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Abstract—The Domain Name System (DNS) is an Internet-
wide, hierarchical naming system used to translate domain names
into numeric IP addresses. Any disruption of DNS service can
have serious consequences. We present a formal game-theoretic
analysis of a notable threat to DNS, namely the bandwidth
amplification attack (BAA), and the countermeasures designed
to defend against it. We model the DNS BAA as a two-player,
turn-based, zero-sum stochastic game between an attacker and a
defender. The attacker attempts to flood a victim DNS server with
malicious traffic by choosing an appropriate number of zombie
machines with which to attack. In response, the defender chooses
among five BAA countermeasures, each of which seeks to increase
the amount of legitimate traffic the victim server processes. To
simplify the model and optimize the analysis, our model does not
explicitly track the handling of each packet. Instead, our model
is based on calculations of the rates at which the relevant kinds
of events occur in each state. We use our game-based model of
DNS BAA to generate optimal attack strategies, which vary the
number of zombies, and optimal defense strategies, which aim to
enhance the utility of the BAA countermeasures by combining
them in advantageous ways. The goal of these strategies is to
optimize the attacker’s and defender’s payoffs, which are defined
using probabilistic reward-based properties, and are measured
in terms of the attacker’s ability to minimize the volume of
legitimate traffic that is processed, and the defender’s ability
to maximize the volume of legitimate traffic that is processed.

I. INTRODUCTION

DNS (Domain Name System) is a critical infrastructure
component of the Internet that provides name-to-IP-address
resolution; i.e., it translates domain names into numeric IP
addresses. For scalability, DNS is implemented by a distributed
hierarchical database and a query-response protocol. It is
widely acknowledged that the initial DNS design did not take
into account the threats that came along with the immense
growth of the Internet. Numerous attacks, which can negatively
impact DNS performance and robustness (availability), have
prompted the development of sophisticated countermeasures.

For the most prevalent threats to DNS, there is no univer-
sally deployed countermeasure. A Bandwidth Amplification
Attack (BAA) exploits a network of computers to flood a
DNS server with many large DNS responses to presumed
requests that have never been made. If the available bandwidth
for legitimate DNS traffic is exhausted, the attack causes a

Distributed Denial of Service (DDoS) incident. Countermea-
sures include packet filtering, random drops, and aggressive
retries, but various hybrid solutions may be more effective
under certain circumstances.

In [1], we modeled the DNS BAA and its three ba-
sic countermeasures—packet filtering, random drops, and
aggressive retries—using Continuous-Time Markov Chains
(CTMCs), and studied countermeasure effectiveness using a
cost-benefit analysis. We defined benefit and cost metrics that
reflected a countermeasure’s positive and negative effects on
a DNS server, and computed their values by model checking
probabilistic reachability and reward properties over a bounded
time period, before the system reaches the steady-state. This
transient analysis reflected the need to evaluate countermea-
sures, in terms of their ability to mitigate the attack within
as short a period of time as possible [2] (in steady-state, the
effects of the BAA on bandwidth usage do not depend on
the available bandwidth). We employed an automated model-
repair process [3] to determine an optimal configuration of
the countermeasure parameters required to achieve a desired
attack success probability. These parameter settings were used
in our cost-benefit analysis, which ranks countermeasures in
terms of their net-benefit value.

In recently reported BAA incidents, the attackers often
employ tricks to sidestep attack detection mechanisms [4],
like diverse types of DNS requests or queries for varying
DNS domains [5]. Our CTMC-based study of the BAA is
not appropriate for attacks, in which the attack characteristics
or the attack intensity are varied dynamically, and in which
the defender’s optimal strategy may require switching among
multiple countermeasures.

Game-theoretic modeling of DNS attacks can automate the
synthesis of defense strategies that combine multiple counter-
measures, in order to provide optimal protection. The need to
find the optimal configuration of countermeasure parameters is
eliminated, because those configurations are computed as part
of the synthesized strategies. Motivated by these observations,
in this paper we model the DNS BAA as a two-player game
with perfect information that is played between an attacker
and a defender. In reality, the attacker cannot have perfect
information for the defender’s state. However, this overly



pessimistic assumption from the defender’s point of view
eventually results in a more conservative solution for him.

Our model is formulated in PRISM-games, an extension
of the PRISM model checker [6] that allows one to model
two-player, turn-based, zero-sum stochastic games and specify
interesting probabilistic and reward-based properties. PRISM-
games generates the optimal strategies for a player, guarantee-
ing that the player can optimize a property irrespective of any
strategy chosen by the adversary.

In our DNS BAA game, the attacker exploits multiple DNS
requests, for amplifying the occupied bandwidth and chooses
the number of compromised machines (zombies) to launch
a BAA. The defender selects the best possible combination
of countermeasures. For the attacker, we specify two goals
or payoffs: one seeks to maximize the difference between
bogus packets received and legitimate packets received, and
the other seeks to maximize the difference between legitimate
packets dropped per zombie and legitimate packets received
per zombie. The defender’s strategy minimizes the attacker’s
payoff. For each of these payoffs, we record the optimal attack
and defense strategies generated by PRISM-games.

Our model is designed to capture the attacker’s and de-
fender’s choices and payoffs at the highest suitable level of ab-
straction, in order to simplify the representation and optimize
the analysis. The most straightforward model would explicitly
track the handling of each packet as it traverses the network,
and would require modeling the capacity and the contents of
each buffer and network queue. Such a representation would
have a very large state space, and the analysis would be
feasible only for very small parameter values. Our model
abstracts from these details and is based on calculations of
the rates at which the relevant kinds of events occur in each
state. Realistic data is used in the rate calculations.

An optimal attack strategy may repeatedly update the
number of zombies used or even pause the attack, while
an optimal defense strategy may involve switching among
basic and composite countermeasures along with updating
their parameter settings as the attack progresses. Strategies
generated in this manner constitute new optimal strategies for
launching and defending against DNS BAA attacks.

The rest of this paper is organized as follows. Section II
provides background on DNS and on the BAA attack and
its countermeasures. Section III introduces stochastic game-
based modeling with PRISM-games. Section IV describes our
stochastic game-based model of the DNS BAA. Section V
presents our experimental results. Section VI considers related
work. Section VII offers our concluding remarks.

