
Model checking and code generation for

transaction processing software

Anakreon Mentis and Panagiotis Katsaros
e-mail: anakreon@csd.auth.gr, katsaros@csd.auth.gr

Department of Informatics, Aristotle University of Thessaloniki

Abstract

In modern transaction processing software, the ACID properties (Atom-
icity, Consistency, Isolation, Durability) are often relaxed, in order to ad-
dress requirements that arise in computing environments of today. Typical
examples are the long-running transactions in mobile computing, in ser-
vice oriented architectures and B2B collaborative applications. These new
transaction models are collectively known as advanced or extended trans-
actions. Formal specification and reasoning for transaction properties has
been limited to proof-theoretic approaches, despite the recent progress in
model checking. In this work, we present a model-driven approach for
generating a provably correct implementation of the transaction model
of interest. The model is specified by state machines for the transaction
participants, which are synchronized on a set of events. All possible exe-
cution paths of the synchronized state machines are checked for property
violations. An implementation for the verified transaction model is then
automatically generated. To demonstrate the approach, the specification
of nested transactions is verified, because it is the basis for many advanced
transaction models.

Keywords transaction processing; model-driven development; code gener-
ation; model-checking

1 INTRODUCTION

Many applications are partitioned into several tiers (e.g. presentation, logic and
data), potentially distributed in a network of heterogeneous computing envi-
ronments. Transactions are used to ensure that a mutually agreed outcome is
observed consistently across all involved parties in the performed computations.

However, the characteristics (Atomicity, Consistency, Isolation and Dura-
bility) of the initially proposed transaction model [23] set it inappropriate for
the requirements of modern distributed computing. Thus, in web information
systems we need to reduce the degree of concurrency within an application,
due to the unpredictable network latency [22]. In mobile computing, we face
frequent disconnections between clients and servers, as well as rigid resource

1

constraints in processing power, memory and battery capacity [4]. Also, upon
hand-offs there is a need to transfer the transaction management from one server
to another [19, 21].

Advanced or extended transaction models (e.g. nested transactions, split-
join transactions etc) aim to cope with the aforementioned problems [22, 19].
In essence, the fundamental ACID properties of the typical transaction model
are relaxed.

A transaction model consists of a workflow with role specifications for the
transaction parties that interact via asynchronous messages and protocol ac-
tions that enable computations upon receipt of a message. Implementing trans-
action processing is a complex task, due to the asynchronous events that imply
immense bookkeeping. This work introduces a model-driven development ap-
proach [20] for model checking [7] the anticipated transaction properties and
automatically generating implementations of the verified models. Related work
on specifying and reasoning for transaction properties [14, 6, 10] presumes the
use of specialized formalisms. In our approach, transaction parties are defined
intuitively by the use of non-deterministic state machines with transitions that
trigger asynchronous events. Correctness properties are checked on all feasible
execution paths of the synchronized product of the state machines. Automated
verification does not require formal analysis skills and the verified specification
is then used to automatically generate code for the management of transaction
events. This feature distinguishes our approach from other model checking al-
ternatives that may be based on general-purpose model checkers (e.g. SPIN [9]).
Our proposal resembles the compiler generators’ concept, where the tool checks
the specification of the language syntax and subsequently generates a complete
parser by integrating appropriate user-supplied code.

The verification and code generation functions have been implemented in a
tool called ACID Model Checker & Code Generator [1, 15]. The tool generates
code for ACID Sim Tools [16], a simulator for studying the performance and
recovery trade-offs [12] in transaction processing. However, our contribution
can be employed in the development of transaction management systems and
therefore its applicability extends beyond ACID Sim Tools.

Preliminary results for the basic transaction model were published in [15].
In this article, we verify the properties of nested transactions [8], a well known
advanced transaction model. Nested transactions involve more interacting par-
ties, thus resulting in a significantly larger state space. We introduced a pre-
processing phase that removes transitions which do not affect the verification
result. The improved path exploration algorithm employs user–supplied guards
that resolve certain cases of non–determinism.

Section 2 outlines the proposed model-driven development process and the
nested transaction model. Sections 3 and 4 introduce the state-machine based
specification of transaction models. Section 5 describes the path exploration
algorithm for verifying the correctness properties of interest. Section 6 shows
the model checking of correctness properties for the nested transaction model.
Section 7 describes the code generation for ACID Sim Tools. Section 8 reviews
related work and the paper concludes with an overview of the overall contribu-

2

Figure 1: Model-driven verification and implementation of transaction models

tion and the future research prospects.

