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Abstract

The logical errors in programs causing deviations from the intended functional-

ity cannot be detected by automated source code analysis, which mainly focuses

on known defects and code vulnerabilities. To this end, we introduce a combina-

tion of analysis techniques implemented in a proof-of-concept prototype called

PLATO. First, a set of dynamic invariants is inferred from the source code that

represent the program’s logic. The code is instrumented with assertions from

the invariants, which are subsequently valuated through the program’s sym-

bolic execution. The findings are ranked using a fuzzy logic system with two

scales characterizing their impact: (i) a Severity scale for the execution paths’

characteristics and their Information Gain, (ii) a Reliability scale based on the

measured Computational Density. Real, as well as synthetic applications with

at least four different types of logical errors were analyzed. The method’s ef-

fectiveness was assessed based on a dataset from 25 experiments. Albeit not

without restrictions, the proposed automated analysis seems able to detect a

wide variety of logical errors, while it filters out the false positives.
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1. Introduction

The automated detection of program errors and vulnerabilities has mainly fo-

cused on static analysis techniques and software model checking, which have

been found effective for known defects (e.g. Time Of Check - Time Of Use

errors, null pointer dereferences etc.) and some types of exploitable vulnera-

bilities (e.g. unsanitized input data, buffer overflows etc.) [1, 2, 3, 4, 5, 6, 7].

On the other hand, there is not analogous progress on the automated detection

of errors causing deviations from the program’s intended functionality reflected

in the application’s functional requirements, i.e. what the programmer wants

the code to do. Such errors do not follow a priori known patterns of defects

and are commonly referred to as logical errors. A representative example is the

following [8]: ”a web store application allows, using coupons, to obtain a one-

time-discount-per-coupon on certain items; a faulty implementation can lead to

using the same coupon multiple times, thus eventually zeroing the price (e.g.

by pressing the ”BACK” button, then the ”FORWARD” one and re-entering a

coupon code in the form)”.

The automated detection of logical errors in an Application under Test

(AUT) will have to be based on an abstraction of its operational logic. To

this end, we opt the dynamic analysis of representative execution scenarios of

the AUT aiming to infer dynamic invariants, i.e. properties that are likely

true at a certain program point or points. Such invariants reveal information

about the program’s aimed behaviour, its particular implementation and its en-

vironment (program inputs) [9]. The inferred dynamic invarinats are used to

instrument the code with assertions that are subsequently evaluated through

symbolic execution of the AUT to detect potential logical errors. This form of

analysis cannot be neither sound, nor complete, and for this reason we propose

a post-processing of the findings, in order to come up with a meaningful result.

The outlined method has been implemented in a prototype tool called PLATO

and consists of the following steps:

1. The dynamic analysis of the AUT takes place with the Daikon tool [9]
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that monitors the execution of scenarios; monitored scenarios have to ad-

equately cover the intended functionality of the AUT, as specified in its

user manual or in additional documentation of its business logic.

2. By analyzing the AUT’s source code and its Abstract Syntax Tree, PLATO

gathers: (i) execution path branching points and (ii) methods that play a

key role in multiple code vulnerabilities from the classification in [10].

3. The dynamic invariants from Step 1 are then filtered based on the infor-

mation derived from Step 2. Only the invariants with variables that affect

the execution flow or are used in “dangerous” methods are kept.

4. An instrumented version of the AUT with assertions encoding the afore-

mentioned invariants is symbolically executed. PLATO relies on custom-

made extensions of the Java PathFinder (JPF) [6, 7] to detect possible

logical errors, i.e. assertions that are violated in execution paths having

the same prefix with other execution paths, in which they are satisfied.

5. PLATO combines the outputs from Steps 3 and 4 through a classification

approach that ranks the assertions indicating possible logical errors. Two

fuzzy membership classifiers, namely the Severity and the Reliability, are

used, for classifying the overall Risk of the detections. The Severity rank-

ing is based on a classification technique called Information Gain, while

the Reliability depends on the measured Computational Density.

The same combination of tools was also used in a related method [8] and earlier

versions of our analysis [11, 12, 13], but in the current work we have eventually

kept only basic concepts from our previous research. The dynamic invariants

are now evaluated using new formal classifiers, which replace those in [11, 12, 13]

and the spurious invariants are minimized, due to the tool’s novel classification

system.

In overall, the main contributions of this article are summarized as follows:

1. We present PLATO, a proof-of-concept prototype for detecting logical

errors, race conditions and code vulnerabilities in AUTs.
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2. We show how most types of information flow dependent logical errors

are detected by classifying invariant violations and their corresponding

execution paths.

3. We evaluate PLATO on three AUTs with logical errors that manifest dif-

ferent types of vulnerabilities: (i) A multi-threaded airline control ticketing

system that has been previously used in a controlled experiment for pro-

gram analysis techniques. (ii) A real application that handles field sensors

in a SCADA system with logical errors found in NIST’s test suite from [14].

(iii) An aggregated AUT test-bed for evaluating PLATO’s Severity clas-

sifications on code examples from NIST’s test suite.

A first description of the analysis implemented in PLATO was published in [15].

The present article is a more complete exposition of the analysis framework

and in addition presents a correlation analysis with data for invariant violations

from 25 experiments. The performed experiments are based on 8 different AUTs

along with their mutated variants and the analysis results show that invariant

violations are correlated with the high severity values computed by PLATO.

The paper is structured as follows. In Section 2 we review the related

work. Section 3 introduces the analysis building blocks. Section 4 discusses

the method’s workflow and its implementation in PLATO. The performed ex-

periments and the correlation analysis results are described in Section 5. Finally,

the paper concludes with a critical review of the achievements, along with com-

ments on the method’s applicability and a comparison with other approaches.

2. Related Work

The logical errors have been also researched in the field of advanced debugging

techniques, but in debugging we do not aim to a fully automated program

analysis. For example, delta debugging [16] relies on an hypothesis-trial-result

loop towards isolating failure causes by systematically narrowing down failure-

inducing circumstances.
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Another related area of research is program slicing [17], a technique that has

been also used for logical error detection [18]. These techniques are not scaled

easily and they do not take into account the strength of dependencies between

the program’s entities to assess their likelihood of being the cause of a failure.

In effect, with program slicing we can only find the program’s entities related

to some failure, but not its cause [19].

In [20], the authors propose an automated software testing approach based

on the generation of new test inputs to direct execution along alternative pro-

gram paths. This approach can only detect logical errors leading to program

crashes, assertion violations, and non-termination, whereas our method relies

on directed dynamic monitoring of executions in order to profile the semantic

differences between similar execution paths.

The principles of logical error detection by evaluating dynamic invariants [9,

21] were first introduced in [8]. Only certain types of logical errors were ad-

dressed for web applications, whereas that approach was driven by symbolic

input for model checking the dynamic invariants within the AUT. Our work dif-

fers in the following aspects: (i) we aim to detect logical errors, for any type of

standalone application with inputs that can range over infinite domains (in [8],

only input in the form of a web.xml file was considered), (ii) in addition to

evaluating dynamic invariants for the method exit points, we evaluate invari-

ants for the method entry points, which may also manifest deviated behaviour,

(iii) many more invariants have to be handled for standalone applications, and

therefore we introduce a risk-based system for their classification, in order to

filter the possible false positives (our classifier is trained using collections of

known code vulnerabilities).