II. DOMAIN NAME SYSTEM AND BANDWIDTH
AMPLIFICATION ATTACK

DNS (Domain Name System) is a hierarchical naming sys-
tem for the Internet, based on an underlying client-server archi-
tecture, which is also hierarchical. The primary function of a
DNS server is to perform URL-resolution: the process of trans-
lating a url or domain name, such as mail.google.com,

into an IP address, such as 209.85.132.83. DNS is imple-
mented using hierarchically organized domain name servers.
At the top of this hierarchy are the DNS servers for the
root domain, which know IP addresses of DNS servers for
top-level domains such as com and edu. Top level DNS
servers know IP addresses of DNS servers for domains such
as google.com that belong to individual organizations. Such
DNS servers, in turn, know IP addresses of name servers of
their subdomains, e.g., mail.google.com. Name servers
of domains belonging to individual organizations and their
subdomains also know the IP addresses of any other networked
machines, e.g., web servers like www.google.com, that are
within those domains or subdomains.

When a DNS server receives a url-resolution query from
a client, it first checks to see if it can answer the query
authoritatively based on a locally maintained database of
resource records mapping domain names to IP addresses. If the
queried name matches a corresponding resource record in its
local database, the server gives an authoritative answer (AA),
using the local resource record to resolve the queried name.
If no local information exists for the queried name, the server
then checks to see if it can resolve the name using information
cached locally from previous queries. If a match is found, the
server answers with the appropriate cache entry and the query
is completed [7], [8].

If the queried name does not find a matched answer at its
preferred server—either from its cache or local database—the
query process can continue, using recursion to fully resolve
the name. Such recursive queries involve assistance from other
DNS servers to help resolve them. The response to the last
recursive query is the AA response (if the url is valid). The
DNS servers that support recursive DNS queries are also called
DNS resolvers. The root and other top-level domains, on the
other hand, are configured to be non-recursive. A non-recursive
DNS server provides a referral response (RR) to a DNS query:
a pointer (referral) to another DNS server that presumably has
authority for a lower portion of the DNS namespace and can
assist in resolving the query.

Domain name queries can also be iterative, where a DNS
server returns the best possible answer, which can be either an
AA response, a RR response, or an error response [9]. If the
response is a RR response, then the DNS client itself queries
the DNS server pointed by the RR response. On the other
hand, a recursive query always returns an AA response or
an error response, because a DNS resolver handles recursive
queries on behalf of its clients. A DNS resolver can provide
faster responses by caching, so DNS servers of Internet Service
Providers are usually configured to support recursive queries.

A. DNS Bandwidth Amplification Attack

The DNS BAA is a DDoS attack in which a network of
computers floods a DNS resolver with large responses to
requests that the resolver never made. A typical DNS response
size is 512 bytes. During a BAA, however, the victim DNS
resolver can receive DNS responses that are as large as 4,000
bytes. These unwanted responses consume both the bandwidth
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Fig. 1. Schematic diagram of DNS BAA

and the computational power of the victim DNS server. BAAs
are a major cause of DNS disruption; a number of incidents
involving BAAs have been reported [10].

A typical DNS query retrieves only the IP address for a
single URL. However, an ANY-type query asks a DNS server
to return various information about the domain. The size of
a response to an ANY-type query can be 50 times larger than
the size of a response to a typical DNS query. In this case, the
amplification factor (AF), i.e., the ratio of the response size
to the request size, is 50 [11]. For DNS, the AF can be as
high as 73 [12], [10], while the AF for DNSSec, the security
extension of DNS, can be as high as 271.2 [13]. The fact
that a small DNS request can generate a substantially larger
response makes the BAA possible.

We now describe how an attacker can launch a DNS BAA
on a DNS resolver, which is called the victim server. The
attacker prepares for the BAA by acquiring control of compro-
mised hosts, called zombies, to be used as attack sources, and
by acquiring a list of open DNS resolvers. A DNS resolver is
open if it is able to provide recursive name-resolution service
for clients outside of its administrative domain [14].

The steps in a BAA are illustrated in Figure 1. The attacker
commands the zombies to send to the previously found open
DNS resolvers a number of requests that generate amplified
responses (Figure 1, Step 1). For example, the zombies may
send ANY-type requests to the open DNS resolvers (Figure 1,
Step 2). Moreover, these queries are spoofed: the source-
address fields of these queries have been replaced with the
victim’s IP address. The open DNS resolvers resolve the

spoofed queries (Figure 1, Step 3) and direct the large number
of amplified responses that they receive to the victim server
(Figure 1, Step 4.1), thereby exhausting the victim’s available
bandwidth. After some time, the attacker may change the
parameters of the attack, by changing the number of zombies
used, and by deciding whether to exploit the same set of
spoofed DNS requests (a repeating query attack) or alterna-
tively prepare new ones (a varying query attack) at the cost
of some delay, if the attack is being mitigated [5], [4].

B. DNS BAA Countermeasures
Three basic countermeasures are suggested to prevent DNS

BAA attacks.
• Filtering (FTR): Filtering seeks to identify and block

attack traffic. It offers relatively high accuracy with a
false-positive rate as low as 10% [15], [16], [17], [18],
[19]. The computational demands of FTR depend on the
filtering mechanism and the attack strength.

• Random Drops (RND): RND regulates incoming traffic
by randomly dropping DNS packets [20], [21]. During
a BAA, the traffic arriving at the victim mainly com-
prises bogus packets, and a randomly dropped packet
is, therefore, likely to be bogus. RND has negligible
computational demands.

• Aggressive Retries (AGR): AGR encourages legitimate
clients to generate traffic at a higher rate. In AGR, in-
creasing the number of retries by one doubles the amount
of legitimate traffic generated during each retry [22],
[23]. The downside is the increased server workload and
bandwidth consumption.



It is possible to combine the basic BAA countermeasures to
obtain better protection.
• Random Drops with Aggressive Retries (RDR): RDR

is obtained by combining RND with AGR.
• Aggressive Retries with Filtering (AGF): AGF is

obtained by combining AGR with FTR.
Both RDR and AGF try to filter out attack traffic while
explicitly increasing the proportion of legitimate traffic.