2 MODEL-DRIVENDEVELOPMENT OF NESTED
TRANSACTIONS PROCESSING

The process (Fig. 1) for verifying the correctness properties of a transaction
model and automatically generating the event management code involves model
definition, property specification, path exploration for property verification and
code generation.

A model consists of the state machines for the transaction roles and the
events that are dispatched, scheduled or canceled by operations invoked upon
state transitions. Model construction computes the reachability graph for the
synchronized product [3] of the role state machines. The synchronized product
is defined over the Cartesian product of the state machines, restricted by the
synchronization events, i.e. all events consumed by a role other than the pro-
ducer. The graph includes all event interleavings and it is used for discovering
structural errors (e.g. unreachable states or transitions, incomplete transition
relation) and violations of transaction properties. Properties are defined in
terms of set operators and basic temporal relations over the computed execu-
tion paths. When a property violation is detected, a counterexample is provided
for the correction of the role state machines.

Code generation produces a C++ method that handles the state transitions
of the defined roles. The method determines the next role state and executes
the associated operations based on the current state, the received event and the
specified state transitions. Non–determinism is introduced because of lack of in-

3

formation that becomes available only at runtime. In model construction, non–
determinism is resolved by considering all possible execution histories. For code
generation, the developer is expected to supply custom code that determines
the successor state, based on information which is accessible during execution.

Nested transactions [8] were the first advanced transaction model adapted
to the specific requirements of distributed computing environments. It inspired
recently proposed advanced transaction models in mobile computing [19], web
transactions [22] and other areas. A transaction is composed of sub–transactions
in a hierarchical manner. A sub–transaction can initiate other sub–transactions
for which it acts as a coordinator, i.e. it orchestrates the global decision reaching
process. A parent transaction can only commit after all its children are com-
pleted. If the parent chooses to abort, a child transaction also aborts. However,
a child transaction can abort independently of its parent. If a sub–transaction
aborts, the parent might trigger another sub–transaction as an alternative.

3 ROLE SPECIFICATION

A transaction model is defined in terms of different roles, where each role is
represented by a non–deterministic state machine. The two roles encountered
in the 2PC protocol [15] are the transaction coordinator and the worker. In
nested transactions, there are four roles that distribute transaction processing
in different levels: the coordinator of the top–level transaction, the coordinator
of a sub–transaction and a worker for each coordinator. Worker roles have
identical behavior. As we already noted, non–deterministic specification is the
only feasible approach, because of information that emerges at runtime. For
example, during vote collection the coordinator either announces the transaction
outcome if all workers have voted or waits for the remaining votes. As we will
see in Section 5, this non-determinism is resolved.

The alphabet of a role state machine is the set of all possible transaction
events. A transition changes the current state and invokes one or more op-
erations. Operations create or cancel events or simply perform an assigned
computation. The transition relations for all roles are specified in a text file
with five comma–separated columns:

- Role: The first column defines the state machine in which the specified
transition is part of. In the nested transaction model, the roles are repre-
sented by “c” for the top-level coordinator, “cn” for the coordinator of a
sub-transaction and “w” for the worker.

- Source state: The state where the transition is enabled.

- Event: The transaction event which triggers the transition. It represents
a message from those included in the transaction protocol.

- Next state: The target state for the specified transition.

4

Table 1: A specification excerpt of nested transactions roles

Source state Event Next state Operations
1 c, ST EMPTY, INIT, ST INIT, sendInitLog:scheduleTimeout
2 cn, ST EMPTY, SPAWN, ST INIT, sendSubInitLog:scheduleTimeout
3 c, ST VOTES, OUTCOME ASKED,ST VOTES, −
4 c, ST VOTES, VOTE LOGGED, ST VOTES, collectVoteid
5 w, ST WAIT, START JOB, ST LOCK, workerLockjob
6 w, ST COMMIT LOG,COMMIT LOGGED,ST FINISH, clearLocks:aknowledgeCommit
7 w, ST JOB, JOB FINISHED, ST WAIT, removeJobMessagemsg
8 c, ST WAIT, JOB FINISHED, ST WAIT, nextJob:moveNext
9 c, ST WAIT, JOB FINISHED, ST VOTES, sendPrepare:sendFinalCommit

10 c, ST WAIT, JOB FINISHED, ST SUB WAIT,startSubTransaction:moveNext

- Operations: A list of operation names that may be accompanied by one
or more identifiers enclosed in brackets. The identifiers represent param-
eter names (e.g. the message receiver and the reference to a transactional
job) used as placeholders for code generation. The first operation param-
eter is implicitly considered to be a unique transaction identifier, which is
not written in the specification. Operation names are separated by “:”.
Character “−” defines transitions with no operations.