In [22], the authors introduce a technique based on symbolic execution to im-

prove the validity of dynamic invariants computed by Daikon. Such an approach

is an interesting prospect towards refining and filtering spurious invariants in

PLATO. However, the work in [22] aims to the generation of new test cases for

Daikon, whereas PLATO detects logical errors that can cause malfunctioning

or code vulnerabilities in most AUTs. Therefore, we apply invariant filtering to
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keep only the invariants that can lead to serious vulnerabilities.

3. Analysis Building Blocks

We present the analysis building blocks of PLATO: (i) the generation of likely

invariants by dynamic analysis for profiling the AUT’s functionality, (ii) the

symbolic execution of the instrumented AUT with dynamic invariants and (iii)

the classification of the results with our fuzzy logic system.

3.1. Dynamic invariants for profiling the functionality of an AUT

Dynamic invariants are logical rules for variables, such as p!=null or var

=="string", which hold true at certain point(s) of a program in all monitored

executions. Daikon [9, 21] is a well-known tool for the dynamic analysis of

programs towards computing likely invariants.

When focusing on representative use-case scenarios, while taking into ac-

count all possible restrictions and prerequisites for an AUT, such an analysis

and the generated invariants are used for profiling the intended functionality.

If the AUT’s use cases are provided in a use-case diagram, an adequate cov-

erage of the AUT’s functionality can be achieved by monitoing executions for

each possible flow of events, i.e. diagram path in all documented use cases [23].

For example, to cover a branching-point of a use case, we need to analyze with

Daikon at least two different execution scenarios. All possible combinations of

input should be tested, which can be derived from the business rules associated

with the AUT’s functions. For example, let us consider an AUT that can ac-

cept commands used to control pressure pipes. Daikon’s analysis would have to

include all possible combinations of commands.

3.2. Verification of dynamic invariants for logical error detection

Any imperative program denoted by P = (X,L, `0, T ) [24] defines a set X of

typed variables, a set L of control locations, an initial location `0 ∈ L, and a

set T of transitions. The state of P is a valuation of the variables in X at some

control location during the program execution. Each transition τ ∈ T is a tuple
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(`, ρ, `′), where `, `′ ∈ L are control locations, and ρ is a constraint over free

variables defined in X ∪ X ′, with X the program’s state variables at control

location ` and X ′ the state variables at control location `’.

NIST’s recommendation in [25] states that the impact of a source code point

can be captured by: (i) the input vectors, i.e. the program’s entry points and

variables representing user input, (ii) the branch conditions and (iii) the sinks,

i.e. points with methods using variables with user input. Therefore, the set

L comprises the points that determine the execution control flow (conditional

expressions in branches and loops) and those that are critical for the program’s

fuctionality (methods that manipulate user input).

Let us denote with u.X the set of all possible states for P . For a constraint

ρ over X∪X ′ and a pair of states (s, s′) ∈ u.X×u.X ′, we write (s, s′) |= ρ if the

variables valuations in X and X ′ satisfy the constraint ρ. A finite computation

of P is any sequence (`0, s0), (`1, s1), ..., (`k, sk) ∈ (L × u.X), where `0 is the

initial location, s0 is the initial state that assigns values to all variables in X,

and for each i ∈ {0, ..., k − 1}, there is a transition (`i, ρ, `i+1) ∈ T such that

(si, si+1) |= ρ. A location ` is reachable, if there is some state s, such that (`, s)

appears in a computation. An execution path or, simply, path of the P is any

sequence π = (`0, ρ0, `1), (`1, ρ1, `2), ..., (`k−1, ρk−1, `k) of transitions.

Definition 1. A logical error manifests if there are execution paths πi and

πj with the same prefix, such that for some k ≥ 0 the transition (`k, ρk, `k+1)

results in states (`k+1, si), (`k+1, sj) with si 6= sj and for the dynamic invariant

rk, (si−1, si) |= rk in πi and (sj−1, sj) 6|= rk in πj , i.e. rk is satisfied in πi and

is violated in πj .

PLATO converts the dynamic invariants into Java assertions that are used

for instrumenting the source code. Let us consider that the invariant p!=null

holds true at the entrance of a method. PLATO creates the assertion [assert

(p!=null);] and instruments it at the beginning of that method. Dynamic

invariants are instrumented according to two filtering criteria: (i) invariants

that concern variables which affect the execution flow (conditionals in branches
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and loops) and (ii) invariants related to methods which are tied to known code

vulnerabilities [26], [27]. The latter takes place using a taxonomy in PLATO

(Section 4.3) that classifies methods according to their danger level based on [26],

the Oracle’s Java Taxonomy [28, 29] and reports from code audits [4]).

The execution paths are monitored with a state listener inside JPF, called

PlatoListener. Our listener processes a log of the program’s assertions,

along with their valuations for the checked execution paths, as well as the execu-

tion branches in order to execute different transitions, while JPF is backtracking

to previous states. For any dynamic invariant rk, JPF’s symbolic execution uses

PlatoListener to gather all execution paths in which the invariant is evalu-

ated. For some state sj in a path, such that (sj−1, sj) 6|= rk, we are interested

to another path with the same prefix, such that si 6= sj and (si−1, si) |= rk.

JPF’s symbolic execution can start propagating information from any point

in the program via attributes associated with program variables, operands etc [30].

During JPF’s path traversal PlatoListener monitors all visited states to

evaluate the asserted invariants. It utilizes JPF’s implementation of the Choco

constraint solver/decision procedure1, for linear/non-linear constraints [32].

3.3. Fuzzy logic classification of invariant violations

The criterion of Definition 1 simply could indicate a logical error that in no way

is located necessarily at the point of the violated invariant. Moreover, the dy-

namic analysis by Daikon is neither sound, not complete; an invariant violation

does not provide sufficient evidence for characterizing the finding as a logical

error. The true logical errors may have varying impacts to the functionality

of the AUT, while the program’s execution might or might not be diverted to

exploitable program states. Thus, violations of asserted invariants will have to

be assessed based on various characteristics and their position within the source

code.

PLATO uses two advanced classification functions and a fuzzy set theory

1Choco [31] is a Java library for constraint programming.
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approach for classifying the invariant violations found. For each detection, the

result is a quantitative truth value ranging between 0 and 1, which measures

the error’s impact to the execution of the AUT. Such a truth value corresponds

to a membership percentage in a fuzzy set [33], where the selected fuzzy sets

represent different levels of danger. Thus, a logical error that does not affect

critical functionality and does not divert the execution to exploitable states is

not characterized as having a high impact. On the other hand, a logical error

that for example is found in an if-statement of a user authentication module

could lead to exploitable program states and it is therefore classified as extremely

dangerous. Thus, violations of asserted invariants are classified into two different

groups of sets, along with the corresponding execution paths:

• the Severity sets quantifying the danger level, i.e. the impact that an

exploitable error would have;

• the Reliability sets, which quantify the overall reliability based on the

size and the complexity of the code (measured by the Cyclomatic Density

metric) that is traversed along an execution path.

