when the server fails. 
Checkpointing incurs additional I/O costs, but does not block 
transaction processing that takes place in parallel. However, apart 
from checkpointing costs, another major overhead arises from 
forced and thus synchronous I/O on the stable log. If the overhead 
caused by checkpointing and by forced logging transactional 
object updates and protocol messages, becomes too high, then it 
could adversely affect the performance of object method 
invocations during normal operation. Architectural solutions often 
adopt the attractive optimization of batching log I/Os. Trading 
multiple short I/Os for a single long I/O yields a high benefit 
because it avoids rotational delays and can therefore utilize the 
disk bandwidth much better. 

Lock contention is another source of resource contention with the 
important feature of being susceptible to thrashing phenomena. 
The reason for lock contention thrashing is that with increasing 
concurrency, the probability of a lock request not being granted 
and the duration for which a transaction needs to wait upon a lock 
conflict increase superlinearly. When too many transactions run 
concurrently, we may end up with a situation where most 
transactions are blocked because of lock conflicts and only a few 
transactions are still running. In this situation, frequent deadlocks 
are an additive danger. To avoid performance disasters of the 
above kind, transactional servers limit their multiprogramming 
level (MPL) that represents the maximum number of transactions 
that are allowed to run concurrently. When this limit is reached, 



newly arriving transactions are held in a transaction admission 
queue. 

2.3 Performance – availability considerations 
For the described computational setting typical performance 
requirements are: 

• To provide high throughput, that is, a satisfactory 
number of successfully processed (committed) 
transactions per time unit. 

• To result in short response times, where each 
transaction’s response time is defined as the time span 
between issuing the transaction and its successful 
completion as perceived by the client (commit). 

Throughput and response times depend on many issues in the 
implementation, configuration and tuning of application servers. 
In addition to the high throughput, a trade-off goal is the 
provision for high availability, which implies that recovery times 
after failures are short.  

We believe that there is a need for a performance engineering 
perspective and the proposed versatile toolset can support suitable 
methods that contribute to a systematic performance design 
approach. More specifically we need to be able 

• to provide insight and compare the collective effects, 
the interaction effects and the performance and 
availability trade-offs that arise when applying different 
combinations of concurrency control, atomic commit 
and recovery protocols and 

• to estimate optimal values for multiprogramming levels, 
transaction timeouts and checkpoint intervals for the 
servers of a transactional architecture, with respect to a 
set of given performance goals. 

The first aim requires appropriate methods ([20]) that quantify the 
significance and the relationships of the considered design factors 
in synthetic workloads with different degrees of distribution 
(localized to highly distributed transactions), different mixes of 
read-only and update transactions and different conditions of 
resource contention (I/O bound or CPU bound system 
configurations). The second aim will allow tuning distributed 
transaction processing, in order to maximize transactions 
throughput up to the servers’ thrashing levels and in trading off 
the resulted resource consumption during normal processing 
against the achieved speed of recovery. 

3. THE ACID SIM TOOLS DESIGN 

3.1 A message passing based simulation 
engine 

ACID Sim Tools uses the Objective Modular Network Test-bed 
(OMNeT++) simulation engine. OMNeT++ is an open-source, 
component-based and modular framework written in C++. An 
ACID Sim Tools model inherits the structure of an OMNeT++ 
simulation model, which in general is defined as a collection of 
modules. 

In an ACID Sim Tools model we include module instances of the 
following four (4) module types: 

• the Source module that generates transaction request 
arrivals; 

• the Atomic Commit Processing (Acp) module that 
implements the employed distributed transaction 
coordination protocol; 

• the Lock Manager module that provides concurrency 
control functionality; 

• the Log Manager module that implements logging in 
permanent storage. 

A new protocol variant for e.g. atomic commit processing is 
created, by extending the class hierarchy of an existing Acp 
module instance. This extension results in a new Acp module 
instance, which can be used in future ACID Sim Tools models. 