Line 1 of Table 1 defines a state transition from ST EMPTY that for all roles
is the initial state. This transition is triggered by INIT, which is the only event
that is not caused by an operation of some transition. In fact, this event is sent
by the transaction management system to start the processing of a transaction.
When the coordinator receives the message, the state machine moves to state
ST INIT and the transition invokes the operation sendInitLog that appends a
log entry in stable storage for recovery purposes. If the log entry is successfully
stored, the coordinator receives the event INIT LOGGED, which is not shown in
the given excerpt. The other invoked method, scheduleTimeout, schedules a
TIMEOUT event that is received if the transaction is not completed on time. Line
2 defines a transition for role “cn”. In contrast to the top–level coordinator,
sub–transactions are initiated by SPAWN instead of INIT and use a different log
entry to record in stable storage that a sub–transaction is initiated.

The transition of line 3 is an example of a message that is ignored. Transi-
tions that do not have any impact in model execution are required to be explic-
itly specified, in order to ensure that there are no neglected transitions. One
of the uses of the ACID Model Checker is to detect forgotten state transitions,
which may be attributed to design flaws or specification omissions.

Line 6 demonstrates the behavior of a worker upon a transaction commit:
the acquired locks are released and the coordinator’s decision is acknowledged.
Finally, lines 8, 9 and 10 demonstrate a non–deterministic transition. Depending
on the structure of the transaction, the coordinator either starts a new sub-
transaction or submits a new job to a worker or enters the voting phase.

The shown specification suffices for generating code for the management of

5

transaction events. Together with the user–provided code for the named opera-
tions a complete implementation of the transaction model is produced. However,
the provided information allows only trivial checks, such as the existence of un-
reachable states in each role. For complete model verification we also need to
provide information regarding the creation and canceling of transaction events,
as a consequence of transition operations.

4 SPECIFICATION OF TRANSACTION EVENTS

Apart from the INIT event, which is sent by the transaction management system,
all other events are created by an operation invoked in a state transition. Thus,
every event is a consequence of a past state transition. For model checking
purposes, we require a specification of the events that are generated or canceled
by the operations invoked in a state transition. These operations are specified
in a text file with four comma-separated columns:

- Operation: The name of the operation, without the parameters. Sepa-
rate lines are used for each role that invokes the operation.

- Event: The name of a transaction event. If the invoked operation creates
an event selected from a set of alternatives, then all possible events are
enumerated by “|”. The event name is prefixed by “-”, if the operation
cancels it (e.g. -TIMEOUT).

- Receiver: The role of the event consumer (“c”, “cn” or “w”).

- Sender: The event producer, which may be either a specified role or any
other implementation specific component. In nested transactions for ex-
ample, the necessary transaction processing components are concurrency
control denoted by lcw and stable storage, denoted by lg[r], where r ∈
{“c”, “cn”, “w”}.

Lines 1–2 of Table 2 demonstrate a typical case of an operation invoked
by state transitions of two different roles. In line 3, as a consequence of the
invoked operation sendInitLog by the coordinator role (see line 1 of Table 1),
the “lgc” component replies with event INIT LOGGED. Here, we note that we are
only interested for defining the events consumed by the roles and thus we do not
need to include the event that causes “lgc” to respond with INIT LOGGED (i.e.
the coordinator’s state transition (ST EMPTY, INIT) → ST INIT). Line 5 shows
an operation that when invoked, cancels the scheduled event TIMEOUT. Finally,
line 6 shows an operation that non-deterministically produces either the event
FIRST JOB or the event START JOB.

At this point, we have a complete specification of the transaction model, with
two sources of non–determinism. The first source is the role specification, where
non–determinism is introduced as discussed in the previous section. The second
source of non–determinism are all operations that produce alternative events
(as in line 6). The events produced by the defined operations may depend on

6

Table 2: Specification excerpt of transaction events

Operation Event Receiver Sender
1 startSubTransaction, SPAWN, cn, c
2 startSubTransaction, SPAWN, cn, cn
3 sendInitLog, INIT LOGGED, c, lgc
4 workerLock, LOCKED, w, lcw
5 cancelTimeout, -TIMEOUT, c, c
6 nextWorkerJob, FIRST JOB | START JOB w, c

Table 3: Guard definition in ACID Model Checker & Code Generator

valid path (Event “SPAWN” “c” “cn”) = (not . has event name “SPAWN”) path
valid path (Event “SPAWN” “cn” “cn”) = False
valid path (Event “FIRST JOB” “c” “w”) = (not . has role “w”) path
valid path (Event “START JOB” “c” “w”) = has event (Event “FIRST JOB” “c” “w”) path

information available at runtime, e.g. the structure of an executed transaction.
This non–determinism is eliminated by means of guards that impose constraints
on the events generated by the defined operation, based on the execution history.
In the current version of the ACID Model Checker there is no syntactic support
for guard definition. Instead, guards are provided in a compact declarative form
(Table 3) in the same language used for the tool implementation.