PLATO’s ratings are used to implement criteria that take into account the

possibility of a true logical error in some transition. This is the only way to

characterize a false positive, since true logical errors cannot be characterized

based on predefined error patterns. Moreover, PLATO’s classification system

provides a means to cope with the large sets with execution paths, which have

to be processed. The code auditor can thus focus only to those path transitions

that appear having high ratings.

3.3.1. Severity

The severity measurement plays the role of a code auditor who inspects the pro-

gram by tracing execution paths with specific characteristics to find flaws. The

traced paths include: (i) the program’s input vectors, (ii) the branch conditions

with variable checks and (iii) the sinks.
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For an execution path π, Severity(π) measures π’s membership degree in

a Severity fuzzy set that reflects how dangerous is a logical error, if it were to

manifest in path π, i.e. its relative impact.

Definition 2. Given the execution path π, we define

Severity(π) = ν ∈ [1, 5]

to measure the severity of π on a Likert-type scale from 1 to 5.

In a Likert-type scale [34], a measurement specifies the level of danger of

a logical error and the scale’s range captures the intensity of its impact in the

program’s execution flow. An execution path π is weighted based on how its

transitions and the corresponding methods affect the program’s execution. The

execution paths are classified in one out of five Severity categories ranked from

one to five, based on their measured Statistical Information Gain (aka Expected

Entropy Loss) [35]. Categories are then grouped into Fuzzy Logic sets using

labels: high severity (4-5), medium (3) or low (1 or 2).

The Expected Information Gain is very successful in feature selection for

information retrieval [36]; data are classified based on specific selected features

while non-informative terms are removed according to corpus statistics [37].

The Information Gain has been also used in [38] and [39] for classifying

source code, but in our analysis it allows classifying execution paths and their

corresponding methods into danger levels. More specifically, PLATO looks for

specific characteristics (features) based on a taxonomy of methods that have

been reported to be tied to known types of vulnerabilities [26],[40]. The taxon-

omy includes five subsets of methods involved in similar types of vulnerabilities

and therefore considered to have the same level of impact. A number of the

Likert scale has been assigned to each set that depicts the danger level: set 1

contains the least dangerous methods while set 5 contains the most dangerous

methods, which are known to be involved in many critical vulnerabilities. For

example, the method System.exec() is known to be tied to OS code injec-

tion vulnerabilities [26] and it is therefore grouped into set 5. Table 1 provides

example methods of the taxonomy and their classification into its sets.
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Rank Example methods Set of methods

Low javax.servlet.http.Cookie (new Cookie()) Set 1 (Level 1)

Low java.lang.reflection.Field.set() Set 2 (Level 2)

Medium java.io.PipedInputStream (new PipedInputStream()) Set 3 (Level 3)

High java.io.FileInputStream (new FileInputStream()) Set 4 (Level 4)

High java.sql.PreparedStatement.prepareStatement() Set 5 (Level 5)

Table 1: Severity classification examples - User input methods

The methods in Table 1 are used for user input in the AUT and their classi-

fication ranks reflect the different danger levels. For example, an invocation of

javax.servlet.http.Cookie() creates a Cookie object to hold text data.

This input vector may lead to various vulneratilities, whose impact varies from

exposure of information (CWE-315, CWE-539, CWE-614) up to serious XSS

injection attacks (CWE-79) [10]). However, the creation of an object does not

provide enough evidence to raise an alarm, hence this method is ranked as a

Level 1 danger. On the other hand, the java.sql.PreparedStatement.

prepareStatement() is ranked as a very dangerous (Rank 5) method, since

malicious data concatenated into the parameters of the prepareStatement()

invocation result directly in a SQL Injection vulnerability. The technical details

of our taxonomy of methods are further discussed in Section 4.3.

For each execution path, every set gets its own Information Gain measure-

ment. High information gain values mean that the set is an effective discrimina-

tor [39]. Severity (π) thus shows which set of the taxonomy best characterizes

the path π and it is the set that exhibits the highest overall Expected Informa-

tion Gain (EIG). Since each set is tied to a specific level of impact (danger),

then this level also indicates the danger level of the execution path.

The related theory comes from [35]. Let Pr(C) be the probability of a tran-

sition in the path that indicates that the path is considered dangerous (C is the

negation of C ). Pr(C) is quantified as the ratio of the dangerous methods over

the total number of methods found in the path [39]. Let f be the event that a
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specific method or statement exists in the path from those included in PLATO’s

taxonomy and f its negation. The prior entropy e is the probability distribu-

tion that expresses how certain we are that an execution path is considered

dangerous, before f is taken into account:

e = −Pr(C) lgPr(C)− Pr(C) lgPr(C) (1)

where lg is the logarithm with base 2. The posterior entropy, when f has been

detected in the path is

ef = −Pr(C|f) lgPr(C|f)− Pr(C|f) lgPr(C|f) (2)

whereas the posterior entropy, when the feature is absent is

ef = −Pr(C|f) lgPr(C|f)− Pr(C|f) lgPr(C|f) (3)

Thus, the expected overall posterior entropy (EOPE) is given by

EOPE = efPr(f) + efPr(f) (4)

and the EIG for f is

EIG = e− efPr(f)− efPr(f) (5)

The EIG is always non-negative and higher scores indicate more discriminatory

features. The higher the EIG for a given set of methods f, the more certain we

are that this set f best describes the execution path.

3.3.2. Reliability

The Reliability function quantifies how reliable is an execution path, i.e. the

likelihood of manifestating an exploitable behaviour in a variable usage.

Definition 3. Given the execution path π, with a set of state variables, we

define Reliability as

Reliability(π) = ν ∈ [1, 5]

to measure the reliability of π on a Likert scale from 1 to 5.
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Similarly to the Severity function, our fuzzy logic system classifies execution

paths in categories: highly safe (4-5), medium (3) or low (1 or 2).

The inherent risk in an AUT is connected to the complexity of its source

code [41]. A broadly accepted measure is the well-known Cyclomatic Complex-

ity [42], which however does not take into account the size of the analyzed code.

The original McCabe metric is defined as

. V (G) = e− n+ 2

where V (G) is the cyclomatic complexity of the flow graph G of a program, e

is the number of edges and n is the number of nodes. V (G) can be computed

by applying the following steps [43]:

1. increment by one for every IF, CASE or other alternate construct;

2. increment by one for every DO, DO-WHILE or other repetitive construct;

3. add two less than the number of logical alternatives in a CASE;

4. add one for each logical operator (AND, OR) in an IF.

A more effective evaluation of the inherent risk of an AUT can be based on a

combination of the (cyclomatic) complexity and the code’s size [44]. Modules

with both a high complexity and a large size tend to have the lowest reliability.

Modules with smaller size and high complexity are also a reliability risk, because

they feature very terse code, which is difficult to change or to be modified.