Modules communicate by exchanging messages and for this 
reason they are loosely coupled. In effect, the analyst can easily 
substitute a module instance with a different instance of the same 
type. 

Each message may be a complex data structure. In the course of a 
simulation run messages are scheduled to occur or they may be 
exchanged or even canceled. 

The ACID Sim Tools architecture: 

• Allows the design of modular simulation models, which 
can be combined and reused in a flexible way. 

• Adopts the object-oriented design of OMNeT++ and 
this allows flexible extension of the currently 
implemented ACID Sim Tools modules. 

• Provides an extensive simulation library that includes 
support for statistics, data collection, graphical 
presentation of simulation data, random number 
generators and a range of data structures. 

In ACID Sim Tools, model components are linked with the 
simulation library, and one of the user interface libraries to form 
an executable program. One user interface library is optimized for 
command line and batch-oriented execution, while the other 
employs a graphical user interface (GUI) that can be used to trace 
and debug the simulation. 

The OMNeT++ based graphical environment utilizes two main 
windows (Figure 1). The left one provides an animated view of 
the ongoing simulation experiment. 

The right window displays the so-called inspection view with the 
current timeline status and simulated time, as well as a tree view 
of the model parameters and a scrolling log of past events. The 
icons shown in the animated view represent the model’s modules 
and the moving particles represent sent messages. Regarding the 
events shown in the timeline of the inspection view, they 
represent already scheduled messages. 

In the shown animation snapshot icons acp1 and acp2 represent 
two transactional servers, the lock icons represent the 
corresponding lock manager module instances and icons log1 
and log2 show the log manager module instances for the 
considered architecture.  

 



 
 

Figure 1. The ACID Sim Tools GUI and the interactive simulation and inspection functions  
 
The source module instances represent the transaction request 
arrival processes. The statistics module instance stat receives 
messages from all other modules, when statistically important 
events occur. The accumulated event-monitoring information is 
stored in a file at the end of the simulation run, for further 
simulation output analysis. 
For a detailed description of the provided GUI functionality refer 
to [11] and [12]. 
Module instances of a simulation model have a number of 
parameters (e.g. transactions’ request interarrival rates, servers’ 
multiprogramming levels) that altogether are specified in an 
appropriate initialization file. Furthermore, the model’s structure 
is given in an input XML file that defines the distribution of the 
transactional objects to the available servers, their methods 
together with a read/write characterization and the specifications 
of the considered transaction classes. A more thorough 
description of the ACID Sim Tools model parameters is provided 
in the case study introduced in Section 4. 
Batch-mode simulation from the command prompt is used for 
computing certain performance and availability metrics derived 
from one or more simulation runs. Simulation output from 
multiple runs is analyzed by employing the method of 
independent replications, where the number of simulation runs is 
determined dynamically, based on the targeted level of accuracy 
(the confidence interval half width threshold defined as a 
percentage of the computed metric). 

3.2 Simulation modules for distributed 
transaction processing 

The provided Source module generates transaction requests that 
obey the Poisson distribution for a given mean inter-arrival rate 
that is passed as a module parameter. In an ACID Sim Tools 
model we consider different classes of transaction requests 
(corresponding to different message sequence specifications). 
Each transaction class is generated by a given Source module 
instance and the generated requests are delivered to the 
transaction coordinator, which is represented by the Acp module 
instance corresponding to the server of the first transactional 
object invocation. 

User defined Source module variants may focus on the 
implementation of alternative request arrival distributions or even 

on the delivery of request arrival traces obtained from a real 
transactional server. 

In a given transaction class, a particular Acp module instance 
plays either the role of the coordinator or the role of a worker. We 
currently provide implementations of three variants of the two-
phase commit (2PC) protocol: (i) the basic 2PC, also called 2PC 
PResume Nothing (PRN), (ii) the 2PC PResume Commit variant 
(PRC) and (iii) the 2PC PResume Abort variant (PRA). Figure 2 
shows the class hierarchy of the currently implemented Acp 
module type. PRC and PRA module instances differ from a PRN 
instance in the way they handle the transaction commit or the 
transaction abort case. Our experience in extending the Acp 
module hierarchy suggests that the effort required to implement a 
new 2PC variant is negligible. 