III. STOCHASTIC GAME-BASED MODEL CHECKING

A. Stochastic Games and the rPATL Logic
A stochastic multi-player game is played by a finite number

of players on a finite state space, and, in each state, each player
chooses one of finitely many actions; the resulting profile of
actions determines a reward for each player and a probability
distribution on successor states. In a turn-based game, at every
state, only one player can choose from the set of actions
available in that state. For a finite set X , let D(X) denote
the set of discrete probability distributions over X .

Definition 1 (SMG [24]): A turn-based stochastic
multi-player game (SMG) is a tuple G =
〈Π, S,A, (Si)i∈Π,∆, AP, χ〉, where Π is a finite set of
players; S is a finite, non-empty set of states; A is a
finite, non-empty set of actions; (Si)Pi∈Π is a partition of
S; ∆ : S × A → D(S) is a partial transition function; AP
is a finite set of atomic propositions; and χ : S → 2AP is a
labeling function.

In each state s ∈ S of the SMG G, the set of available
actions is A(s) = {α ∈ A |∆(s, α) 6=⊥}. We assume
that A(s) 6= ∅ for all s. The choice of action to take in
s is under the control of exactly one player, namely the
player i ∈ Π for which s ∈ Si. Once action α ∈ A(s)
is selected, the successor state is chosen according to the
probability distribution ∆(s, α). A path of G is a possibly
infinite sequence λ = s0α0s1α1... such that αj ∈ A(sj) and
∆(sj , αj)(sj+1) > 0, for all j.

A strategy for player i ∈ Π in G is a function σi :
(SA)∗Si → D(A), which, for each path λ · s, with s ∈ Si,
assigns a probability distribution σi(λ·s) over A(s). A strategy
profile σ = σ1, . . . , σ|Π| comprises a strategy for all players
in the game. Under a strategy profile σ, the behavior of G is
fully probabilistic and a probability measure can be defined
over the set of all paths ΩG,s starting in state s [24].

SMGs have been augmented with reward structures r : S →
Q≥0, mapping each state s to a non-negative rational value
(reward) that the player controlling s receives as a payoff.
Payoffs represent the desirability of a game’s outcome as
perceived by the players in the game [25]. Transition/action
rewards are also possible in an SMG. The total payoff over a
path is the sum of the payoffs over each state in the path [26].

rPATL (Probabilistic Alternating-time Temporal Logic with
Rewards) [24] is a CTL-style branching-time temporal logic
that can be used to express quantitative properties of SMGs
with rewards. rPATL combines the coalition operator 〈〈C〉〉 of
ATL (Alternating-time Temporal Logic) [27], the probabilis-
tic operator Ponq of PCTL (Probabilistic Computation Tree

Logic), where on∈ {<,≤,≥, >}, q ∈ Q∩ [0, 1], and a variant
of the reward operator Rr

onx proposed in [28], where r is a
reward structure, x ∈ Q≥0, in order to reason about several
types of expected reward measures. The semantics of these
operators is defined in [24] via a reduction to a two-player
game called a coalition game.

Definition 2 (Coalition Game [24]): For a coalition of
players C ⊆ Π of SMG G, we define the coalition game
of G induced by C as the stochastic two-player game GC =
〈{1, 2}, S,A, (S′1, S′2),∆, AP, χ〉, where S′1 = ∪i∈CSi and
S′2 = ∪i∈Π\CSi.

rPATL formulas are interpreted over the states of a game G,
are used to check for the existence of a strategy that satisfies
a given probability/reward bound, or a strategy optimizing
some objective. For example, the formula 〈〈{1, 2}〉〉P≥0.5[ψ]
means that players 1 and 2 have a strategy to ensure that
the probability of path formula ψ being satisfied is at least
0.5, regardless of the strategies of other players. rPATL al-
lows path formulas with the standard temporal operators X
(“next”), U≤k (“bounded until”), and U (“until”). Also, the F
(“eventually”) operator is derived from the U operator in the
usual way: Fφ = trueUφ, where φ is a state rPATL formula.

rPATL reward formulas are of the form 〈〈C〉〉Rr
onx[F ?φ],

and are annotated with a reward structure r and a type ? ∈
{0,∞, c}. It states that coalition C has a strategy to ensure
that the expected sum of rewards accumulated along a path
until a state satisfying φ is reached satisfies on x. The type ?
comes into play when the target set of states is not reached,
assigning zero reward (? = 0), infinite reward (? =∞), or the
reward accumulated the whole path. The value chosen for the
type parameter depends on the application. For example, if the
goal is to maximize the expected reward for reaching a target
state, then a type of ? = 0 would be appropriate, thereby
disincentivizing paths that fall short of this goal. Similarly,
a type of ? = ∞ would be appropriate if the goal was to
minimize the expected reward for reaching a target state.

B. Probabilistic Model Checking in PRISM and PRISM-games

Probabilistic model checking is an automated formal ver-
ification technique for modeling and analyzing systems or
processes with probabilistic behavior. Model-checking tools
like PRISM [6] combine graph-theoretic algorithms for reach-
ability analysis with iterative numerical solvers. They can
evaluate properties of the form Ponq(ψ) or P=?(ψ), which
compute the probability that a path satisfies ψ. Path formula
ψ is interpreted over the paths of the probabilistic model,
which could be a Discrete Time Markov Chain (DTMC),
a Continuous Time Markov Chain (CTMC), or a Markov
Decision Process (MDP).

A PRISM model is a parallel composition of modules,
whose state is determined by a set of variables. A module
consists of a collection of guarded commands. In an MDP
or DTMC, each such command consists of a guard g (i.e.,
a state predicate) and one or more updates for the module’s
variables, where each update ui is labeled by the probability
λi with which ui occurs from a state satisfying the guard g. In



a model of a CTMC, commands have the same form, except
that λi is interpreted as the transition rate for ui.

When a module has a command whose guard is satisfied
in the current model state, it can update its variables proba-
bilistically, according to the specified updates. In a DTMC
or a CTMC model, only one command can be enabled
in a state. In MDPs, multiple commands (actions) may be
enabled simultaneously, thus representing a nondeterministic
choice between multiple discrete probability distributions over
successor states.