In the first line of Table 3 the guard prevents the generation of a SPAWN

event by the top–level coordinator if another SPAWN event has previously oc-
curred. In line 2, the guard states that a sub-transaction coordinator cannot
create a child sub–transaction. If this condition was omitted the depth of the
transaction tree structure would be infinite. The last two lines resolve the non–
determinism introduced by the operation nextWorkerJob in line 6 of Table 2.
For the nested transaction model, 6 cases of non–determinism exist among 32
operations that generate events. In case of omitted guards, the tool detects
“omitted” state transitions that in fact cannot occur, because the event that
triggers the transition is not feasible.

5 PATH EXPLORATION

Path exploration is the computation of the reachability graph for the synchro-
nized product of the role state machines [3]. Reachable states are accessed,

• through the manipulation of a list of produced transaction events, referred
as future event list (fev);

• by consuming in FIFO order the fev events that are not produced by

7

Figure 2: Reachability graph for the synchronized product of the role state
machines

roles, while at the same time, reachable states represent all possible event
interleavings in fev ;

• by synchronizing the Cartesian product of the defined state machines on
the synchronization events.

Consider the partial reachability graph of Fig. 2 that displays the first tran-
sitions of role “c”. Edges are labelled with pairs, where the first item denotes
the event that triggers the transition and the second item shows the updated
fev list. Event TIMEOUT in the fev of the first transition is produced by “c”
and INIT LOGGED is produced by the “lgc” component. The reachability graph
includes all possible interleavings between the two events:

• One possible transition takes place by first consuming the TIMEOUT event.
The event is removed from the previous fev. The updated fev now includes
ABORT LOGGED that is produced by the operation invoked in this transition.

• The other transition takes place by first consuming the INIT LOGGED event.

The fev of the first mentioned transition now includes two events sent by an
implementation specific component - not a role - that provides log recording in
stable storage. These two events in fev will be consumed in FIFO order.

In the discussed transaction model there are transitions that do not alter
the current state nor produce or cancel events. They contribute into developing
a totally defined transition relation and we call them empty transitions. Such
transitions are safely removed under the following conditions:

1. If an event is non–deterministic for a given state, the empty transitions for
that state are irrelevant. They are ignored and only the other transitions
are taken into account.

2. When an event triggers only empty transitions in a sub–path from some
state to the final role state, this event and all subsequent empty transitions
are ignored.

8

In effect, this pre–processing reduces the number of transitions that are
taken into account and improves the model checking performance. The ex-
pected improvement depends on the number of empty transitions that fulfill the
aforementioned conditions.

A path is maximal, if the source state of the first transition is the initial state
and there is no event to be consumed from the target state of the last transition.
Maximal paths represent complete executions of a transaction and therefore all
correctness properties are checked upon the maximal paths of the synchronized
product, which are computed by the recursive algorithm path explorer (Fig. 3).

In step 2 of path explorer only the transitions that have not been previously
selected are taken into account. In this way, multiple occurrences of cycles are
excluded, which otherwise would result in infinite maximal paths. The rationale
for this choice is that at runtime, cycles are followed finitely many times and are
eventually broken. For the worker role, a chain of transitions that are followed
for each job assigned to the same worker forms a cycle. However, transactions
with more or less jobs for a worker do not differ with respect to the correctness
of transaction properties. The proposed algorithm explores a directed acyclic
graph, for which it can be shown that contains a finite number of paths. Hence,
the algorithm eventually terminates.

If the events communicated between the interacting model entities are de-
livered in FIFO order (e.g. TCP network protocol), the model definition would
be simpler and it would be verified in a shorter time. For the sake of generality,
we did not assume that role events are delivered in FIFO order, as opposed
to those produced by implementation specific components (e.g. lgw, lcw) that
reside in the same system with the role consuming the events without network
communication. Nonetheless, a slight change in step 4 of Fig. 3 would realize
FIFO delivery of role events.