Acp

PresumeAbort PresumeCommit

 
Figure 2. The Acp module class hierarchy 

The Log Manager module type simulates storage of forced and 
non-forced log entries, applies the simulated checkpointing policy 
and gathers the information required in transaction rollbacks and 
server crash recovery. In effect, a Log Manager module generates 
read and write service requests for an I/O queue resource. Service 
demands are calculated based on the type of the simulated 
operation (forced or non-forced log entry, checkpointing, read 
request etc.) and the I/O costs assumed for the primitive read and 
write operations. Due to the differences in the information 
expected during recovery in the implemented 2PC variants, we 
provide an appropriate module instance for each particular 2PC 
variant (Figure 3). 

The LockManager module type is responsible for handling 
requests for lock acquisition and release. Current module 
implementation simulates the behavior of the basic two-phase 
locking (2PL) scheme, but ACID Sim Tools users can always 
replace it with an alternative concurrency control locking-based 
module variant. 



 
Figure 3. The LogManager module class hierarchy  

3.3 Communicated messages for Concurrency 
Control and Recovery 

Table 1 summarizes the messages exchanged between the ACID 
Sim Tools module types in the course of a simulation run. When a 

message assumes specific roles for the sender and/or receiver 
module instances we denote with Acp C the Acp module instance 
that corresponds to the coordinator of the concerned transaction 
class and with Acp W an Acp module instance that corresponds to 
some worker. Scheduled events correspond to messages sent by a 
module instance to itself.       

The described messages are used in transaction processing 
protocol implementations within new ACID Sim Tools module 
instances. Figure 4 introduces the ACID Sim Tools message 
exchange implementing the transaction commit processing in 
PRN. However, due to space limitations we omit the transaction 
abort message sequences for PRN, PRC and PRA. 

 
 

 Table 1: Messages exchanged between ACID Sim Tools modules  

Message Sender Receiver Description 
2PC Initiation 
CLIENT_SEND_TRANS Source Acp C Transaction request arrival 
Sc TIMEOUT Acp C Acp C Schedule a timeout event 
LOG_INIT_TR Acp C LogManager Write an “INIT” log entry. Used in PRN, PRA. 
INIT_LOGGED LogManager Acp C An “INIT” log entry was written. Used in PRN, PRA. 
Method invocation (Job) Processing 
NEXT_JOB Acp C Acp W Transaction worker is requested to execute some job 
WORKER_JOB_FINISHED Acp W Acp C Coordinator is notified for having finished with a job 
LOCK_OBJ Acp LockManager Acquire the locks needed for the ongoing transaction  
RELOCK Acp LockManager Acquire the locks needed (like LOCK_OBJ) after the 

occurrence of a server crash recovery 
OBJ_LOCKED LockManager Acp A lock was acquired 
Sc JOB_ENDED Acp Acp Schedule the execution of an object method invocation 

(job) 
Prepare 
PREPARE Acp C Acp W Asks the worker to prepare for the voting phase 
Voting Phase 
LOG_VOTE Acp W LogManager Log the server’s intent to vote 
LOG_VOTED LogManager Acp W Log entry VOTE stored 
Sc ASK_OUTCOME Acp W Acp W Schedule a query to the coordinator for the transaction 

outcome 
VOTE Acp W Acp C Send the vote to the coordinator 
Commit Phase 
COMMIT_TRANSACTION Acp C Acp W Send commit decision to the transaction worker 
COMMIT_LOG Acp C LogManager Log in simulated stable storage the commit event. Used in 