The PCTL semantics for the property Ponq(ψ) over MDPs
is that, for all strategies, the probability that ψ is true for
a path satisfies on q, where a strategy (or adversary) for an
MDP is a function mapping that resolves nondeterminism
based on execution history. Model checking such a property
in PRISM reduces to the computation over all strategies of
either the minimum or maximum probability of ψ holding true.
Accordingly, for MDPs, two forms of quantitative properties
are supported by PRISM, namely Pmin=?(ψ) and Pmax=?(ψ).

PRISM also allows the definition of reward structures.
Consider a DTMC D = (S, S, P, L), where S is a finite set
of states, S ∈ S is the initial state, P : S × S → [0, 1] is
the transition probability matrix such that

∑
s′∈S P (s, s′) = 1

for all s ∈ S, and L : S → 2AP is a labeling function which
assigns to each state s ∈ S the set L(s) of atomic propositions
that hold true in the state. Reward structures are defined as
pairs of: (i) state rewards (ρ : S → R≥0) and (ii) transition
rewards (ι : S × S → R≥0).

Reward-based properties have the form R{"rewardId"} on
x [ψ] or R{"rewardId"} =? [ψ], where the R operator sig-
nifies a reward-based property, rewardId identifies the reward
structure to be used, and ψ is a path formula. Such a property
returns the instantaneous expected reward or the cumulative
expected reward for the specified reward structure, until the
specified path formula is satisfied.

Consider the expected accumulated values of a reward.
ExpReach(s, T ), the expected reward accumulated starting
from state s until the target states T ⊆ S are reached, is
defined using following linear equation system [29]:

ExpReach(s, T ) =
0 if s ∈ T
∞ if ProbReach(s, T ) ≤ 1
ρ(s) +

∑
s′∈S P (s, s′) · (ι(s, s′)

+ExpReach(s′, T ))
otherwise

(1)
where ProbReach(s, T ) is the probability that a path start-
ing in state s would reach a state in the target set T ⊆
S. For MDPs, rewards can be assigned to actions instead
of transitions and R{"rewardId"} =? [ψ] is replaced by
R{"rewardId"}max =? [ψ] or R{"rewardId"}min =? [ψ].

PRISM-games extends PRISM’s MDP model checking ca-
pabilities to support coalition games, in order to analyze sys-
tems with both probabilistic and competitive behaviors [24].
PRISM-games supports analysis of turn-based, zero-sum coali-
tion games. Such games are played between only two players
(or coalitions of players), and at a given state of the game only

one of them is allowed to make a move. Turn-based games can
be used to model systems where multiple components execute
under the control of a central scheduler and each component
chooses an action. Zero-sum means that the gain of one player
is exactly balanced by the loss of the other player [30].

In PRISM-games [31], SMGs are described in a modeling
language similar to the one for PRISM. A model is composed
of modules, whose behavior is specified by a set of guarded
commands, each of which contains an (optional) action label,
a guard, and a probabilistic update for the module’s variables.
For action-labeled commands, multiple modules execute up-
dates synchronously, if all their guards are satisfied. Each
probabilistic transition in the model is thus associated with
either an action label or a single module.

A model also defines players, each of which is assigned
modules, as well as a disjoint subset of the model’s synchro-
nizing action labels. A module can be part of multiple players
as long as each enclosed command is assigned to exactly one
player. Thus, each probabilistic transition is assigned to one
player. In the current implementation of PRISM-games, all
possible probabilistic transitions on a state must belong to the
same player; PRISM-games detects and disallows concurrent
actions. To satisfy the coalition game constraint, all players
must be divided into two groups. These groups of players act
as adversaries of each other, thus taking into account their
competitive behavior.

PRISM-games supports an extension of rPATL that allows
one to write coalition-based properties that identify a strategy
that maximizes or minimizes either the expected probability of
a path or the expected value of the accumulated reward while
reaching a set of states.

C. PRISM-games Optimal Strategies and Nash equilibrium

Consider a reward-based rPATL property in PRISM-games:

<< P1, P2, . . . , Pk >> Rmax/min{“rewardDef”} =? [F φ]

This property asks PRISM-games to generate an optimal
strategy for the coalition C1 containing players P1, P2, . . . ,
Pk, where C1 ⊂ Π. Such an optimal strategy either maxi-
mizes or minimizes the expected accumulated value of reward
“rewardDef” until some state from the target set of states
that satisfy state formula φ is eventually reached. Since the
game is also a zero-sum game, PRISM-games simultaneously
generates the optimal strategy for the adversarial coalition C2

(C1∪C2 = Π), which seeks to reduce the reward obtained by
coalition C1. PRISM-games returns both the generated optimal
strategy and the expected accumulated reward. In case the
target set of states is not reached, the accumulated reward
value is set to infinity.

Typically, the goal of a game-theoretic analysis is to deter-
mine if there exists a Nash equilibrium for a game. A Nash
equilibrium represents a complete set of strategies (i.e. for
all players) such that no player can hope to better its payoff
(reward) by unilaterally switching to another strategy [32].

In game-based models of security attacks, Nash equilibria
represent optimal strategies for the defender and attacker, by



virtue of which the defender can minimize the impact of the
attack and the attacker can cause maximum damage. There-
fore, it is interesting to study the relationship between optimal
strategies generated by PRISM-games and Nash equilibrium.

Let us assume a two-player zero-sum game
with players P1 and P2. Consider the property
<< P1 >> Rmax{“reward1”} =? [F φ1]. This causes
PRISM-games to generate a strategy for P1, that maximizes
the expected value of reward reward1 accumulated while
reaching a state satisfying φ1. This means that P1 has
identified a strategy that would allow it to maximize the
expected accumulated value of reward1 in face of maximum
opposition from P2. P1 therefore has no incentive to switch
to any other strategy, since it is bound to reduce the expected
accumulated value of reward1.

Similarly, P2 has identified a strategy that would minimize
P1’s payoff. Since the game is a zero-sum game, any reduction
in P1’s payoff or reward is a gain for P2. So, P2 has also max-
imized its own payoff and it has no incentive to switch to any
other strategy. Therefore, we can infer that an optimal strategy
generated by PRISM-games is indeed a Nash equilibrium.