An inherent problem of model checking is the possibility of state space ex-
plosion. In this case, the memory needed for the reachability graph or the
time required for building it, renders the verification impractical. ACID Model
Checker was implemented in Haskell [11], which is a functional language. Due
to the lazy evaluation of functions, property violations and model errors are
reported without having to complete the construction of the reachability graph.
Instead, a maximal path is checked, as soon as it is constructed. Validated paths
are not stored in memory hence resulting in low memory consumption. In effect,
even a partial model checking run reveals property violations and model errors.

The algorithm takes into account all event interleavings, even if some of
them have the same effect with respect to the checked properties. This is not
an optimal solution, since for transaction models with many roles the time
required for a full verification can be exceptionally long, thus rendering the
approach impractical. Partial order reduction [2] delivers proven techniques for
reducing the number of interleavings that need to be analyzed, thus opening a
promising perspective towards improving the mentioned shortcoming.

For model checking is sufficient to consider the minimum number of par-
ticipants materializing all possible role interactions. In the nested transaction
model, we took into account the interactions between a top-level coordinator, a

9

Algorithm path explorer

Input:

• A tuple (qr, fevr) for each role r, where qr is the current local state and fevr the
local future event list. Item qr is initialized with the initial state of the role state
machine and fevr is initialized with [] (the empty list).

• A list r trans with the transitions specified as described in Section 3 for all roles.

• A list ops with the operations specified as described in Section 4.

• A list ignored with the states and the events that may be ignored for some state.

• The event ev consumed for the triggered transition (first consumed event is called
INIT).

• The computed (non-maximal) path denoted by path, which is initialized by [].

Each item of path is a 3-tuple (qpre, e, qpost) representing the transition qpre
e→ qpost.

Output:

• A list of computed maximal paths, max paths.

Description

1. Find in r trans all qr
ev→ q′r that consume event ev. If there is no transition for

event ev, r has an incomplete transition relation and the user is prompted to define
the missing transition. If there are multiple transitions such as (qr

ev→ q′r) /∈ path,
then we have a non-deterministic definition which is resolved in the next step.

2. For each transition t : (qr
ev→ q′r) /∈ path, let evt be the set of events caused by the

operations in ops for transition t.

(a) Let fev′r = [x : x ∈ fevr,−x /∈ evt]++[x : x ∈ evt,¬cancel(x) ∧ P (x) ∧
(qr, x) /∈ ignored] be the new future event list, where P is a guard. We note
that the concatenation operator (++) preserves the event order in the list,
which is important for the FIFO executed events.

(b) If q′r is a final state, set q′r to the initial role state and keep from fev′r only
the events produced by the other roles.

3. Set path′ = path + t

4. For each event e in fev′r produced by a role and for the first event of each imple-
mentation specific component: Call path explorer with fev′r/{e} instead of fevr,
q′r instead of qr, e as the consumed event for the triggered transition and path′

instead of path.

5. If fev′r = [] and ∀l ∈ roles− {r}fevl = [], then path′ is a maximal path and it is
appended to max paths.
Else if ∃l ∈ roles− {r} : fevl 6= [] then apply step 4 with fevl instead of fev′r.

Figure 3: Algorithm for exploring maximal paths10

Table 4: Haskell functions used in property specifications

has event name e path an event with name e occurs in path
has event e path event e occurs in path
has role r path a transition concerning role r exists in path
has state s path a state s occurs in path
exists x path existential operator
absent x path negation of exists
before t1 t2 path t1 occurs before t2 in path
after t1 t2 path t1 occurs after t2 in path

coordinator for a sub-transaction and two workers, each one being subordinate
of one of the two coordinator roles.

6 VERIFICATION OF TRANSACTION COR-
RECTNESS PROPERTIES

The ACID Model checker detects structural errors and violations of transaction
properties. Structural errors include unreachable states or transitions and in-
complete definition of the transition relation. Transaction correctness includes
properties related to the temporal behavior of the considered transaction model.

A role state is unreachable if there is no maximal path in which it is accessed.
The set of unreachable states is computed by subtracting the set of all accessed
states in the traversed maximal paths from the set of the defined role states. If
the result is not the empty set, the unreachable states are reported. A transition
is unreachable if it does not occur in any maximal path. The set of unreachable
transitions is computed in a similar manner.