PRN, PRA. 
LOG_COMMITED LogManager Acp C Commit log entry stored. Used in PRN, PRA. 
ACKOWLEDGE_COMMIT Acp W Acp C A worker acknowledges the commit decision. Used in 

PRN, PRA. 
Abort Phase 
ABORT_TRANSACTION Acp C Acp W Send abort decision to the transaction worker 
LOG_ABORT Acp LogManager Log in simulated stable storage the transaction abort 
RECOVER_STATE Acp LogManager Recover the object states of the last committed transaction 
LOCK_STOP Acp LockManager Ask the lock manager to stop acquiring locks 
LOG_ABORTED LogManager Acp Abort log entry stored 
LOG_OBJ_RECOVERED LogManager Acp Object states recovered 
ACKNOWLEDGE_ABORT Acp W Acp C A worker acknowledges the abort decision. Used in PRN, 

PRC. 
Auxiliary messages 
OUTCOME_ASKED Acp W Acp C The worker asks for a transaction outcome 
LOG_END Acp C LogManager Place a transaction end mark in the log 
UNLOC_OBJ Acp LockManager Release the locks acquired for a transaction 
Checkpointng related  messages 
Sc CHECKPOINT_MSG Acp Acp Schedule the occurrence of a checkpoint 
LOG_START_CHECKPOINT Acp LogManager Initiate a checkpoint 
LOG_FINISHED_CHECKPOINT LogManager Acp Checkpoint accomplished 
Other messages related to the simulated LogManager function 
Sc CHECKPOINT_CONTINUE LogManager LogManager Create a new log read request for an ongoing checkpoint 
CLEAR_LOG Acp LogManager A server crash failure has occurred. Clear the I/O queue 

and stop all I/O operations. 
INFO_READ LogManager Acp Information needed for crash recovery was gathered. 
LOG_APPEND_ABORT Acp LogManager Log in simulated stable storage the transaction abort (as the 

LOG_ABORT message), without replying with a 
LOG_ABORTED message. 

LOG_PREPARE Acp LogManager Store log entry PREPARE 
READ_INFO Acp LogManager Start gathering information for server recovery 
Sc RECOVER_PHASE LogManager LogManager Create a new log read request, in order to recover the state 

after the last committed transaction. 
Sc I/O LogManager LogManager Schedule an I/O event for the first request (read/write) in 

the simulated I/O queue.  



 
Figure 4. Transaction commit processing in PRN 

4. ACID SIM TOOLS RESULTS FOR A 
SYNTHETIC WORKLOAD SCENARIO 

Current section provides sample results from a simulated 
synthetic workload scenario. We comment on the results obtained 
for the tested architecture parameters, but we do not present a 
complete systematic experiment and the subsequent tradeoff 
analyses, since the basic aim of this article is to present the 
toolset. 

The considered transactional objects are distributed over the two 
servers of the modeled transaction processing architecture as 
shown in Table 2.     

Table 2: Transactional objects  
 

Server Object State Size (Kb) 
- exp. - 

Method Name CPU Resource Con-
sumption (sec) - exp. - 

READ/WRITE 

acp1 obj1 5 meth11 0.01 READ ONLY 
   meth12 0.05 READ ONLY 
 obj2 5 meth21 0.01 WRITE 
   meth22 0.01 READ ONLY 
   meth23 0.01 READ ONLY 
 obj3 5 meth31 0.04 WRITE 
   meth32 0.01 READ ONLY 
 obj4 5 meth41 0.01 WRITE 
   meth42 0.01 READ ONLY 
   meth43 0.01 READ ONLY 
 obj5 5 meth51 0.01 WRITE 
   meth52 0.01 READ ONLY 
   meth53 0.01 READ ONLY 
acp2 obj6 5 meth61 0.05 WRITE 
   meth62 0.05 READ ONLY 
 obj7 5 meth71 0.05 WRITE 
   meth72 0.01 READ ONLY 
 obj8 5 meth81 0.01 READ ONLY 
   meth82 0.01 READ ONLY 
 obj9 5 meth91 0.05 WRITE 
   meth92 0.05 READ ONLY 
 obj10 5 metha1 0.05 WRITE 
   metha2 0.05 READ ONLY 
 obj11 5 methb1 0.01 READ ONLY 
   methb2 0.01 READ ONLY 
 obj12 5 methc1 0.05 WRITE 
   methc2 0.05 READ ONLY 
 obj13 5 methd1 0.05 WRITE 
   methd2 0.05 READ ONLY   