IV. TWO-PLAYER, TURN-BASED STOCHASTIC GAME FOR
DNS BAA

We model the DNS BAA as a two-player, turn-based
stochastic game. This section describes our model, which is
illustrated by a schematic diagram in Figure 2.

A. Modules and players

The stochastic game for the DNS BAA developed using
the PRISM-games model checker consists of modules corre-
sponding to the attacker, defender, and victim server. These
three modules are described next.

Attacker (AT). The attacker chooses the number of zom-
bies to launch the BAA. The attacker can stop attacking by
setting the number of zombies to zero. To allow modeling of
constraints on the temporal behavior of the attacker, we intro-
duce two parameters: MAX_SUCC_ATTACKS, the maximum
duration of a continuous attack (i.e., the maximum number of
consecutive steps with zombies > 0), and ATTACKER_LA-
TENCY, the maximum number of steps before the attack can
resume after MAX_SUCC_ATTACKS steps of continuous at-
tack. For example, an attacker might have a policy of stopping
and restarting its attack periodically, in order to help evade
detection and tracing [4], using tactics such as identifying
and switching to a different set of zombies (we do not model
this explicitly, since only the number of zombies being used
is modeled), or computing and switching to a different set
of DNS queries [5]. The parameter ATTACKER_LATENCY
models the time needed for such tactics. Scenarios in which
such temporal constraints are not present can also be analyzed,
by setting MAX_SUCC_ATTACKS to the length of the run (i.e.,
maxTime, introduced below).

As seen in Figure 1, the victim receives amplified bogus
DNS responses from the open DNS resolvers that resolve the
spoofed queries generated by zombies. Because open DNS

resolvers simply reflect bogus DNS responses to the victim,
while modeling the attack it is reasonable to assume that the
bogus traffic originates directly from the zombies. As such,
we omit open DNS resolvers from our model. Moreover, since
each zombie sends bogus DNS responses at a fixed rate, we
assume that bogus traffic originates from the attacker (Step 1.1
in Figure 2). The rate at which the bogus traffic arrives can
be computed by multiplying the rate at which each zombie
sends bogus DNS responses to the victim by the number of
zombies.

Defender (DF). The defender decides whether to disable
countermeasures (Nofix) or apply the FTR, AGR, RND, RDR,
or AGF countermeasure (Step 2 in Figure 2). After selecting
a countermeasure, the defender chooses the countermeasure
parameters.

Victim Server (VS). The victim server is a DNS resolver.
The VS has a finite network bandwidth, which is shared by
legitimate DNS traffic (Step 1.2 in Figure 2) and BAA traffic
(Step 1.1 in Figure 2). VS’s bandwidth is BW packets per
second. If packets arrive at a rate higher than this, the excess
packets are dropped (Step 3.2 in Figure 2).

Since PRISM-games supports only two-player games, we
divide these three players into two groups or coalitions, one
containing AT, and the other containing DF and VS.

Model constants and parameters. Since VS is a DNS
resolver, it handles both legitimate DNS requests and legit-
imate DNS responses. To model this as simply as possible,
we introduce an abstraction called legitimate DNS packet.
The size of a legitimate DNS packet is the weighted average
of the sizes of typical legitimate DNS requests and typical
legitimate DNS responses. The weights are proportional to
the frequencies with which requests and responses appear in
legitimate traffic. One DNS request generates one response;
so, requests and responses typically appear with the same
frequency in legitimate traffic. Thus, the size of a legitimate
DNS packet is the average of the size of a legitimate DNS
request (60 bytes) and the size of a typical legitimate DNS
response (512 bytes) [10]. The legitimate DNS packet size is,
therefore, (60 + 512)/2 = 286 bytes.

As discussed in Section II-A, each bogus
DNS response in a BAA is AF times larger
than a legitimate DNS request, i.e., AF =
(bogus DNS response size)/(legitimate DNS request size).
Since our model uses the abstraction of legitimate DNS
packets, we need to adapt the definition of AF to use
the legitimate DNS packet size instead of the legitimate
request size. The modified definition for AF is AF =
(bogus DNS response size)/(legitimate DNS packet size).
The maximum size of a bogus DNS response is 4380
bytes [10], so AF = (4380 bytes)/(286 bytes) = 15.31.

Since a bogus DNS response is AF times larger than a
legitimate DNS packet, one bogus DNS response is equivalent,
in terms of bandwidth usage, to AF legitimate DNS packets.
The number of bogus DNS responses and the number of
legitimate DNS packets, and the bandwidth limit of VS’s
network can, thus, be measured using a single unit called
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Fig. 2. Modules and players in DNS BAA stochastic game

packets, provided we multiply the number of bogus DNS
responses by AF.

The rate at which the legitimate DNS packets arrive at and
flow out of VS is denoted Rl. As the consumption of VS’s
bandwidth mainly depends on the attack strength, we set Rl

to a moderate value of 100 packets per second. Parameter
zombies represents the number of zombies used in the BAA.

The rate at which each zombie sends bogus DNS packets to
VS, denoted bogus_rate, equals AF times the number of
bogus DNS responses sent per second by each zombie. Since
the attack strength is controlled mainly by the number of zom-
bies, we assume that each zombie sends a moderate number
of 10 bogus DNS responses per second; so, bogus_rate =
10 · AF packets per second. The net arrival rate for the bogus
DNS packets, denoted Rb, is Rb = bogus rate · zombies.

A typical DNS server has approximately 1 Mbps of dedi-
cated bandwidth [33]. Since the legitimate DNS packet size is
286 bytes, 1 Mbps bandwidth can transmit 1Mb

286 = 458 packets
per second. So, we set BW, the bandwidth of VS’s network,
to 458 packets per second in our model. Finally, maxTime
represents the maximum time for which the model is allowed
to execute. Note that a DNS server’s bandwidth typically
saturates before its CPU saturates, so it is unnecessary to
model the rate at which VS can process DNS requests.

Countermeasure parameters. Next we describe the param-
eters of each countermeasure.