If path explorer accesses a role state s where the role receives an event e
for which there is no defined transition (step 1 in Fig. 3), then the role state
machine is incomplete. In this case, ACID Model checker reports the path where
the algorithm discovered the aforementioned omission. Incomplete definitions
are reported as soon as they are detected, without awaiting the computation of
all maximal paths. From our experience, incomplete definition was a frequent
source of errors in the developed transaction models. In the absence of the
proposed model-driven approach, an incomplete transition relation would cause
incorrect behavior at runtime. It is generally difficult to attribute the incomplete
transition relation as the cause of the erroneous behavior, based solely on the
observed effects in the execution of the transactions.

In ACID Model checker, protocol specific correctness properties are ex-
pressed by user-defined functions of type path → Bool written in Haskell. Prop-
erty specifications are defined by reusing the functions of Table. 4, combined
with the boolean operators and, or, not etc.

Safety properties express that an undesirable event never occurs [3]. Func-

11

tion f : path → Bool should return True, if the property of interest does not
hold in the given path.

Liveness properties express that some particular event will ultimately occur.
A function f : path→ Bool should return True, if the expected event does not
occur in the given path.

Reachability correctness properties express that some particular situation
can be reached. In essence, a reachability property is the negation of a safety
property, i.e. the function f : path→ Bool should return True, if the property
of interest holds.

Let checked paths = {p ∈ max paths : f(p) = True} be the set of maxi-
mal paths, with respect to some correctness property. For safety and liveness
properties, if checked paths is not empty, its elements represent counterexamples
where the property does not hold. Reachability properties do not hold if the set
is empty.

Correctness property 1 Workers conform to the coordinator decision (ei-
ther commit or abort). This correctness property should be verified for the basic
2PC protocol [15], as well as for the nested transaction model. The following
two functions return TRUE for the paths, where the decision of the coordinator
is not applied by the worker (negation of property 1).

both_commit p = has_role "w" p &&

has_state (State "ST_COMMIT_LOG" "c") p &&

has_not_event (Event "COMMIT" "c" "w") p}

both_abort p = has_role "w" p &&

has_state (State "ST_AKN_ABORT" "c") p &&

has_not_event (Event "ABORT" "c" "w") p

Two similar functions verify that the same property also holds for the sub-
transaction coordinator (cn) and its corresponding worker.

Correctness property 2 Workers (and coordinators) reach exactly one of
the two possible decisions, abort or commit. The following function verified
property 2 for the worker role. In a similar manner, the same property was also
verified for the coordinators (c and cn).

worker_finished p = has_role "w" p &&

has_event (Event "COMMIT" "c" "w") p &&

has_event (Event "ABORT" "c" "w") p

Correctness property 3 If the top-level transaction aborts, sub-transactions
are also aborted [5].

top_nested_abort p = has_role "cn" p &&

has_event (Event "ABORT" "c" "cn") p &&

has_not_state (State "ST_AKN_ABORT" "cn") p

12

Correctness property 4 The top-level transaction commits, after sub-
transactions are completed (committed or aborted) [5]. In a path where the
property is violated the coordinator of the sub-transaction would decide to com-
mit or abort before the top-level coordinator. The following function returns
TRUE for such paths.

top_after_nested p = has_role "cn" p &&

(before_st (State "ST_AKN_COMMIT" "c")

(State "ST_AKN_COMMIT" "cn") p

|| before_st (State "ST_AKN_COMMIT" "c")

(State "ST_AKN_ABORT" "cn") p)

Correctness property 5 A sub-transaction can abort independently from
the top-level transaction (top-level can commit even when sub-transaction aborts)
[5]. This is a reachability property and holds if there is at least one path for
which the following function returns TRUE.

independent_abort p = has_role "cn" p &&

has_state (State "ST_AKN_COMMIT" "c") p &&

has_state (State "ST_AKN_ABORT" "cn") p

Correctness property 6 All roles eventually commit or abort the trans-
action, even in the presence of communication or system failures (liveness prop-
erty).

coord_commit_abort p = has_not_state (State "ST_AKN_ABORT" "c") p &&

has_not_state (State "ST_AKN_COMMIT" "c") p

7 CODE GENERATION

Although code generation is specific to the ACID Sim Tools, the same principles
apply in any transaction management system. Transactions are monitored by
the generated code in terms of the states traversed in the role state machines.
Upon a state transition the associated operations are invoked. In ACID Sim
Tools, these operations use simulated services like log recording in stable storage,
handling of lock requests for concurrency control and so on.