The assumed transaction classes and their associated parameters 
are introduced in Table 3 and the employed system parameters are 
summarized in Table 4. We considered fail-stop server failures 
with mean interarrival time 21600 sec. 

Concurrency control adheres to the widely used 2PL scheme. 
Regarding the atomic commit processing, in our experiments we 
employed the PRN and PRC protocols. We assume exponentially 
distributed parameters and we provide the corresponding means 
for all object state sizes, for the CPU resource demands and for 
the used transaction interrarival time that utilizes the studied 
architecture in a considerable degree.    

We conducted simulation experiments for two different 
transaction timeout cases and three different checkpoint interval 
parameters, where the latter were the same for both servers. 

The obtained results are summarized in Figures 5 and 6. They 
depict how model parameters affect the ratio of committed 
distributed transactions, as well as their mean response times. 

Figure 5 shows that by reducing the checkpoint interval below a 
certain level - in order to minimize recovery costs - the incurred 
overhead results in worse ratio of committed distributed 
transactions without reducing the corresponding mean response 
time (Figure 6). 

As expected, the PRC protocol improves the mean response times 
of all distributed transactions. Local transactions are not shown, 
because their performance is not affected significantly by the 
changes to the studied model parameters. Finally, the smaller 
timeout parameter improved the observed mean response time, 
but at the same time increased the number of aborted transactions 
resulting in a lower ratio of committed distributed transactions.  

5. CONCLUSION 
This article presented a publicly available interactive and batch-
mode simulation tool (and framework) that provides insight into 
the most influential performance and availability tradeoffs that 
arise in distributed transaction processing architectures. Detailed 
documentation for the basic simulation algorithm and source code 
is available in the ACID Sim Tools web site [21]. 

We believe that the proposed toolset could support suitable 
analyses that will contribute to a systematic performance design 
approach for distributed transaction processing architectures. 

Table 3: Transaction classes 
 

Transaction  
Class 

Methods invoked Mean interarrival 
times (sec) - exp. - 

Timeouts (sec) 
(experiment 1) 

Timeouts (sec) 
(experiment 2) 

tr1 meth11, meth22, meth32 0.6 0.9 0.7 
tr2 meth11, meth72, meth12 0.6 0.9 0.7 
tr3 meth12, meth61, meth21 0.6 0.9 0.7 
tr4 meth92, metha2, meth82 0.6 0.9 0.7 
tr5 meth92, meth42, meth92 0.6 0.9 0.7 
tr6 meth92, meth41, metha1 0.6 0.9 0.7 
tr7 methb2, methc2, methd2 0.6 0.9 0.7 
tr8 methb2, meth52, methb2 0.6 0.9 0.7 
tr9 methb2, meth51, methc1 0.6 0.9 0.7  

Table 4: System parameters 

Network Latency / message: 0.06 sec   
Server Disk Read 

Latency 
Disk Write Latency Multiprogramming 

Level (MPL) 
Checkpoint intervals (sec) 

Periodic 
acp1 4.271e-5 sec/Kb 51.252e-5 sec/kb 2, 3, 4 500 sec, 1300 sec, 2100 sec 
acp2 4.271e-5 sec/Kb 51.252e-5 sec/kb 2, 3, 4 500 sec, 1300 sec, 2100 sec 
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Figure 5. Ratio of distributed transactions that commit
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Figure 6. Mean response times for committed dist. 
transactions  
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