FTR has two parameters: detection fraction (df) and false-
positive fraction (fpf). Parameter df is the fraction of attack
traffic identified and filtered, while fpf is the fraction of
legitimate traffic incorrectly identified as bogus. Studies of
different filtering algorithms show that on average FTR has
a df of 0.9 and fpf of 0.1. FTR decreases the legitimate
packet rate to Rl · (1−fpf) and the bogus packet rate to Rb

· (1−df).

RND has parameter random-drop fraction (rdf), the frac-
tion of incoming legitimate and bogus packets randomly
dropped. RND reduces the legitimate packet rate to Rl ·
(1−rdf), and the bogus packet rate to Rb · (1−rdf).

AGR has parameter retries, which controls the number
of times the legitimate DNS packets are resent to increase the
share of legitimate traffic. AGR increases the legitimate packet
rate to Rl · 2retries.

RDR is the combination of RND and AGR, so RDR has
parameters rdf and retries. It increases the legitimate
packet rate to Rl · (1−rdf) · 2retries, and decreases the bogus
packet rate to Rb · (1−rdf).

AGF is the combination of AGR and FTR, so it has
parameters retries, df, and fpf. It increases the legitimate
packet rate to Rl · (1−fpf) · 2retries and decreases the bogus
packet rate to Rb · (1−df).

B. Sequence of moves

PRISM-games supports turn-based games, so we need to
ensure that in any state, only one player can make a move. We
achieve this by introducing a scheduling variable named turn,
whose value indicates whether AT, DF, or VS is enabled. This
leads to the following sequence of moves:

1) Initially, AT is enabled (turn = AT), and time=0.
2) AT chooses the value of zombies.
3) AT enables DF, setting turn = DF.
4) DF chooses one of the five countermeasures or decides

to disable the countermeasures.
5) DF selects values for the parameters of the selected

countermeasure (if any).
6) DF enables VS, setting turn = VS.
7) VS receives legitimate and bogus packets with probabil-

ities that reflect the selected countermeasure, the arrival



rates of the legitimate and bogus DNS packets, and VS’s
bandwidth.

8) VS enables AT, setting turn = AT, and increments time
by 1.

9) If time is less than maxTime, go to step 2.

C. DNS BAA SMG

Figure 3 shows the SMG for the DNS BAA. In state
AT : sinit, AT chooses the value of zombies. In state
DF : s2, DF decides which, if any, countermeasure to turn
on. If DF turns on a countermeasure, DF next selects values
for the countermeasure parameters. For example, in Figure 4,
we see that the DF sets df to 0.85, 0.9, or 0.95. The state
DF : sdf=0.9

cm=FTR indicates that DF set df to 0.9. Next, DF sets
fpf to 0.05, 0.1, or 0.15. VS’s behavior is fully probabilistic,
as it receives legitimate and bogus packets with probabilities
that reflect the selected countermeasure, the arrival rates of le-
gitimate and bogus DNS packets, and VS’s bandwidth. In state
VS : scm4 , the VS executes transition Receive Packet and with
probability pcmb receive, a bogus packet is received and the next
state is VS : scmb received; with probability pcml receive, a legiti-
mate packet is received and the next state is VS : scml received;
with probability pcmb drop, a bogus packet is dropped and the
next state is VS : scmb dropped; and with probability pcml drop, a le-
gitimate packet is dropped and the next state is VS : scml dropped.

Note that
(
pcmb receive + pcml receive + pcmb drop + pcml drop

)
= 1.

We now derive expressions for these four probabilities.
As shown in Figure 2, all traffic to VS passes first through

DF and then through VS’s network, so there are two places
where a packet can be dropped: (1) at DF, if DF uses
countermeasure FTR, RND, RDR, or AGF, and (2) at VS (i.e.,
VS’s network), if VS’s bandwidth is full.

First, we compute the rates Rcm
b in and Rcm

l in at which bogus
and legitimate packets, respectively, pass through DF, and the
rates Rcm

b out and Rcm
l out at which bogus and legitimate packets,

respectively, are dropped at DF.

Rcm
b in =


Rb if cm ∈ {Nofix,AGR}
Rb · (1− df) if cm ∈ {FTR,AGF}
Rb · (1− rdf) if cm ∈ {RND,RDR}

(2)

Rcm
l in =



Rl if cm = Nofix

Rl · (1− fpf) if cm = FTR

Rl · (1− rdf) if cm = RND

Rl · 2retries if cm = AGR

Rl · 2retries · (1− rdf) if cm = RDR

Rl · 2retries · (1− fpf) if cm = AGF

(3)

Rcm
b out =


0 if cm ∈ {Nofix,AGR}
Rb · df if cm ∈ {FTR,AGF}
Rb · rdf if cm ∈ {RND,RDR}

(4)

Rcm
l out =



0 if cm ∈ {Nofix,AGR}
Rl · fpf if cm = FTR

Rl · rdf if cm = RND

Rl · 2retries · rdf if cm = RDR

Rl · 2retries · fpf if cm = AGF

(5)

Next we compute the probabilities pcmb in and pcml in with
which a bogus packet and a legitimate packet, respectively,
pass through DF, and the probabilities pcmb out and pcml out with
which a bogus packet and a legitimate packet, respectively, are
dropped at DF. They are pcmt d = Rcm

t d/(R
cm
t in +Rcm

t out) where
the packet type t is b or l, and the direction d is in or out.

Once a packet passes through DF, VS receives it subject to
VS’s bandwidth availability. So, pcmb receive can be computed
as the probability that bogus packet arrives at VS (i.e., VS’s
network) and is not dropped by VS due to bandwidth limit
(i.e., network congestion). The pcmb drop can be computed as the
probability that a bogus packet is dropped by DF, or a bogus
packet arrives at VS and is dropped by VS due to bandwidth
limit. The probabilities pcml receive and pcml drop can be computed
similarly. This leads to the following equations, where pcmdrop is
the probability that a (bogus or legitimate) packet transmitted
by DF gets dropped by VS due to bandwidth limit, and
pcmreceive is the probability that a (bogus or legitimate) packet
transmitted by DF is not dropped by VS due to bandwidth
limit. Note that all of these probabilities implicitly depend on
state variables such as zombies and df.