Upon a transaction request, a new instance of the class CoordinatorTransactionFsm
is created for monitoring the execution of the transaction. This instance has ac-
cess to the transaction structure, the number of transaction managers expected
to acknowledge the decision and two sets of identifiers: the first contains those
that have acknowledged the decision and the second those that voted for the
transaction outcome. The participants of the newly arrived transactions that
are not coordinators create an instance of TransactionFsm that stores runtime
information relevant to the worker role.

13

for each role r in the model do

if r is the event receiver then

for each event ev that can be accepted by r do

if ev is the received event then

if transition from the current state s for event ev is deterministic then

set the current state of the role to the state defined by the transition

invoke the operations associated with the transition

else

let s‘ be the result of the user-provided method that resolves non-determinism

for each state s‘‘ accessible by ev from s do

if s‘‘ = s‘ then

set the current state of the role to the state defined by the transition

invoke the operations associated with the transition

Figure 4: Code template for transaction execution

When there are two or more transitions from a given state triggered by the
same event, an appropriate handler method is expected to return the next state,
thus resolving non–determinism. The method name is automatically created
by concatenating the name of the outgoing state with the event name and ac-
cepts as parameter either a CoordinatorTransactionFsm or a TransactionFsm.
Information stored in the monitor instance is used by the method to deter-
mines the next role state. For example, for the non–deterministic transitions
for state ST VOTES and event VOTED, the generated handler method is called
resolveVotesVoted. The invoked method inspects the number of participants
expected to vote (stored in the monitor instance) and decides if all participants
have voted or there are still pending votes, in which case the role state machine
remains in the same state.

Fig. 4 introduces the pseudocode of the template used for generating the
implementation of the verified transaction model. The generated code handles
transaction events for all roles and invokes the operations associated with state
transitions as well as the user–defined methods that resolve non-determinism.

8 RELATED WORK

There are several proposals for the specification of (advanced) transaction mod-
els and the verification of their properties, although we are not aware of works
that combine verification with automatic code generation. Most existing ap-
proaches presume knowledge of a proprietary formal language and they support
a proof-theoretic verification instead of our algorithmic model checking approach
which is based on an intuitive state machine definition.

In [14], communicating I/O automata are used for specifying the behavior of
the entities involved in nested transaction processing. Correctness properties are
established by mathematical proofs. However, the article focuses on concurrency
control and serializability properties, which are not addressed in present work.

14

From this point of view our approach is complementary to the one presented in
[14].

In [10] the authors apply the Temporal Logic of Actions (TLA) [13] for stan-
dardizing the Web Services Atomic Transaction protocol (WS-AT) that is based
on the well-known two-phase commit (2PC) protocol with some non-standard
features. Correctness of the protocol is expressed by invariance of a state pred-
icate, which is verified by the TLC model checker. Model implementation is
not a concern, since the primary goal is precision in the standard specifying the
complete behavior of the WS-AT protocol.

ACTA [5] is a framework used to specify and reason about the effects of
transactions on objects and the interactions between them. In [6] the properties
of nested transactions are investigated, as well as other advanced transaction
models.

From the aforementioned related work, our proposal resembles the TLA
based approach that also targets verification of safety properties. However, in
our case one can check liveness and reachability properties as well. If the cost for
conducting formal proofs of advanced transaction models can be afforded, then
the broadest in scope in terms of the properties proved reasoning alternative is
the one offered by ACTA.

9 CONCLUSION

There is a growing interest for developing advanced transaction models that
relax the typical ACID properties of the 2PC protocol. We introduced a model-
driven development approach that incorporates intuitive specification and algo-
rithmic verification of transaction properties, as well as automatic generation of
event handling code in a transaction model implementation. We justified the
need of non-determinism, when specifying a transaction model and we developed
techniques that resolve it during model verification and code generation.

The proposed approach was successfully applied to the verification of the
2PC protocol [15] and its implementation in the ACID Sim Tools simulator
[16], for studying the performance and recovery tradeoffs in transaction pro-
cessing architecture [17, 18]. In this article, we applied the approach to the
development of an implementation of the nested transaction model. This gave
us the opportunity to study a wider range of correctness properties that were
grouped into three categories namely safety, reachability and liveness.

Also, due to the fact that the studied model is more complex than the one
developed for the 2PC protocol, we realized the need to impose constraints on
event generation by defining conditions over the execution history. We call these
conditions guards and we will provide syntactic support in the next version of
the ACID Model Checker and Code Generator. Another future research goal is
the development of the presented model checking algorithm towards integrating
advanced state space reduction techniques.

15

Aknowledgments: We acknowledge the anonymous referees for their help-
ful comments for improving this article.