PLATO implements heuristics that assign Reliability ratings to execution

paths through an analysis based on McCabe’s algorithm and the computation

of the Cyclomatic Density. This is given as the ratio of the Cyclomatic Com-

plexity to the logical lines-of-code, which measures the number of executable

“statements” in the path (some statements like for example the variable assign-

ment are excluded) [45]. The higher the Cyclomatic density value, the denser

the logic. Thus, low output values from the Reliability classification function

reflect reliable paths, whereas high values reflect complex, error-prone code.

Related research in [44, 45] propose that Cyclomatic Density values should be

in the range of .14 to .42, in order to keep them simple and comprehensible.

13



Table 2 depicts the classification categories applied for execution paths when

using the Reliability classification function.

Rank Example of classified methods Category

Safe Cycl. Density <= 0.1 1

Safe
Cycl. Complexity Density >0.1 &&

Cycl. Density <= 0.2
2

Medium
Cycl. Complexity Density >0.2 &&

Cycl. Density <= 0.3
3

Error-Prone
Cycl. Complexity Density >0.3 &&

Cycl. Density <= 0.4
4

Error-Prone Cycl. Density >0.4 5

Table 2: Reliability categories based on Cyclomatic Density values

3.3.3. Combining Severity and Reliability ratings to quantify Risk

According to OWASP [26], the standard risk formulation is an operation over

the likelihood and the impact of a finding:

Risk = Likelihood ∗ Impact

An estimate of the risk associated with an execution path π can be computed

by combining Severity(π) and Reliability(π) through applying an aggregation

operation. Such an operation can combine several fuzzy sets to produce a single

fuzzy set. Risk ratings have the following interpretation: for two execution

paths π1 and π2, if Risk(π1) > Risk(π2), then π1 is more dangerous than π2, in

terms of the likelihood of these paths to divert execution to non-intended states

and to cause an unexpected behaviour. The Risk rank of an execution path π

is calculated using fuzzy logic’s IF-THEN rules (Figure 1).

The membership sets of our fuzzy logic classification system are shaped as

follows. We use pairs of the form (a, b), where a depicts the rank value and b

depicts the membership percentage of that rank in the corresponding set. For

example, Severity −Medium = (2.5, 1) means that an output rank of 2.5 is a
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Figure 1: Example of a Fuzzy Logic rule

member of the MediumSeverity set with 100% certainty. In this way, PLATO

plots ranks 1 to 5 into membership sets. The rest of all intermediate values are

plotted based on points (a, b) as follows:

1. The Severity set: the [1..5] impact scale is partitioned into groups: Low

=(0,1) (3,0), Medium =(1.5,0) (2.5,1) (3.5,0), High =(3,0) (5, 1).

2. The Reliability set: the [1..5] scale is partitioned into groups: Low =(0,

1) (1, 1) (3,0), Medium =(0, 0) (3, 1) (5, 0), High =(0,0) (5,1).

Thus, the fuzzy estimation of Risk values for a detected logical error is computed

from tables with all possible values for Severity and Reliability. Initially, the

appropriate IF-THEN rules are invoked. The result is essentially a membership

function and a truth value controlling the output set, i.e. the linguistic variables

Severity and Reliability. The membership percentages concerning Risk indicate

the Risk group (Low, Medium or High) in which a logical error belongs to.

Howver, this is still a fuzzy result. A “defuzzification” step [46] is applied at the

end to get a single quantitative value. In this step, all IF-THEN output results

are combined to give a single fuzzy Risk value for a logical error detection.

PLATO derives the aggregated Risk output using the Center of Gravity

technique: a single value is computed from the two fuzzy sets and their corre-

sponding membership degrees, i.e. the involvedness of each fuzzy set presented

in Likert values. Severity and Reliability values are grouped into the same 3

sets as those in the Severity and Reliability scales (Low, Medium, High), with

an approximate width of each group of (5/3) = around 1,5 (final ranges: Low

in [0, 2], Medium in (2, 3.5] and High in (3.5, 5]).

Table 3 shows the fuzzy logic output for Risk, based on the aggregation of

Severity and Reliability. Thus, when Severity is “Medium” but Reliability is

“Error-Prone”, then Risk is considered as HIGH, since Severity output “shifts”
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towards its worst-case, due to the reliability output.

Severity

Reliability
Low Medium High

Safe Low Low Medium

Medium Low Medium High

Error-Prone Medium High High

Table 3: Severity x Reliability = R - Risk sets

High Severity rankings have more weight than Reliability rankings: right-

most maximum values are taken into account in set aggregation, which assign

more weight on Severity values (Reliability ratings provide only a generic view

of the execution path’s overall complexity).

Our Fuzzy Logic system has been implemented using the jFuzzyLogic library

[47]. The technical details can be found in [47], [12] and [13].

4. Method and tool architecture

4.1. The method’s workflow

The analysis building blocks of Section 3 are part of a workflow for the detection

of logical errors with the following steps:

1. Use case scenarios. We assume the existence of use case scenarios that

exercise the functionality of the AUT. These use-case scenarios will have

to cover the functionality of the AUT sufficiently.

2. For each use-case scenario, a dynamic analysis with the Daikon tool is

performed. A set of inferred dynamic invariants is obtained that charac-

terize the functionality of the AUT.

3. The Daikon invariants are loaded in PLATO and are then processed as

follows:

• First, they are filtered, in order to use only those invariants that

refer to the high-risk transitions, i.e. (i) statements that affect the
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program’s execution flow, and (ii) methods connected to the man-

ifestation of exploitable behaviour (e.g. method System.exec()

for executing OS commands with user input).

• The AUT code is instrumented with the remaining invariants in

the form of Java assertions [26].

• The instrumented code is symbolically executed by JPF. A

sufficient number of execution paths have to be covered, far more

than the initially available use-case scenarios. JPF relies on the

PlatoListener in order to detect invariants satisfying Definition 1.

4. PLATO gathers PlatoListener detections and classifies them

into Severity and Reliability levels. A Risk value is then computed using

Fuzzy Logic. The more suspicious an invariant violation and its corre-

sponding execution path is, the higher it scores in the Risk scale.

PLATO accepts input from Daikon (step 2) and automates the source code

analysis in step 3.

4.2. PLATO’s architecture

The analysis building blocks of Section 3 have been implemented in PLATO by

the set of components in Figure 2 with the shown input–output dependencies:

1. PLATO’s source code analysis by the components in orange is based on

the Abstract Syntax Tree (AST) derived by the Java compiler. Compiler

methods such as visitIf() and visitMethodInvocation() have

been overridden for analyzing branch conditions and variable sanitization

checks, as well as to provide information for method invocations, variable

assignments and declarations. The following example shows the meta-data

gathered for the variable sig 3 in a class named Subsystem114:

DECLARE :: 12 :: double :: sig 3 :: 0 :: Main22 :: Subsystem114.java

2. The components in green implement PLATO’s filtering and verification of

inferred dynamic invariants w.r.t. program states (`, s) at certain locations

in code gathered from symbolic execution of the AUT.
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Figure 2: PLATO’s processing flowchart

3. The components in grey implement PLATO’s fuzzy logic system that com-

bines all information gathered from (1) and (2), and assesses the Risk of ex-

ecution paths, based on their position and the analysis findings. The Fuzzy

Logic system has been implemented using the jFuzzyLogic library [47].