Rcm
in = Rcm

b in +Rcm
l in

pcmdrop =

{
0 if BW ≥ Rcm

in

(Rcm
in − BW)/Rcm

in otherwise
pcmreceive = 1− pcmdrop

pcmt receive = pcmt in · pcmreceive
pcmt drop = pcmt in · pcmdrop + pcmt out

where the packet type t in the last two equations is b or l.

D. Attacker and Defender Payoffs and Optimal Attack and
Defense Strategies

Attacker’s payoffs. We define two payoff functions for
the attacker, to illustrate how the payoff function affects the
generated optimal strategies.
AttackerPayoff_1 maximizes the difference between

bogus and legitimate packets received by the victim (VS).

rewards "AttackerPayoff_1"
turn=VS & legitPktRcvd : -1;
turn=VS & bogusPktRcvd : 1;

endrewards

AttackerPayoff_2 is a refinement of
AttackerPayoff_1 that takes the attack cost into account
by dividing by the “benefit” by the number of zombies,
which is a measure of attack cost. So, AttackerPayoff_2
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time zombies Countermeasure df fpf rdf retries

1 100 RDR 0.99 6
2 100 RDR 0.99 6
3 0 Nofix
4 100 RDR 0.99 6
5 100 RDR 0.99 6
6 0 Nofix
7 100 AGF 0.90 0.05 6
8 100 RDR 0.99 6
9 0 Nofix
10 100 RDR 0.99 6
11 100 AGF 0.85 0.05 6
12 0 Nofix
13 100 RDR 0.99 6
14 100 AGF 0.85 0.05 6
15 100 RDR 0.99 6

TABLE I
OPTIMAL ATTACK AND DEFENSE STRATEGIES GENERATED FOR
AttackerPayoff_1. EMPTY CELLS INDICATE THAT THE

CORRESPONDING COUNTERMEASURE PARAMETER IS NOT APPLICABLE
FOR THE SELECTED COUNTERMEASURE.

maximizes the difference between legitimate packets dropped
per zombie and legitimate packets received by the victim
(VS) per zombie. If zombies > 0, AttackerPayoff_2
assigns a positive unit reward per zombie when a legitimate
packet is dropped, and it assigns a negative unit reward
per zombie when a legitimate packet is received. When
zombies = 0, i.e., if the attack is paused, rewards per
zombie are not used, in order to avoid the Division by zero.
However, when the attack is paused, more and more legitimate
packets are received by the victim, which is not beneficial
to the attacker. So, a negative unit reward is assigned when
a legitimate packet is received. Similarly, a small number of
legitimate packets may be dropped, if the incoming legitimate
packets will exhaust the victim’s bandwidth. This behavior
is beneficial to the attacker. So, a positive unit reward is
assigned when a legitimate packet is dropped.

rewards "AttackerPayoff_2"
turn=VS & legitPktDrop & zombies>0 : 1/zombies;
turn=VS & legitPktRcvd & zombies>0 : -1/zombies;
turn=VS & legitPktDrop & zombies=0 : 1;
turn=VS & legitPktRcvd & zombies=0 : -1;
endrewards

Defender’s payoffs. Since our game is a zero-sum game,
the defender’s payoff is exactly opposite to the attacker’s
payoff. The defender always chooses a move that would be
most disadvantageous to the attacker. So, we do not need to
explicitly define the defender’s payoffs.

Generating optimal strategies. To generate optimal attack
and defense strategies, we define rPATL reward-based proper-
ties for the coalition of players containing attacker AT. These
reward-based properties have the form:

<<AT>>Rmax{"AttackerPayoff_n"} =? [F time=maxTime]

When PRISM-games evaluates such properties, it returns the
expected accumulated reward value and the optimal strategies
for the two coalitions of players.

time zombies Countermeasure df fpf rdf retries

1 100 FTR 0.95 0.05
2 100 FTR 0.95 0.55
3 0 Nofix
4 100 FTR 0.95 0.05
5 100 FTR 0.95 0.05
6 0 Nofix
7 100 FTR 0.95 0.05
8 100 FTR 0.95 0.05
9 0 Nofix
10 100 FTR 0.95 0.05
11 100 FTR 0.95 0.05
12 0 Nofix
13 100 FTR 0.95 0.05
14 100 FTR 0.95 0.05
15 100 FTR 0.95 0.05

TABLE II
OPTIMAL ATTACK AND DEFENSE STRATEGIES GENERATED FOR
AttackerPayoff_2. EMPTY CELLS INDICATE THAT THE

CORRESPONDING COUNTERMEASURE PARAMETER IS NOT APPLICABLE
FOR THE SELECTED COUNTERMEASURE.

V. EXPERIMENTAL RESULTS

To limit the number of reachable states, we set maxTime
to 15, and we allow the attacker and defender to select among
a few values for each parameter. Specifically, AT can set
zombies to 0, 20, 40, 60, 80, or 100, and DF can set
df to one of the representative values 0.85, 0.9, or 0.95.
Similarly, DF can set fpf to 0.05, 0.1, or 0.15, rdf to
0.81, 0.9, or 0.99, and retries to 2, 4, or 6. To illustrate
the interesting temporal behaviors that may appear in the
generated optimal strategies when the attacker is subject to
limits on attack duration, we set MAX_SUCC_ATTACKS to 3
and ATTACKER_LATENCY to 2; these values are relatively
small but allow interesting temporal behavior to occur within
the time limit imposed by maxTime.

With these settings, PRISM-games constructs the state
graph, consisting of 773,906 states and 1,591,981 transitions,
in 20.2 seconds. PRISM-games model checking algorithms
compute fixpoints up to a desired convergence threshold, i.e.,
the maximum difference between solution values observed in
successive iterations. We use the default threshold of 10−6.
The lower bound on the number of iterations required to
achieve the desired convergence threshold is exponential in the
game size [24]. PRISM-games computed the optimal strate-
gies for AttackerPayoff_1 and AttackerPayoff_2
in 71.0 seconds and 52.4 seconds, respectively.