References

[1] ACID Model Checker & Code Generator.
http://mathind.csd.auth.gr/acid/html/ [27 September 2010].

[2] Baier, C, Katoen, J-P. Principles of model checking The MIT Press, Cam-
bridge, MA, 2008.

[3] Berard B. et al. Systems and software verification Springer, Berlin, Heidel-
berg, 2001.

[4] Chrysanthis PK, Pitoura E. Data broadcasting, caching and replication in
mobile computing. In Encyclopedia of Database Systems 2009; 557–561.

[5] Chrysanthis, P, Ramamritham, K. ACTA: A framework for specifying
and reasoning about transaction structure and behavior. In Proceedings
of the the 1990 ACM SIGMOD International Conference on Management
of Data, ACM Press, NY, 1990; 194–203.

[6] Chrysanthis P, Ramamritham K. Synthesis of extended transaction models
using ACTA. ACM Transactions on Database Systems 1994; 19(3):450–
491.

[7] Clarke EM, Grumberg O, Peled DA. Model Checking The MIT Press, Cam-
bridge, Massachusetts, 2000.

[8] Eliot J, Moss B. Nested transactions: and approach to reliable distributed
computing Tech. Report MIT/LCS/TR-260, Massachusetts Institute of
Technology, 1981.

[9] Holzmann GJ. The SPIN model checker primer and reference manual
Addison-Wesley, Boston, MA, 2003.

[10] Johnson JE, Langworthy DE, Lamport L, Vogt F. Formal specification of
a web services protocol. Electronic Notes in Theoretical Computer Science
2004; 105:147–158.

[11] Jones P, Simon L et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming 2003; 13(1):0–255.

[12] Katsaros P, Angelis L, Lazos C. Performance and effectiveness trade-off
for checkpointing in fault tolerant distributed systems. Concurrency and
Computation: Practice and Experience 2007; 19(1):37–63.

[13] Lamport, L. The Temporal Logic of Actions. ACM Transactions on Pro-
gramming Languages and Systems 1994; 16(3):872–923.

16

[14] Lynch NA, Merritt M. Introduction to the theory of nested transactions. In
Proceedings of the International Conference on Database Theory, Vol 243,
LNCS. Springer, London, UK, 1986; 278–305.

[15] Mentis A, Katsaros P. The ACID model checker and code generator for
transaction processing. In Proceedings of the 2009 High Performance Com-
puting & Simulation Conference (HPCS), IEEE Press, 2009; 138–144.

[16] Mentis A, Katsaros P, Angelis L. ACID Sim Tools: A simulation frame-
work for distributed transaction processing architectures. In Proceedings
of the 1st International Conference on Simulation Tools and Techniques
for Communications, Networks and Systems (SimulationWorks Industry
Track), ICST, 2008.

[17] Mentis A, Katsaros P, Angelis L. Synthetic metrics for evaluating perfor-
mance of software architectures with complex trade-offs. In Proceedings of
the 35th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), IEEE Computer Society, Los Alamitos, CA, 2009;
237–242.

[18] Mentis A, Katsaros P, Angelis L, Kakarontzas, G. Quantification of inter-
acting runtime qualities in software architectures: insights from transaction
processing in client-server architectures. Information and Software Technol-
ogy 2010; 52(12):1331–1345.

[19] Serrano-Alvarado P, Roncancio C, Adiba M. A survey of mobile transac-
tions. Distributed and Parallel Databases 2004; 16(2):192–230.

[20] Stahl T, Volter M. Model-driven software development: Technology, Engi-
neering, Management Wiley, Chichester, UK, 2005.

[21] Veijalainen J, Terziyan V, Tirri H. Transaction management for m-
commerce at a mobile terminal. Electronic Commerce Research and Ap-
plications 2006; 5(3):229–245.

[22] Wang T, Vonk J, Kratz, B, Grefen P. A survey on the history of transac-
tion management: from flat to grid transactions. Distributed and Parallel
Databases 2008; 23(3):235–270.

[23] Weikum G, Vossen G. Transactional Information Systems Morgan Kauf-
mann Pub., San Francisco, 2002.

17

	1 INTRODUCTION
	2 MODEL-DRIVEN DEVELOPMENT OF NESTED TRANSACTIONS PROCESSING
	3 ROLE SPECIFICATION
	4 SPECIFICATION OF TRANSACTION EVENTS
	5 PATH EXPLORATION
	6 VERIFICATION OF TRANSACTION CORRECTNESS PROPERTIES
	7 CODE GENERATION
	8 RELATED WORK
	9 CONCLUSION