4.3. Classifying execution paths

Following Oracle’s JAVA API documented in [27, 28, 29], we propose three

categories of Java methods for the classification of execution paths. Severity

ranking depends on (i) input vectors and (ii) potentially exploitable methods

(sinks), while Reliability ranking is based on (iii) control flow checks.
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A Taxonomony of methods for Severity calculations

We reviewed more than 159 Java methods that were grouped into sets repre-

senting similar danger levels. These sets are used as features in the Information

Gain algorithm. Classified methods were assessed based a set of known security

flaws by NIST [14] and other source code test-beds.

We propose five different sets, corresponding to danger levels from 1 to 5.

The taxonomy was based on rankings of bugs and vulnerabilities recorded in

NIST’s National Vulnerability Database (NVD) [40]2. NVD provides scores

that represent the innate characteristics of each vulnerability using the CVSS

scoring system. Thus, each method has been assigned to the set representing the

appropriate danger level. This was implemented with the following approach:

1. For each method, we checked the lowest and highest ratings of NVD vul-

nerabilities that use it.

2. The characteristics of the identified vulnerabilities were then inputed into

the CVSS 3.0 scoring calculator 3, to compute the lowest and highest

possible vulnerability scores.

3. Each method was then added in the set corresponding to the result of

previous step. Methods detected in vulnerabilities with scores 7 or above

were grouped in Set 5. Methods with score 6 to 7 in Set 4, those with

score 5 to 6 in Set 3, those with score 4 to 5 in Set 2 and those with score

1 to 4 in Set 1.

Example: The java.lang.Runtime.exec() method [29] is widely-known

to be used in many OS command injection exploits. NVD vulnerabilities that

use this method have an impact rating in the range from 6.5 up to 10 out

of 10. For the characteristics of these records, the CVSS scoring calculator

outputted a rating of high (7) to very high (10). Thus, in PLATO’s taxonomy

the System.exec() method was classified in the very high (5/5) danger level.

2bugs were gathered from the NVD repository: https://web.nvd.nist.gov/view/vuln/search-

advanced
3https://www.first.org/cvss/calculator/3.0
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In the following paragraphs, we present the types of Java methods in PLATO’s

taxonomy. Tables 4 and 5 provide examples for each type of method. For the

full taxonomy, the reader can access the link at the end of this article.

• Input Vector Methods

According to [27], for tracing user input inside Java applications we can

monitor only the execution of specific methods. PLATO takes into account

69 methods from those that accept data from users, streams or files [29].

Some of these methods are shown in Table 4 (the asterisk is a wild-card

for all methods included in class).

java.io.BufferedReader.readLine() java.io.BufferedInputStream.read()

java.io.ByteArrayInputStream.read() java.io.DataInputStream.readByte()

java.lang.System.getenv() java.io.StringReader.read()

Table 4: Example group - Input Vector Methods taxonomy

• Exploitable Methods (sinks)

Java methods that act as data sinks are known to be used in code exploits.

Table 5 provides examples of such sink methods. All of them utilize di-

rectly some sort of data that can be considered tainted and, therefore,

dangerous. PLATO takes into account 90 methods gathered from [14].

java.lang.Runtime.exec() java.net.URLClassLoader (new URLClassLoader())

java.lang.System.load() java.sql.Statement.executeQuery()

java.lang.System.setProperty() javax.script.ScriptEngineeval()

java.io.File (new File()) java.net.Socket (new Socket())

Table 5: Example group - Sink methods taxonomy

Statements and methods for Reliability calculations

Reliability calculations take into consideration Java statements that affect the

program’s control flow. The statements shown in Figure 3 include boolean

expressions that determine the control flow [27, 8].
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Figure 3: Example types of methods and statements included in PLATO’s taxonomy

All such methods were gathered from the official Java documentation and are

used for computing the Cyclomatic Density with the algorithm of Section 3.3.2.

4.4. Symbolic execution with PLATO’s JPF listener

PlatoListener is the listener extension implemented in JPF to provide data

and execution paths to PLATO. It monitors all executed program transitions,

looking for invocations of AssertionViolation. Upon having detected one

such invocation, PlatoListener saves the execution path leading to the asser-

tion violation and compares it with all other saved paths to check the criterion

of Definition 1. For every such detection, the values of the assertion variables

are stored, along with the Java Class file and references to transitions executed

prior to the violated assertion.

5. Experimental results

We are not aware of any stand-alone suite or revision(s) of software with a re-

ported set of logical errors to use as a testing ground. Moreover, our experiments

were restricted by the limitations of JPF’s symbolic execution support. For this

reason, we selected real applications with source code having various types of

logical flaws, as well as “synthesized” applications. We present experimental re-

sults from: (1) software artifacts from the SIR Object Database [48] that have

been previously used in controlled experiments on program analysis, (2) a test

based on a suite by NIST [14] with logic flaws leading to exploits found in an

application for handing field sensors in a SCADA system, (3) a test-bed appli-

cation based on the source code of NIST’s Juliet Test Case suite. Moreover, we
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present a correlation analysis with data from another 5 AUTs. First, we provide

a motivating example, in order to introduce our experimentation approach to

validate PLATO’s effectiveness.

5.1. An example AUT

Let us consider an AUT with documented functionality.

Profiling AUT’s functionality in the form of dynamic invariants.

Example 1 : Daikon observes the values of the variables while executing the

program and reports invariants that hold true throughout all AUT executions.

A dynamic invariant from Daikon in one of our tests is:

Figure 4: PLATO’s processing flowchart

The dynamic invariant of Figure 4 shows that upon an invocation of exec(),

the value of the variable TopLevel Chart count is equal to 2.

Analyzing source code – invariant filtering and instrumentation.

Invariants are filtered and only those that refer to control locations or to paths

with specific methods are kept (high Severity). Key points in code for invariant

filtering are detected by PLATO’s parser that returns the AUT’s AST. Invari-

ants are then parsed by their method type, variable or class type. The selected

invariants are then instrumented as Java assertions in the AUT’s source code.

Example 2. The dynamic invariant in Figure 4 is transformed into a Java

assertion and it is then instrumented at the point indicated by Daikon (start of

Wait for stable rate 100000203 exec()).

assert this.TopLevel Chart count == 2.0;
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Monitoring execution paths and program states.

JPF executes the instrumented source code and PlatoListener stores all

assertion violations encountered along with the corresponding execution paths

and backtracked states. In our example, we recall from Figure 4 that the in-

variant this.TopLevel Chart count == 2.0 must be true each time the

execution enters the method Wait for stable rate 100000203 exec().

An example JPF-PlatoListener output is shown in Figure 5.