Results for AttackerPayoff_1. Table I presents the op-
timal attack and defense strategies for AttackerPayoff_1.
We observe that the attacker never attacks for three continuous
steps, so as to escape the latency, i.e., so that it can attack
again after one step instead of ATTACKER_LATENCY steps.
We also see that the attacker uses the highest possible number
of zombies. The defender tries to drop as many bogus packets
as possible by using RDR with rdf and retries set to their
highest possible values (0.99 and 6, respectively). With these
settings, RDR reduces the number of bogus packets received
more effectively than FTR. On a few occasions, we see that
defender also uses AGF with df set to less than its maximum



value of 0.95, fpf set to its lowest possible value of 0.05, and
retries set to its highest possible value of 6. Finally, we
observe that when the attacker pauses the attack, the defender
turns off all countermeasures.

Results for AttackerPayoff_2. Table II presents
the optimal attack and defense strategies generated for
AttackerPayoff_2. From Table II, we again see that the
attacker never attacks for MAX_SUCC_ATTACKS consecutive
steps. We also observe that, as one might expect, the defender
sets df to the highest possible value and fpf to the lowest
possible value, and the attacker sets zombies to the highest
possible value. We once again see that when the attacker
pauses the attack, the defender turns off all countermeasures.

Note that none of the optimal strategies generated for this
payoff function use RND or RDR, because when RND is used,
the values of pRND

l receive are always less than the corresponding
probability values observed for FTR. Moreover, pRND

l receive =
pNofix
l receive, because RND drops rdf of legitimate and bogus

traffic, so selecting RND or RDR does not help the victim to
increase the fraction of legitimate packets received.

Note also that none of the optimal strategies generated for
this payoff function use AGR, because increasing the number
of retries leads to bandwidth saturation, thereby increasing
the probability of legitimate packets being dropped, and this
offsets the benefit of increasing the volume of legitimate
traffic; in contrast, FTR drops only a small percentage of
legitimate packets, while dropping a large percentage of bogus
packets, allowing significantly more legitimate packets to get
through, improving the defender’s payoff.

We also ran a variant of this experiment in which we fixed
df to 0.9 and fpf to 0.1. In this case, the attacker uses
only 75 zombies, because AttackerPayoff_2 assigns unit
reward per zombie when a legitimate packet is dropped and
a unit negative reward per zombie when a legitimate packet
is received. Therefore, increasing the number of zombies is
advantageous for the attacker only if it increases the legitimate
drop rate by a sufficiently large amount to compensate for the
additional cost, which is reflected in the larger denominator in
the payoff function.

VI. RELATED WORK

Game-theoretic techniques have been previously applied to
DoS and DDoS attacks, where an attack is modeled as a two-
player game between an attacker and a defender that resorts to
filtering and rate limiting as attack countermeasures. The ma-
jority of these approaches [34], [35], [36], [37], [38] analyze
the effectiveness of individual countermeasures; however, [39]
studies multi-layer protection, where filtering, rate-limiting,
and bandwidth capacity extension are used in conjunction.

A one-shot, zero-sum game between an attacker and a
defender is also presented in [40]. The attacker’s goal is to
find optimal values for the number of attacking nodes, the
malicious traffic probability distributions for each node, and
other related parameters.

In all aforementioned works, payoff functions defined for
the attacker and defender reflect the benefits obtained and

the costs incurred when choosing a particular strategy. The
typical metrics used as benefits and costs are: the bandwidth
share utilized by the legitimate traffic, the number of legitimate
packets incorrectly dropped, the number of bogus packets
allowed to pass through the filter, and the costs associated with
adding more bandwidth or using more zombies. The payoffs
are defined as functions of various thresholds and drop rates
(DR) used by filtering mechanism, rate at which legitimate
packets arrive (LR), number of zombies used by the attacker
(Z), rate at which each zombie sends bogus traffic (BR), and
the manner in which the attack traffic is generated (ATG), i.e.,
whether the attack traffic is sent continuously or in bursts.

Once payoff functions are defined, they are used to deter-
mine the Nash equilibria strategies for the attacker and de-
fender. Nash equilibria are computed by various game solvers
and the results are verified by simulating the attack using
network simulation tools such as NS2. The Nash equilibria
return the values of DR that would maximize the defender’s
payoff, and values of values of Z, BR, and ATG that would
maximize attacker’s payoff. Neither the defender nor the
attacker has any incentive to deviate from the Nash equilibria.

Our work is different in several respects. Along with FTR
and RND, we analyze AGR and composite countermeasures
RDR and AGF that contain AGR. Our two-player SMG model
of the DNS BAA results in the generation of more interesting
optimal attack and defense strategies, where the number of
zombies employed in the attack and the countermeasures
selected by the defender vary over the duration of the attack.
We implemented the two-player game for DNS BAA using
PRISM-games, which uses reward-based probabilistic model
checking to generate optimal strategies. Therefore, we do
not need to use a separate game solver. Also, reward-based
properties in PRISM offer a convenient way to define payoff
functions, allowing us to easily explore the effects of different
payoff functions on the optimal strategies so generated.

VII. CONCLUSIONS

We developed a stochastic game-based model of the DNS
BAA attack at a suitable level of abstraction to allow efficient
analysis. We formally analyzed the BAA by formulating the
model in the PRISM-games probabilistic model checker. This
approach allowed us to generate new optimal attack and
defense strategies corresponding to different payoff functions.
An optimal attack strategy generated in this manner may vary
the number of zombies used to launch the attack, or even
periodically pause the attack. An optimal defense strategy
generated in this manner may involve switching among basic
and composite countermeasures, along with updating counter-
measure parameter settings, as the attack progresses.

One direction for future work is to consider more complex
payoff functions. For example, the attacker may try to maxi-
mize the percentage of legitimate packets dropped per zombie.
This payoff function needs to be evaluated over the entire run,
which is not directly supported by PRISM-games. In order to
define such a payoff function, we need to extend the model
with additional state variables, e.g., counters for the numbers



of legitimate packets received and legitimate packets dropped.
Furthermore, if the number of zombies may vary during the
run, and we want to use the average number of zombies when
computing these percentages per zombie, then an additional
integer variable is needed. Such counters would significantly
increase the number of reachable states and therefore the time
and space needed for the analysis. New optimizations may
be needed to make such analysis feasible. Another direction
for future work is to validate the results of our model on a
real network or by using network simulation tools like NS2.
Finally, we are also interested to analyze the DNS BAA as a
two-player game with imperfect information [41].
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