Figure 5: PLATO’s processing flowchart

Example 3. Let us assume that Fig. 5 shows a path/transition at the beginning

of the Wait for stable rate 100000203 exec() method. The invariant

refers to a variable used in an IF-Statement and it is therefore chosen for further

analysis by PLATO’s filtering system. It must be true every time the execu-

tion enters the rjc.Chart.Wait for stable rate 100000203 exec()

method. However, it is clear from the memory read in Fig. 5, that the invariant

is violated, because TopLevel Chart count is equal to 1. An execution path

with the same prefix was found to have TopLevel Chart count = 2. This

contradiction is flagged as a possible logical error.

Classifying violations of dynamic invariants.

Example 4. The assertion in Example 2 was found to be both satisfied and

violated in two execution paths with the same prefix. The information gain

along the path to the invariant is then computed and the path is classified to

Severity and Reliability ranks. These calculations ultimately assigned a Risk

rating of 3.5 out of 5 (High Risk) for this finding.

5.2. Experiment 1: airline test from the SIR Object Database

We selected an AUT from the SIR repository [48], which exhibits the character-

istics of a multithreaded activity requiring arbitration. The experiment’s AUT
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was a multi-threaded Java program for an airline to sell tickets. The logical

error manifested leads to a race condition causing the airline application to sell

more tickets than the available airplane seats. The fact that this is a known

and well-documented error gave us the chance to validate the effectiveness of

our method in detecting a subset of logical errors that produce race conditions.

The logical error. When the program sells a ticket, it checks if the agents had

previously sold all seats. If yes, the program stops processing additional transac-

tions. Variable StopSales indicates that all tickets were sold and that issuing

new tickets should be stopped. The logical error manifests when StopSales

is updated by selling posts and, at the same time more tickets are sold by the

running threads (agents). The AUT’s code is shown in Figures 6 and 7.

Figure 6: SIR AUT example code able to create i threads (agents) which sell tickets

Figure 7: Code: Make sale & check if limit was reached (update ”StopSales”)

PLATO’s analysis for this test returned the output shown in Figure 8. The

results obtained in each step of the workflow are:

Step 1-2. There was only one tested function point. Daikon inferred among

other cases the following invariant:
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Figure 8: Airline sales: No of inferred invariants, chosen assertions and violations

Num Of Seats Sold <= this.Maximum Capacity

Step 3. An assertion violation was detected during the symbolic execution

of the AUT for the method runBug(): two execution paths were found where

the mentioned invariant was satisfied and violated respectively, thus implying a

possible logical error.

Step 4. Our method classified the path in which the invariant assertion was

violated with a Severity = 5 score and a Reliability = 3, thus yielding a total

Risk value of 4.5.

5.3. Experiment 2: remote SCADA RTUs (logical error CWE 840)

This experiment involved a type of logical error from NIST’s Juliet Test Suite

[14] classified as business logic vulnerabilities (CWE-840 group): vulnerabilities

that depend on logical errors made by the programmer.

The programs in the Juliet Test Suite include two methods: a bad() method

in which the logical error manifests and a good() method that implements a

safe way of coding. We mark results as true positive, if there is an appropriate
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warning pinpointing the flawed (bad) method, or false positive if the tool flags

the non-flawed (good) part of the source code.

The AUT was a real application built on top of the chosen synthetic test.

The software can handle Remote Test Unit machinery (RTU) through SCADA

systems in a sample critical infrastructure. Specifically, it can be used to open

and close gas pipes according to pressure measurements, as well as to control

pressure valves through an RTU unit and using its communication protocol.

To communicate and control SCADA systems, the AUT uses a java library for

communicating with SCADA equipment named JAMOD [49]. JAMOD applies

the MODBUS protocol to connect software interfaces with RTUs in SCADA

systems, using registers that manipulate control circuits (coils, holding registers

etc.). In Figures 9 and 10 we provide excerpts from the AUT’s source code. Real

RTUSs can be handled, like the L75 RTU unit [50] that provides remote control

actuation of quarter-turn valves and other rotary devices. The flaw manifests

in the code controlling the RTU.

The tests were carried out using a MODBUS simulator named MOD RSSIM

[51], since acquiring a fully operational SCADA control was not feasible.

Figure 9: High-level code able to manipulate a gas shaft in an L75 RTU unit

Software-to-RTU command code – an example.

Let Coil 1 be the valve shaft motion control circuit. A write data command

with message “FF00” either starts or continues valve movement, if it is already
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moving. A write data command with message “0000” will stop valve move-

ment. Other data values will return an exception response [50]. Using this, the

hexadecimal version of the MODBUS command is able to control and open gas

pipes using the function “Write Coil” on bus 5 would be: 05, 05, 00, 00, FF,

00, 8D, BE.

The application tested in this case study works as follows: Each time an

“open” (FF00) command is deployed, the application checks an RTU sensor to

see if it can increase pipe pressure by opening one more valve without reaching

the pressure limits. If pressure levels are too high, the AUT will send a “close”

(0000) command and will not open another pipe. If pressure remains high,

the AUT can send a second “close” command to reduce pressure. Figure 9

depicts the high-level methods of the AUT that are used to control the flow of

a valve with the aforementioned commands. When variable stopFlow is false,

an “open valve” request is sent, otherwise a “close valve”.

The logical error.

The control system must not utilize more than a specific amount of gas pipes,

otherwise high pressure could cause a rupture, leaks, even a failure to the entire

distribution system. Each time the program sends an RTU request to open a

valve, it must check if the pressure in pipes has reached a maximum or not.

If true, it should stop the flow. Variable stopFlow controls this functionality.

Inside the AUT’s code, the logical error manifests at the part where the boolean

variable StopFlow is updated. The software checks a pressure sensor to see if it

should allow further increase in gas pressure or not. This check should take place

each time a valve shaft is ordered to open. However, a higher number of pipes

than the allowed maximum can be opened, by bypassing the aforementioned

pressure check using alternate execution routes. This happens due to sensitive

information that remains unclear in objects (i.e. there is a sequence of actions

where variable StopFlow is not updated properly).

To better understand this execution deviation, refer to Figure 10. Due

to an erroneous initialization of variable checked, the control-flow statement
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at line 6 (if(checked) can be bypassed if two consecutive “increase flow”

invocations are sent within 3 to 4 seconds (i.e. before connection resets).

Figure 10: Source code example - Checks imposed to handle pressure limits

This logical error is an error taken from [14] that was also classified in NIST’s

vulnerability database [10].

We deployed the method presented in Section 4 to analyze the execution

of the aforementioned hypothetical scenario, for handling pressure in pipes.

Figure 11 depicts the invariant violations and overall statistics of the experiment.

Figure 11: CWE 840-RTU: No of inferred invariants, chosen assertions and violations

The results for each step (concerning the flaw) were the following :

Step 1. The AUT’s functionality has two flows currently available:
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A. Exec choice(1), Exec choice(2).

B. Exec choice(2), Exec choice(1), Exec choice(2).

Step 2. The dynamic analysis of these flows yielded 40 dynamic invariants.

Amongst them, the following invariant refers to a hidden logical error:

Bug.readRegisterPressure():::ENTER

this.checked == false

meaning that, upon entering method readRegisterPressure(), the vari-

able checked should always be FALSE.

Step 3. The dynamic invariants where instrumented as assertions inside the

source code and the software was executed symbolically. An assertion violation

was detected for method readRegisterPressure(): two execution paths

were found in which the variable checked had a TRUE and FALSE value

respectively, thus violating the invariant assertion from Step 2.

Step 4. Our tool classified this invariant with Severity = 5, due to the meth-

ods sendRequest() and WriteSingleRegister that manipulate SCADA

commands, and Reliability = 2. The estimated total Risk value for this specific

dynamic invariant was 3.5 (High Risk) .

5.4. Experiment 3: Testing the execution path classification system (Severity)

To test the proposed classification scheme, we created a test-bed application

based on the source code of NIST’s Juliet Test Case suite. For our purposes

we created an test suite that is, essentially, an aggregation of multiple Juliet

test filled with various vulnerabilities of different danger-levels; ranging from

medium information leakage to serious OS execution injection. The test suite

had both true positives and true negatives. The CWE vulnerability types that

were manifested in the analyzed test suite were: CWE-840 (business logic er-

rors), CWE-78 (OS Command Injection) and CWE-315 (Cleartext Storage of

Sensitive Information in a Cookie).

Test scores and Information Gain output for dangerous methods detected in

execution paths are provided in Table 6. We can see that PLATO’s classification

system yielded an overall Severity Rank = 3 out of 5 for the aggregated test suite,
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Table 6: Classification of Juliet Test Suite experiment - Information Gain results on methods

Entire Source code - Prior Entropy 0.4021791902022729

Entire Source code - Prior Severity rank 3

Entropy Loss for println (Rank 2) 0.16229218908241483

Entropy Loss for readLine (Rank 4) 0.24229218908241482

Entropy Loss for addCookie (Rank 2) 0.16229218908241483

Entropy Loss for exec (Rank 4) 0.24229218908241482

Entropy Loss for getPassword (Rank 2) 0.16229218908241483

Entropy Loss for getUserName (Rank 2) 0.16229218908241483

but specific paths were ranked with a Severity Rank = 5 out of 5. It is interesting

that the execution paths that scored the highest were manifesting the most

dangerous vulnerability of all flaws present in the AUT (CWE-79, OS command

injection). This can be seen from the fact that te most dangerous (Rank 4)

methods detected in dangerous paths presented the highest Gain (0.2423) on

both occasions, thus scoring higher than all the rest. In Table 6, the first highest-

ranked method is the exec() (Rank 4) method which is a sink utilized for OS

command injection exploits.

In overall, PLATO’s Severity mechanism: (i) detected the paths that are

prone to vulnerabilities, due to dangerous methods, and (ii) successfully ranked

them according to the danger-level of the flaw present in their source. For

a complete list of dangerous execution paths detected and their ranking, the

reader is referred to Appendix A.

5.5. Data analysis and statistical comparison of findings

Our statistical comparison of analysis findings was based on an extensive dataset

consisting of (i) additional case studies from NIST’s Juliet Test suite - eight

different AUTs in total, (ii) mutated source code drived from the processed

AUTs, and (iii) error-free source code of the AUTs after having removed the

bugs. The ultimate aim was to accumulate statistical evidence for potential

connections between various analysis aspects, such as the extent to which the
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Table 7: Data from logical error detection experiments-Part 1

METRICS / TESTS NASA SIR RTU CWE 226

Invariants Violated 1 2 1 1

Inv/s in High Severity paths 8 13 9 34

Total invariants inferred 120 58 21 36

loaded code 1274 1285 1053 1285

Instructions executed 4357 72431 7631 7631

Paths tested 6540 15 6 6

choice generators 1 1243 743 1

Table 8: Data from logical error detection experiments-Part 2

METRICS / TESTS DART SMART Rational RTU-safe CWE78

Invariants Violated 0 1 0 2

Inv/s in High Severity paths 0 0 0 2

Total invariants inferred 24 85 21 12

loaded code 1094 1241 1053 1274

Instructions executed 5013 3613 7631 4357

Paths tested 74 1 6 6540

choice generators 1 27 743 1

code loaded affects the number of inferred invariants (scalability) and how the

number of control-flow branches affects the number of invariant violations.

The original eight sample tests depicted in Tables 7 and 8 were used to

develop a dataset of 25 experiments.

Data obtained were analyzed by evaluating the Correlation metric that shows

how much two variables share similar changes in value range. Correlation results

for two variables X and Z can indicate that they are positively correlated,

negatively correlated, or not correlated at all. We do not to use the Covariance

metric, because Covariances are hard to compare when they are calculated for

variables with different value scales. Instead, Correlation is a scaled version of

Covariance which normalizes the Covariance and ends up with values between
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Table 9: Correlation results on the produced dataset.

Correlation Invariants

Violated

Invariants in

High Sever-

ity paths

Total Invari-

ants inferred

Invariants Violated 1

Inv/s in High

Severity paths

0,1 1

Total invariants in-

ferred

0 0,01 1

loaded code 0,5 0,4 0,5

Instructions exe-

cuted

0,5 0,2 0,07

Paths tested 0,3 -0,1 0,3

choice generators 0,4 0 -0,2

-1 and 1, no matter what are the original unit values of variables.

As shown in Table 9, the dataset consists of seven variables, with three of

them used for Correlation analysis. Invariant violations seem to be connected

with the choices in execution flow and thus, indirectly, with the instructions

in these paths. The logical errors and relevant invariant violations seem to be

slightly correlated with the amount of tested paths. While more paths may lead

to more invariant violations, the well coded programs can still have numerous

paths without any violated invariant. On the other hand, bad coding can lead

to invariant violation even with just a handful of execution paths. Violated

invariants have some correlation with the number of inferred high-severity in-

variants, but the high severity invariants are correlated only with the amount

of code loaded and with the number of instructions executed per AUT. The lat-

ter happens because invariants are considered of high severity only when they

manifest in paths with dangerous method invocations according to PLATO’s

taxonomy.
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It is important to note that with model checking or symbolic execution

alone, it would be not possible to detect the injected logical errors. This is

so, because the semantic differences in the traversed paths were transparent to

JPF’s symbolic execution.

6. Discussion and concluding remarks

6.1. Method applicability and state explosion issues

PLATO can detect logical errors manifested as code vulnerabilities that are

recorded in NIST’s vulnerability suites. The applicability of the method depends

on how thoroughly are analyzed the input vectors and dynamic invariants of an

AUT. In our tests, the rate of successful logical error detections was close to

100% success, but the sample on which PLATO was tested is still relatively

small, in order to support such a high detection rate.

To sidestep the problem of state explosion, Daikon and JPF can target only

specific methods, whereas the Severity ranking can pinpoint the really dangerous

methods. As shown in Table 10, for a given experiment it was made possible,

using method paths instead of comparing invariants with all program states, to

reduce the initial data set (Daikon traces, states and paths) from 155 MB to

only 13MB, and to speed up the analysis by 80%.

Table 10: Execution times for PLATO RJC experiment

Full paths and states Method paths and assertions

Size 155 MB 13MB

Time elapsed 18 min (RJC) 4 min (RJC)

6.2. Advantages and Limitations

PLATO depends on the soundness of the likely dynamic invariants provided

by Daikon and one of its limitations is the need for data from execution sce-

narios. However, this is an inherent problem of all heuristic approaches that

rely on repetitive observations to form rules. On the other hand, if we want to
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automatically detect flaws related to the logic of AUTs, the heuristic analysis

implemented in Daikon is the only way to model their intended functionality.

The second limitation is the targeted analysis of the functionality of AUTs. If

PLATO would have to analyze AUTs of thousands of lines in entirety, problems

would arise, mostly due to JPF’s inability to handle large, complex applications

and also due to state explosion. This can be mitigated by breaking down large

applications to separate functionalities to analyze each of them separately.

From our experience with using PLATO in practice, we end up with the

following conclusions:

• PLATO can indeed detect logical errors in AUTs of reasonable size and

complexity.

• The experiments have shown that our method can also provide valid de-

tections for other types of flaws beyond logical errors, such as the detected

race condition.

• Logical errors can be manifested in very diverse contexts and the detection

of a priori known error types (e.g. race conditions), which are then classi-

fied as logical errors, is not a reliable approach. With PLATO’s deductive

approach, we do not only detect diverse logical errors, but the tool also

provides insight on the impact of each error, which is context-specific.
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[30] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,

M. Lowry, S. Person, M. Pape, Combining unit-level symbolic execu-

tion and system-level concrete execution for testing nasa software, in:

Proceedings of the 2008 International Symposium on Software Testing

and Analysis, ISSTA ’08, ACM, New York, NY, USA, 2008, pp. 15–26.

doi:10.1145/1390630.1390635.

URL http://doi.acm.org/10.1145/1390630.1390635

[31] C. Prud’homme, J.-G. Fages, X. Lorca, Choco3 Documentation, TASC,

INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2014).

URL http://www.choco-solver.org

[32] Nasa jpf symbolic pathfinder – tool documentation, [online]

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/

37

http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://www.ibm.com/developerworks/rational/library/04/r-3217/
http://doi.acm.org/10.1145/1592434.1592438
http://dx.doi.org/10.1145/1592434.1592438
http://doi.acm.org/10.1145/1592434.1592438
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/
http://doi.acm.org/10.1145/1390630.1390635
http://doi.acm.org/10.1145/1390630.1390635
http://dx.doi.org/10.1145/1390630.1390635
http://doi.acm.org/10.1145/1390630.1390635
http://www.choco-solver.org
http://www.choco-solver.org
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc/doc
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc/doc
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc/doc


jpf-symbc/doc (2015).

URL http://babelfish.arc.nasa.gov/trac/jpf/wiki/

projects/jpf-symbc/doc
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Appendix A.

Output for the Experiment 4 concerning the Severity classification mechanism

is depicted below:

AUT Prior Entropy = 0.4021791902022729,

AUT Source code Severity Prior overall rank: 3

////// Information Gain calculation //////

Information Gain calculation duration: 3 milliseconds

Information Gain for getInputStream in Rank 0: 0.0

Information Gain for getInputStream in Rank 1: 0.0

Information Gain for getInputStream in Rank 2: 0.0

Information Gain for getInputStream in Rank 3: 0.0

Information Gain for getInputStream in Rank 4: 0.0

Information Gain for println in Rank 0: 0.0

Information Gain for println in Rank 1: 0.0

Information Gain for println in Rank 2: 0.16229218908241483

Information Gain for println in Rank 3: 0.0

Information Gain for println in Rank 4: 0.0024051879625567596

Information Gain for readLine in Rank 0: 0.0

Information Gain for readLine in Rank 1: 0.0

Information Gain for readLine in Rank 2: 0.004915013910784527

Information Gain for readLine in Rank 3: 0.0

Information Gain for readLine in Rank 4: 0.24229218908241482

Information Gain for getProperty in Rank 0: 0.0

Information Gain for getProperty in Rank 1: 0.0

Information Gain for getProperty in Rank 2: 0.0

Information Gain for getProperty in Rank 3: 0.0

Information Gain for getProperty in Rank 4: 0.0

Information Gain for write in Rank 0: 0.0

Information Gain for write in Rank 1: 0.0
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Information Gain for write in Rank 2: 0.0

Information Gain for write in Rank 3: 0.0

Information Gain for write in Rank 4: 0.0

Information Gain for addCookie in Rank 0: 0.0

Information Gain for addCookie in Rank 1: 0.0

Information Gain for addCookie in Rank 2: 0.16229218908241483

Information Gain for addCookie in Rank 3: 0.0

Information Gain for addCookie in Rank 4: 0.0024051879625567596

Information Gain for exec in Rank 0: 0.0

Information Gain for exec in Rank 1: 0.0

Information Gain for exec in Rank 2: 0.004915013910784527

Information Gain for exec in Rank 3: 0.0

Information Gain for exec in Rank 4: 0.24229218908241482

Information Gain for load in Rank 0: 0.0

Information Gain for load in Rank 1: 0.0

Information Gain for load in Rank 2: 0.0

Information Gain for load in Rank 3: 0.0

Information Gain for load in Rank 4: 0.0

Information Gain for getPassword in Rank 0: 0.0

Information Gain for getPassword in Rank 1: 0.0

Information Gain for getPassword in Rank 2: 0.16229218908241483

Information Gain for getPassword in Rank 3: 0.0

Information Gain for getPassword in Rank 4: 0.0024051879625567596

Information Gain for nextInt in Rank 0: 0.0

Information Gain for nextInt in Rank 1: 0.0

Information Gain for nextInt in Rank 2: 0.0

Information Gain for nextInt in Rank 3: 0.0

Information Gain for nextInt in Rank 4: 0.0

Information Gain for getUserName in Rank 0: 0.0

Information Gain for getUserName in Rank 1: 0.0

Information Gain for getUserName in Rank 2: 0.16229218908241483
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Information Gain for getUserName in Rank 3: 0.0

Information Gain for getUserName in Rank 4: 0.0024051879625567596

////// Execution paths //////

Execution path detected

Input Ranking: 4

Sink Ranking: 5

Starting at line: 83

Source: readLine

Input into variable: data bad

Ending at line: 135

Sink method: exec

Execution arguments:

Severity Rank: 5

Lines that are executed: 135 83

Dangerous variables: data bad,

Execution path detected

Input Ranking: 4

Sink Ranking: 3

Starting at line: 55

Source: getPassword

Input into variable: data2 bad

Ending at line: 68

Sink method: addCookie

Execution arguments:

Severity Rank: 3

Lines that are executed: 68 55

Dangerous variables: data2 bad,
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Execution path detected

Input Ranking: 4

Sink Ranking: 3

Starting at line: 37

Source: getProperty

Input into variable: dRata bad

Ending at line: 91

Sink method: println

Execution arguments:

Severity Rank: 3

Lines that are executed: 91

Dangerous variables: dRata bad,
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